
CICS Dynamic Scripting:
Data Manipulation

Dennis Weiand
IBM

Tuesday, August, 10th, 6:00pm-7:00pm

Session #09608
© 2011 IBM Corporation

2
© 2011 IBM Corporation

Abstract

• This presentation discusses capabilities of the CICS
Dynamic Scripting Feature Pack. You have seen overview
presentations, but its time to start discussing some of the
CICS Dynamic Scripting capabilities in detail.

Data storage and access is an important part of any
application, so this session will cover the Zero Resource
Model (ZRM) to quickly define database tables and
provide data access. Providing RESTful interactions in
both XML and JSON will also be discussed.

3
© 2011 IBM Corporation

Trademarks
• The following terms are trademarks of the International Business

Machines Corporation or/and Lotus Development Corporation in the
United States, other countries, or both:
• Redbooks(logo)™, AIX®, alphaWorks®, CICS®, DB2®, IBM®,

IMS™, Informix®, MQSeries®, VisualAge®, WebSphere®

• The following terms are trademarks of other companies:
• Microsoft, Windows, Windows NT, and the Windows logo are

trademarks of Microsoft Corporation.
• Java and all Java-based trademarks and logos are trademarks

or registered trademarks of Sun Microsystems, Inc.
• CORBA, CORBAServices, and IIOP are trademarks of the

Object Management Group, Inc.
• UNIX is a registered trademark of The Open Group in the United

States and other countries.
• Other company, product, and service names may be trademarks

or service marks of others.

4
© 2011 IBM Corporation

Notices

• This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this
presentation in other countries.

• INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PRESENTATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILTY OR FITNESS FOR A PARTICULAR PURPOSE.

• This information could include technical inaccuracies or typographical errors.
IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this presentation at any time without notice.

• Any references in this presentation to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

5
© 2011 IBM Corporation

Agenda

• What is CICS Dynamic Scripting

• Review data-related concepts

• ZRM (Zero Resource Model)

• Define/dump/load database tables

• REST access and ZRM API access

• More database options

• Configuration

• Defining tables

• Accessing table data

• Implementing your own REST interfaces

• Formatting data (JSON, XML, ATOM)

• Accessing Data via the JCICS API

Agenda

6
© 2011 IBM Corporation

Notes:

• This presentation is intended to provide information on the data-related options available when writing
CICS Dynamic Scripting Application. For data access, the easiest way will be to use ZRM (Zero
Resource Model) which is a ‘black box’ implement to provide quick, easy database access. For more
control you can configure the database details yourself, and can use SQL access. Since your
application will be running in a CICS environment, you may wish to LINK to a CICS program that
‘owns’ the application data, or you can access CICS resource data direction (e.g. VSAM file).

• This Feature Pack became available on July 22, 2010 and is a no-charge feature of CICS TS V4.1

• As of the date on this presentation, the CICS Dynamic Scripting Feature Pack is only available to
CICS TS V4.1 customers, there is a statement of direction for IBM to make the CICS Dynamic
Scripting Feature Pack available under CICS TS V4.2.

7
© 2011 IBM Corporation

CICS Dynamic Scripting

Java EE /
CICS

Traditional WebSphere sMash & CICS Dynamic Scripting

S
tr

a
te

g
ic

 V
a
lu

e
,

C
o

s
t,

 C
o

m
p

le
x
it

y
,

U
s
a
g

e

Number of applications

Time to value is more
important than
enduring value

Strategic, long-
lived applications

Enterprise

Applications

Team/Project

Applications Personal

Applications

�Creating reports, dashboards and widgets

�Quickly front ending existing applications

�Exposing CICS assets in mash-ups

�Creating productivity applications

�Quickly trying out new business ideas

� Introducing new IT staff to CICS via PHP

�Developing without a dedicated budget

�Porting existing unmanaged PHP into CICS

Departmental

Applications

Can be used to develop and deploy lightweight, ‘fit for
purpose’, situational applications that meet departmental,
team, project and personal requirements, e.g.:

8
© 2011 IBM Corporation

Notes:

• In our typical mainframe development, we normally only address mission-critical applications.
Because these applications are normally high-volume and are the life-blood of our business, we have
surrounded them with procedures with tight controls that insure quality, consistency, availability and
all of the other attributes needed for our main applications. These applications are normally written in
CICS or WebSphere Application Server which provide industrial-strength environments for our
applications.

• In addition to the main applications that handle the volume of our user interactions, there are other
applications our business needs for special situations such as a sales promotion or departmental
applications we could use to enhance productivity. Because of the procedures and development
techniques we use, we are often not able to address application requests for these special situations
(which are commonly referred to as ‘situation applications’).

• The demand for situational applications (sometimes referred to as the ‘long tail of demand’) at some
companies outweighs the requests for traditional requests, but due to the procedures and
development techniques we use, we don’t have the time and resources to address them.

• Even if we had the ‘resources’, our development techniques often don’t allow us to respond quickly
enough to accommodate the situational application requests.

• CICS Dynamic Scripting is intended to address some of these shortcomings. CICS Dynamic
Scripting, built on Project Zero technology provides a productive environment that can be used to
address situational applications. CICS Dynamic Scripting is also a great way to introduce new IT
staff to CICS via the Project Zero technology, and the PHP and Groovy dynamic scripting languages.

9
© 2011 IBM Corporation

CICS Dynamic Scripting Feature Pack

• Technology from Project Zero, WebSphere sMash v1.1.1.3 (projectzero.org)

• Robust environment for situational reports, dashboards, and Web feeds

• Provides PHP and Groovy support in CICS – agile, productive environment

• Zero Resource Model (ZRM) with data managed by DB2 for z/OS

• Uses CICS TS V4.1 JVMServer Technology (statement of direction for CICS

TS V4.2)

• Manageability, Scalability, and Security

• Situational applications - Quickly try business ideas

• Introduce new staff to CICS via PHP and Groovy

• Run unmanaged PHP and WebSphere sMash applications in CICS

• Easily expose CICS assets with RESTful interfaces

• Optional no charge product extension to CICS TS V4.1, June 22, 2010

(currently a statement of direction for CICS TS V4.2)

10
© 2011 IBM Corporation

Notes:

• CICS Dynamic Scripting is a Feature Pack for CICS TS 4.1.

• This feature pack embeds Zero's agile programming model into CICS on z/OS. This allows you to
quickly construct Web applications, and enables Groovy and PHP scripts to run inside CICS to
handle HTTP requests. You can exploit many of the features provided by Project Zero technology to
quickly and easily build custom services and applications around your CICS programs and data, for
example to expose CICS assets RESTfully, or to serve modern Web 2.0 AJAX front-ends for your
CICS programs. Dynamic Scripting applications simply consist of scripts and configuration files on
the zFS file system, so they can be developed with the tooling of your choice.

• Applications running on the Feature Pack can tightly integrate with existing CICS applications and
data, including COBOL assets. They inherit the strengths of CICS and z/OS, including their Quality of
Service characteristics.

• Project Zero, per the Project Zero Web site “began life as an incubator project to explore a new idea”
… “of a development and runtime environment that could revolutionize creation of dynamic web
applications – providing a powerful development and execution platform for modern Web applications
while at the same time having the overall experience of being radically simple” . Users of Project
Zero technology include the CICS Dynamic Scripting Feature Pack, the WebSphere Application
Server Dynamic Scripting Feature Pack, and WebSphere sMash.

• WebSphere sMash – is an implementation of the Project Zero technology. A fully licensed retail
version of IBM WebSphere sMash is available for production use. An IBM WebSphere sMash
Developers Edition is available for free when used for development and limited deployment (see
license details).

11
© 2011 IBM Corporation

Project Zero Environment
(in CICS)

CICS Transaction Server

HTTP

Request

HTTP

Response

Zero Application

Java

CICS

Pipeline

C
IC

S

T
C

P
 / IP

S
e
rv

ic
e

JCICS API

CICS Assets

COBOL
Java
DB2
TSQ
etc..

12
© 2011 IBM Corporation

Notes:

• From a Project Zero developer's perspective, the Application is the server. This is in contrast to the normal thinking
where you have a server and run multiple applications under that server. When a Project Zero application is started, it
has its own port and takes care of all HTTP and database interactions. It is like the infrastructure is an extension of
the application (versus the normal thinking of the application being an extension of the infrastructure).

• How this is physically applied is that you 'create' an application, add application code, then 'start' the application.
That's it. The application listens on a specified port, and responds to HTTP requests as appropriate. The capabilities
like listening/responding to HTTP, interacting with a database, using Dojo, etc are added to the application by adding
'dependencies' to the ivy.config file in the application’s /config directory (more on this later).

• At a lower physical level, each application runs in its own JVM.

• When applied to CICS, HTTP requests go through CICS (so CICS can apply security) and are then passed to the
Dynamic Scripting Application. Each Dynamic Scripting application in CICS runs in its own JVMServer. The
JVMServer in CICS is a multi-threaded JVM. Any JVM is multi-threaded, however in CICS, each of the threads used
for application code are associated with a T8 TCB (the new TCB type for CICS TS V4.1). The reason for the T8 TCBs
is that although you can create new threads in a JVM, CICS won't be aware of them unless they are mapped to T8
TCBs. A T8 TCB is needed for application code on the thread to be able to interact with CICS. So, if CICS is creating
threads in the JVM, T8 TCBs will be mapped to the threads and code running on those threads can interact with
CICS. If an application programmer does a Thread.create() (or similar function), then the thread won't be mapped to
a T8 TCB, CICS will be unaware of the thread, and code running on the thread cannot interact with CICS. (Bottom
Line: application programmers are discouraged from creating their own threads).

• A Dynamic Scripting application can have "hundreds" of concurrent requests executing in a single JVMServer. Each
of these threads would be a concurrent path through the application.

• The JVMServer resource has a THREADLIMIT() parameter where you can specify the max number of threads (T8
TCBs) that can be allocated to the JVMServer. The ThreadLimit on a JVMServer can be from 1-256 with the default
being 15. There can be a maximum of 1024 threads for a CICS region. The number of JVMServers will also be
influenced by the size of the JVM implemented by the JVMServer resource. These threads are for concurrent
application usage. This means that a single JVMServer with 256 threads, depending on the request arrival rate, could
be able to handle multiple thousands of users.

13
© 2011 IBM Corporation

Concepts I will assume you know

• Command-line interface (CLI) from z/OS USS

• Looks like any other ‘project zero’ environment

• Configuration Files

• zero.config (application) and zerocics.config (CICS)

• Upcoming slides on:

• An application is a set of ‘well-known’ directories

• Applications are coded in PHP, Groovy, and/or Java
• Use your favorite editor or development environment

• Applications are modules, specified as dependencies
• Application’s config/ivy.config file

• Dependencies are inherited into your application
• Can view inherited artifacts with Virtualized Directory Viewer

14
© 2011 IBM Corporation

Notes:

• While developing your CICS Dynamic Scripting application, there are certain concepts you will need to
understand.

• You interact with your application for administrative purposes from a USS (UNIX System Services)
command line. You will need to have a basic understanding of the available ‘zero’ commands. These
commands allow you to create an application, start the application, stop the application, resolve
application dependencies, and much more.

• The zero.config and zerocics.config were discussed previously, but you will need a basic understanding
of the items in these configurations files that affect your environment, for example the port your
application will listen on is set in the zero.config file.

• From a programming perspective you will need a basic understanding of the facilities that are available
to your application:
• Events – your code, usually referred to as a handler, handles events in the Dynamic Scripting environment

• Global Context – can be accessed to find out information about your environment or temporarily store items

• PHP support – you can include PHP scripts in a Dynamic Scripting application

• Zero modules – various features available to your application are supplied in Zero modules

• Resolving dependencies – to include a feature, you specify that feature as a dependency

• Virtualized Directories – a way to look at your application’s resources and all the resources it inherits

• Zero Resource Management (ZRM) – a way to work with data in a Zero environment

• REST support – Dynamic Scripting includes support for various aspects of REST

• You will also need a basic understanding of how to interact with your
CICS resources using the JCICS API.

15
© 2011 IBM Corporation

Project Zero Application

• A ‘well-known’
directory structure

• Base directory for
HTML pages is public
(or public/secure)

• HTML, CSS,
JavaScript, Graphics

• /app/resources for
RESTful resources

• /app/views for Groovy
Templates

16
© 2011 IBM Corporation

Notes:

• Each Dynamic Scripting application has a standard (‘well-known’) directory structure. There are
specific directories available for specific types of artifacts. For example, the default location for
HTML page is in your application’s ‘public’ directory. All of the directories (standard or optional) are
documented in the Project Zero documentation.

• Project Zero applications enjoy a type of inheritance model. You could have base application A and
specify that application B has a 'dependency' of application A. Application B would then inherit all of
application A's functionality. Although in this case application A's artifacts wouldn't physically reside
in application B's directory structure, for all practical purposes, application A and B are 'virtually' a
single application. When displaying ‘virtualized’ directories for application B, application A and B's
artifacts would be displayed as if they were physically a single directory structure, when in reality,
their artifacts are not physically in the same directory structure.

• All applications are also “modules”. The above paragraph talks about a dependency on an
application, but you would specify a dependency in Application B for module A.

• Dependencies are also for HTTP, database interactions, Dojo support, etc. The application's
dependencies are specified in the ivy.config file in the application’s config directory. So if you want
database support in your application B, you add that dependency to your application B's ivy.config. If
you want Dojo support in your application B, you add that dependency to your application B's
ivy.config file.

• We will talk more on dependencies, modules, and virtualized directories later in
the presentation.

17
© 2011 IBM Corporation

Zero Modules
• All applications are “modules”

• Modules declare dependencies on other modules in
config/ivy.xml:

• Modules inherit all assets (scripts, static files, java classes) from
their dependencies

• In Dynamic Scripting, all applications depend at least on
zero.cics.core

• Provides the core CICS integration functionality

• Itself depends on zero.core, therefore pulls in the core standard
zero functionality.
���� Modules are not just for user apps: core functionality of zero
and CICS Dynamic Scripting is implemented in zero modules

<dependencies>
<dependency org="zero" name="zero.cics.core" rev="[1.0.0.0, 2.0.0.0["/>
<dependency org="zero" name="zero.data" rev="[1.0.0.0, 2.0.0.0["/>
<dependency org="zero" name="zero.mail" rev="[1.0.0.0, 2.0.0.0["/>

</dependencies>

18
© 2011 IBM Corporation

Notes:

• All apps are re-usable modules by default.

• Dependency management is implemented using Apache Ivy via the ivy.xml configuration file.

• ivy.xml defines the name and version of the current module, as well as any dependencies the module
has. Version ranges can be enforced on dependencies.

• If a module has a dependency, then:

• Any scripts in the dependency are accessible from the current module

• Any Java classes / libraries from the dependency are on the CLASSPATH

• Any static files from dependencies (e.g. images or scripts) are accessible when accessing the app over
HTTP

• This relies on the concept of virtualized directories

19
© 2011 IBM Corporation

Resolving Applications…

• An application must be “resolved” before the it can be used.
Resolving an app means:

• Locating its dependencies & determining exactly which versions to
use.

• Possibly retrieving them from a remote repository, if they are not
found in the app’s “workspace” or the CLI’s local repository.

• Two commands can resolve an app:

• zero resolve: attempts to locate the exact same versions of the
dependencies that were used last time the module was resolved.

• zero update: resolves the app against the latest suitable versions
of the modules available in the local repository.

• NB: These commands access a remote repository if no suitable
version is found in the local repository.

20
© 2011 IBM Corporation

Notes:

• NB: “zero resolve” and “zero update” only contact the remote repositories if no suitable
module is found locally.

• Once the app is resolved, the location of the dependencies is written to file:
• $APP_HOME/.zero/private/resolved.properties

• This information is used to load the application’s classes.
• Most dependencies are not part of the CLASSPATH when the JVM is started. They are added

dynamically at runtime during application initialization.

• “resolve” and “update” look for modules in…
• 1. The app’s “workspace”, i.e. the parent directory of the app.

• Modules in the same workspace are referred to as “peers”
• 2. The CLI’s local repository.

• $ZERO_HOME/zero-repository/<module_group_name>
• 3. Remote repositories.

• The CLI’s current active module group defines which URIs will be searched. Ivy and Maven
repositories are supported.

• Users can add repo URIs to module groups and create new module groups
• The default module group is called “stable”.

• More info on zero dependency & repository management:
• http://www.projectzero.org/sMash/1.1.x/docs/zero.devguide.doc/zero.cli.tasks/DependencyManagement.html

21
© 2011 IBM Corporation

Virtualized Directories

• From the application developer’s perspective, artifacts are

“inherited” from dependencies.

• They are available through the concept of Virtualized Directories.

• The Virtualized Directory browser tool illustrates this. It can be
added to any app by adding a dependency on the module
zero.core.webtools.

Virtual Directory view
Files on zFS

22
© 2011 IBM Corporation

Notes:

• Each Dynamic Scripting application has a standard (‘well-known’) directory structure. There are
specific directories available for specific types of artifacts. For example, the default location for
HTML page is in your application’s ‘public’ directory. All of the directories (standard or optional) are
documented in the Project Zero documentation.

• Project Zero applications enjoy a type of inheritance model. You could have base application A and
specify that application B has a 'dependency' of application A. Application B would then inherit all of
application A's functionality. Although in this case application A's artifacts wouldn't physically reside
in application B's directory structure, for all practical purposes, application A and B are 'virtually' a
single application. When displaying ‘virtualized’ directories for application B, application A and B's
artifacts would be displayed as if they were physically a single directory structure, when in reality,
their artifacts are not physically in the same directory structure.

• All applications are also “modules”. The above paragraph talks about a dependency on an
application, but you would specify a dependency in Application B for module A.

• Dependencies are also for HTTP, database interactions, Dojo support, etc. The application's
dependencies are specified in the ivy.config file in the application’s config directory. So if you want
database support in your application B, you add that dependency to your application B's ivy.config. If
you want Dojo support in your application B, you add that dependency to your application B's
ivy.config file.

23
© 2011 IBM Corporation

REST - REpresentational State Transfer

• Leverages HTTP protocol

• Nouns (URLs) indicate what is being worked on

• Verbs (GET, PUT, POST, DELETE methods) indicate the action to be
performed (List, Create, Read, Update, Delete)

• Resource centric

• Similar in concept to hyperlinked data

• Content negotiation

• REST does not restrict format of results

• HTTP headers can be used to request format with no changes to URL

• Popular formats of returned data are XML and JSON

• Lightweight data transfer

• From Web browser or any HTTP client or server

� More information:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

24
© 2011 IBM Corporation

Notes:

• REST (REpresentational State Transfer) is an architectural style that applies the approach we use to
access Web pages to access our business data. Just like we use a URL to access the current state
of a Web page, you use a URL to access the current state of business data. We can specify a
specific Web page on a URL, we can also specify a specific account number on a URL.

• We normally need to perform LCRUD (List, Create, Read, Update, and Delete) functions on our
business data. The HTTP ‘methods’ that flow with the request indicate the action to be performed on
the data. Whereas we normally only use a GET or a POST method when accessing a Web page, for
data, a GET method indicates a list or a read, DELETE for a delete, POST for an add, and a PUT for
an update.

• REST results in very lightweight interactions with a minimal amount of characters transferred.
• The format of the returned data is not dictated, although most people use XML or JSON (JavaScript

Object Notation.
• REST is documented in Roy Fielding’s year 2000 doctoral thesis. In his thesis, Fielding indicates that

REST started in 1994 and was iteratively redefined. Since many people were not aware of REST,
they think it is a follow-on to Web services, however Web services came after REST.

• For situations where you want interfaces documented with WSDL, transactionality, and more security
options, Web services are great. Where you just need lightweight data access, REST is great.

• One of the primary uses of REST is for requests from Web browsers. JavaScript running in a Web
browser can use AJAX (Asynchronous JavaScript and XML) to make RESTful requests to backend
data and business logic systems such as CICS.

• ZRM (Zero Resource Model) discussed later can be used to very quickly expose a resource with a
RESTful interface using single command called delegate.

25
© 2011 IBM Corporation

REST and Project Zero

• RESTful event handlers in Project Zero
• Each script in the <apphome>/app/resources directory is a resource

handler
• URL convention for interacting with resources:

• /resources/<collectionName>[/<memberID>[/<pathInfo>]]
• URI and HTTP method define the resource to access and the action to

perform
• Action can be taken on the entire collection, or a specified member of the

collection

• Example:

����������Delete personDELETEhttp://example.com/resources/people/john

��	
������Update personPUThttp://example.com/resources/people/john

��
���������Retrieve personGEThttp://example.com/resources/people/john

����������Create personPOSThttp://example.com/resources/people

��������List peopleGEThttp://example.com/resources/people

Resource
Handler
Function

Resource
Handler
Function

Event

Description

Event

Description

HTTP
Method
HTTP

Method
URIURI

26
© 2011 IBM Corporation

Notes:

• Let's take a look at how a RESTful service can be implemented using the Project Zero
programming model.

• Each PHP or Groovy script placed in the /app/resources directory of a Project Zero application is
automatically treated by the platform as a RESTful handler for a category of resources, or a "resource
collection". The name of the script represents the name of the collection. This script contains the logic to
execute when processing inbound HTTP requests for that resource, separated into functions with well-
defined names. The function that is invoked depends on the URI and HTTP method of the inbound HTTP
request.

• The URI pattern shown in the slide is a convention used to identify which collection to access based on
the URI of an inbound HTTP request. If the URI contains just a collection name, the operation is targeted
at the whole collection. If a member ID is specified in the URI after the collection name, the operation is
targeted at an individual member of the resource collection. Optionally, additional information can be
specified after the member ID.

• This table shows an example with a resource collection called "people". The URI column shows two
different kind URIs that can be used to interact with instances of the resource: the collection URI, which
ends with the collection name - in this case "people", and the member URI in which an identifier for an
individual person is specified - in this case, the name "john". We can see how a request URI, combined
with an HTTP method, triggers an event such as List, Create, Retrieve, Update or Delete. These events
are sometimes referred to as "L-CRUD" events. By convention, the Project Zero platform searches for
handlers for these events in a script called "people.groovy" or "people.php" in the /app/resources
directory. If this script provides an implementation of the function corresponding the event, that function is
invoked to handle the request.

• Therefore, you can develop a RESTful service simply by creating a single script and implementing the
subset of L-CRUD functions that you need. The platform takes take care of mapping inbound requests to
your logic, by following a set of RESTful conventions.

27
© 2011 IBM Corporation

Zero Resource Model (ZRM)

• Model application data

• Application Database focus

• Robust framework for persistence, validation, and serialization

• Constrained set of APIs encourages a RESTful application
architecture
• Supplied functions for GET, POST, PUT, DELETE

• Parses input parameters

• Obtains a database connection, makes SQL call

• Processes results

• Returns results to client

28
© 2011 IBM Corporation

Notes:

• ZRM (Zero Resource Model) – Per the Project Zero Web site, “The Zero Resource Model (ZRM)
provides a simplified way to create a RESTful resource handler with a data store. Developers need
provide only simple “model” definitions of resources; ZRM uses the model definitions to create the
data store and support full create/read/update/delete semantics. In addition, ZRM supports a variety
of content formats, including JSON and the Atom Publishing Protocols.

29
© 2011 IBM Corporation

CICS DS: ZRM

• Zero Resource Model (ZRM)

• “Black Box” implementation, lots assumed/done for you

• Place dependency in application’s “config/ivy.config”

<dependency name="zero.resource" org="zero" rev="[1.0.0.0, 2.0.0.0["/>

• Uses ‘Derby’ by default, but can use other databases

• Incorporate dependency

zero resolve

30
© 2011 IBM Corporation

Notes:

• ZRM (Zero Resource Model) is sometimes referred to as a ‘black box’ implementation. It does a lot
for you ‘under the covers’, however for many situational applications, the ‘built-it’ way of doing data
access is just fine, and allows you to have data access with almost zero effort.

• You only need to add the ‘zero.resource’ dependency, and if no other database is specified, you
default to using the embedded version of the Derby database supplied with CICS Dynamic Scripting.
You can use other databases with ZRM, and the upcoming slides show how to use DB2 with your
CICS Dynamic Scripting application.

• If needed, you can have finer control of your database access (which we will also discuss in future
slides), but for many situational applications Derby and ZRM are sufficient.

• Once you have updated the ivy.config file, you will need to invoke a zero resolve command from your
application’s home directory.

31
© 2011 IBM Corporation

ZRM Development Life Cycle

{
"fields" : {

"first_name": {"type":"string"},
"last_name": {"type":"string"},
"location": {"type":"string"}

}
}

{
"fields" : {

"first_name": {"type":"string"},
"last_name": {"type":"string"},
"location": {"type":"string"}

}
}

app/models/people.json
[

{
"type": "people",
"fields": {

"first_name" : "Alice",
"last_name" : "Rogers",
"location" : "Seattle"

}
},
{

"type": "people",
"fields": {

"first_name" : "Bill",
"last_name" : "Stevens",
"location" : "Seattle"

}
},
{

"type": "people",
"fields": {

"first_name" : "Cathy",
"last_name" : "Tomlin",
"location" : "Boston"

}
}

]

[
{

"type": "people",
"fields": {

"first_name" : "Alice",
"last_name" : "Rogers",
"location" : "Seattle"

}
},
{

"type": "people",
"fields": {

"first_name" : "Bill",
"last_name" : "Stevens",
"location" : "Seattle"

}
},
{

"type": "people",
"fields": {

"first_name" : "Cathy",
"last_name" : "Tomlin",
"location" : "Boston"

}
}

]

app/models/fixtures/initial_data.json

ZRM.delegate();ZRM.delegate();

app/resources/people.groovy

/zeroapps/MyApp$ zero model sync/zeroapps/MyApp$ zero model sync

Invoke from command line

32
© 2011 IBM Corporation

Notes:

• This slide shows ZRM in action.

• In the top left corner of the slide is an illustration of how to define a simple data layout with three
columns each of type string. This file is placed in the application’s models directory.

• On the bottom left is the command that is used to create the data table.

• If you wanted to expose the data in the table with a RESTful interface you only need to add one line
to a Groovy program (middle-left) in your resources directory. There are several assumptions if you
take this approach, and we will discuss these assumptions in the next few slides.

• On the right is an illustration of how to load initial data into the data table.

• For testing, you may need to reset the values in the table. A ‘zero reset’ command drops the table,
redefines the table, and loads the initial values.

33
© 2011 IBM Corporation

CICS DS: ZRM: Database Definition
• Columns are added for:

• “id” INTEGER PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY (SART
WITH 100, INCREMENT BY 1)

• “updated” TIMESTAMP NOT NULL

• Column Names: cannot contain Java/Groovy/SQL reserved words,
hyphens, spaces, must start with alpha character

• Column types:
string [max_length | format] (e.g. large, email, phone,

region, any)
boolean
date
date-time
decimal [max_digits & decimal_places]
integer
float

• Column options:
required, label, description, default_value, options

• More…. See Project Zero documentation

34
© 2011 IBM Corporation

Notes:

• For ZRM database definitions, two columns are added in addition to the columns you specify. An ‘id’
column is added with the characteristics show on the slide plus an ‘updated’ field that is a timestamp.

• There are some restrictions for the column names as shown on the slide.

• Column types can be string, boolean, date, date-time, time, decimal, integer, and float

• A ‘string’ can optionally include max_length, The ‘format’ parameter is used for validation and can
be large, email, phone, region, and any.

• A ‘decimal’ can have max_digits and decimal_places

• The ‘date’ can have auto_create and auto_update

• Optional field values are required, label (if you don’t want the ZRM assigned label), description, and
default_value.

35
© 2011 IBM Corporation

CICS DS: ZRM: REST:Database Access

• Collection
http://host:port/resources/<collection>[/pathinfo][query]

• Examples:
…/resources/people
…/resources/people/100

…/resources/people?firstname__equals=Alice
…/resources/people?firstname__contains=ice
…/resources/people?firstname__startswith=A
…/resources/people?start=5&count=5
…/resources/people?firstname__contains=ice&start=5&count=5
…/resources/people?order_by=lastname,firstname
…/resources/people?id__lt=300

…/resources/people?format_as=atom
…/resources/people?format_as=json

Many Filters, see
Project Zero
Documentation

36
© 2011 IBM Corporation

Notes:

• This slide shows some of the REST interface options when you expose your table using the
“ZRM.delete()” approach.

• This is just a handful of the options, so you will want to look at the Project Zero documentation for a
comprehensive look at all the built-in capabilities of the REST interface offered by ZRM.

• There were some slides earlier in the presentation that covered REST.

37
© 2011 IBM Corporation

CICS DS: ZRM: REST:Database Access

• JSON or Atom - can customize rendering (e.g. calculated
fields)

• Incoming data (i.e. POST and PUT)

• JSON (application/json)

• Atom (application/atom+xml)

• Can request metadata (table layout in JSON format)

• Can make collections read-only

• There is a Dojo REST table widget – See the employee
data sample from the Project Zero web site

• If you don’t want a REST interface, you can use ZRM
APIs in your application (see next slide)

• More…

• See Project Zero documentation

38
© 2011 IBM Corporation

Notes:

• There are options to customize data provided by ZRM, details are in the Project Zero documentation.

• When updating database information via the ZRM REST interface, your Web pages can send in data
in JSON or Atom format. You just need to set the media type so the knows your data format.

• You can request table meta data.

• You can tell ZRM that your data collection (table data) is read only.

• The ZRM REST interface is great if you want to access data from your Web pages, however
sometimes you would like access to ZRM data from within your application. For those situations,
there is a simple API available for you to use. Some examples of using the ZRM API are provided on
upcoming slides.

• Again we are just scratching the surface of ZRM and there is a lot more information in the Project
Zero documentation.

39
© 2011 IBM Corporation

CICS DS: ZRM: API….

// retrieve default collection for model 'people'
Type collection = TypeCollection.retrieve('people')

// create new member in collection, returns Member
Member newPerson =

collection.create(firstname: 'Mickey', lastname: 'Mouse')

// update member in collection, returns Member
newPerson.location = 'Disney World'
newPerson = collection.update(newPerson)

// delete member from collection
collection.delete(newPerson.id)

// retrieve member from collection
aPerson = collection.retrieve(105)

// list all collection results
List<Member> all_people = collection.list()

// get a filtered collection
Collection somePeople =

collection.filter(firstname__startswith: 'Mi')

More APIs available,
see Project Zero
Documentation

40
© 2011 IBM Corporation

Notes:

• For access to ZRM data from within your application, you can use the ZRM API.

• This slide lists some of the ZRM API.

• As you can see, you can work with the data in your database as a ‘collection’ of data. You can create
members of the collection, access members of the collection, update members of the collection and
delete members of the collection.

• When you access members of the collection, you can apply filters, specify an order sequence and
other options, similar to the capabilities available via the REST interface.

• This is just a some of the ZRM API options, see the Project Zero documentation for a comprehensive
list of capabilities.

41
© 2011 IBM Corporation

ZRM line commands

• “zero model sync”

Creates database artifacts and loads data from the application’s
initial_data.json file

• “zero model reset”

Restores database to state just after the model sync (equivalent
to dropping database and using zero model sync)

• “zero model loaddata”

Reads data from one or more JSON files

• “zero model dumpdata”

Writes database data in JSON format to one or more files

• “zero model sql”

Outputs generated statements to create and drop database tables (using
information in your application’s app/models folder)

42
© 2011 IBM Corporation

Notes:

• This slide list some of the commands available for working with your ZRM data.

• The zero model sync command was discussed earlier in the presentation and is used to create the
database and load initial data.

• The zero model sync does a drop of your ZRM tables, defines the tables, and loads your initial data.

• You can dump your ZRM data in JSON format with the zero model dumpdata command and load the
data from JSON formatted files using zero model loaddata.

• You can use the zero model sql command to output the statements used to define your tables.

• If you want some help on the zero model commands, you can zero help model sync (or look at the
Project Zero documentation)

43
© 2011 IBM Corporation

CICS DS: Database Support

• The ‘zero.data’ module is a thin layer on top of the IBM

pureQuery Runtime, on top of JDBC

• DB2 UDB for z/OS V8.1

• DB2 9.1 for z/OS

• Apache Derby v10.3.2.1 and V10.3.1.4

• Some databases with type 4 database drivers may

work…

• CICS doesn’t know you are using a type 4 driver, so be

cautious on transactional requirements

You can use ZRM
with any supported
database

44
© 2011 IBM Corporation

Notes:

• See the product documentation for a list of supported databases.

• Although you may be able to get databased with type 4 drivers to work with your CICS Dynamic
Scripting application, CICS won’t know your are using that database, so CICS won’t be able to help
your with transactionality issues. DB2 uses that CICS-provided DB2/CICS interface so you will have
transactionality when working with DB2 in your CICS Dynamic Scripting applications.

• If you do the minimum and only add the zero.resource dpendency to your ivy.config file, you will be
using the embedded Derby database, however you can use ZRM with DB2 also, you just need to do
some configuration work as described later in the presentation.

45
© 2011 IBM Corporation

CICS DS: Derby Database Support

• Derby is an ‘embedded’ or ‘networked’ database

• From Apache Foundation

• Database artifacts are persisted out to a specified directory

• No CICS resource definitions involved

• Add dependency to config/ivy.xml

• (optional for embedded) specify database characteristics in the
config/zero.config file

• Location

• Options

46
© 2011 IBM Corporation

Notes:

• Derby is an open-source database provided by the Apache Foundation.

• Derby comes with CICS Dynamic Scripting and when using ZRM requires no configuration.

• You can, however, provide input to Derby configuration (indicated on the next few slides)

47
© 2011 IBM Corporation

CICS DS: Derby Database Dependencies

• “config/ivy.xml” for Derby:

<dependency name="zero.data" org="zero" rev="[1.0.0.0, 2.0.0.0["/>
<dependency name="derby" org="org.apache.derby" rev="10.3+"/>
<dependency name="derbyclient" org="org.apache.derby" rev="10.3+"/>

• Use the ‘zero resolve’ command

• For the above dependency, use the line with ‘derby’ if

using imbedded, use the line with ‘derbyclient’ if using

networked.

Add the “zero.resource”
dependency if you want
to use ZRM

48
© 2011 IBM Corporation

Notes:

• If you want to use Derby with ZRM, you only need to add the zero.resource dependency.

• If you are just going to use zero.data, then you will need to add the Derby dependency to your ivy.xml
file.

• Any time you update your config/ivy.xml file you will need to stop your application, do a zero resolve,
then start your application.

49
© 2011 IBM Corporation

CICS DS: Derby Database Driver

• (optional for embedded version) Specify the driver and
database location

• In the application “config/zero.config” (for the Derby
database):

/config/db/mydb = {
"class" : "org.apache.derby.jdbc.EmbeddedDataSource",
"databaseName" : "db/mydb",
"connectionAttributes" : "create=true"

}

• Create=true - create database if it doesn’t already exist

• Verify connection (from $APP_HOME)…

zero validatedb mydb

50
© 2011 IBM Corporation

Notes:

• By default, the embedded Derby database data will be persisted to the db/resource directory in your
application. If you want the data persisted to a different directory, you will need to add entries to your
config/zero.config directory.

• If you want to test the connection to your database, you can use the zero validatedb command

• See the Project Zero documentation for a list of all Derby database options.

51
© 2011 IBM Corporation

CICS DS: Adding DB2 Database Support

• DB2 datasets in CICS region STEPLIB (SDSNLOAD and SDSNLOD2)

• Check CICS InfoCenter for prereq PTFs/APARs

• DB2 resource group in CICS startup list

• CICS resource definitions as usual

• DB2CONN

• DB2ENTRY

• By default we are running under tranid ‘ZPIH’, but that can be
changed

• Can run under CICS region userid, userid in config file, userid
established with SSL client certificate exchange or HTTP Basic
Authentication

52
© 2011 IBM Corporation

Notes:

• This and the next few slides talk about using DB2 with CICS Dynamic Scripting applications.

• You will need to do the normal CICS setup when using DB2. This includes adding PDSs to your
CICS region STEPLIB, adding the group containing DB2 program definitions and other resource
defintitions in your CICS regions startup list.

• Additionally, you will need to make the normal DB2CONN and DB2 ENTRY definitions.

• By default your application’s requests will run under the ZPIH transaction

• We’re not going go any further into CICS/DB2 configuration, but it should be business as usual.

53
© 2011 IBM Corporation

CICS DS: DB2 Driver Access

• Each CICS Dynamic Scripting application: adding environment

variables in the JVMProfile file is not enough

• DB2 Jars to $APP_HOME/lib directory

• db2jcc.jar, db2jcc_javax.jar, db2jcc_license_cisuz.jar

• Can use symbolic links

• DB2 JNI libraries in $APP_HOME/lib/s390/zos

• libdb2jcct2zos.so

• Can use symbolic link

• Check InfoCenter for prereq PTFs/APARs

54
© 2011 IBM Corporation

Notes:

• Each CICS Dynamic Scripting application will need to point to the DB2 drivers, license file, and the
JNI files needed by the driver.

• Make symbolic links as specified on the slide for each application

• As always, check the CICS InfoCenter for needed prereq PTFs/APARs

55
© 2011 IBM Corporation

CICS DS: Adding Database Dependencies

• “config/ivy.xml” for DB2:

<dependency org="zero" name="zero.data" rev="[1.0.0.0, 2.0.0.0["/>

<dependency org="zero" name="zero.cics.db2" rev="[1.0.0.0, 2.0.0.0["/>

• Use the ‘zero resolve’ command

(note that the zero resolve also processes the files (links) you placed in

the lib directory on the previous slide – i.e. do the zero resolve after you

have added the dependencies and symbolic links)

Add the “zero.resource”
dependency if you want
to use ZRM

56
© 2011 IBM Corporation

Notes:

• To add the DB2 dependency to your CICS Dynamic Scripting application, add the zero.cics.db2
dependency to your config/zero.config file, then do a zero resolve.

57
© 2011 IBM Corporation

CICS DS: DB2 Database Driver

• “zero.data” is a layer on top of Java’s standard JDBC
interfaces

• In the application’s “config/zero.config” (for DB2):

/config/db/mydb = {
"class" : "com.ibm.db2.jcc.DB2DataSource"

}
/config/resource/dbKey = "mydb"

• Can specify schema in the above config (after driver)

"currentSchema" : "WSPOT03"

• Verify connection (from $APP_HOME)…
zero validatedb mydb

58
© 2011 IBM Corporation

Notes:

• This slide shows the elements to be added to your application’s config/zero.config file when using
DB2.

• Consult the Project Zero, CICS, and DB2 documentation for various options

• You will want to test your connection to the DB2 database. You can use the zero validatedb
command.

59
© 2011 IBM Corporation

CICS DS: Number of DB2 Connections

• Previously: there was a connection limitation of 1 DB2

connection per JVMServer

• Could serialize access or specify one thread per

JVMServer to accommodate this ‘situation’

• Now: one connection for each task in a JVMServer

• PTF UK69637, UK696555, and UK69654 for 1 DB2

connection per task instead of 1 connection per JVMServer

60
© 2011 IBM Corporation

Notes:

• There was previously a limitation of one DB2 connection per JVMServer, but with the appropriate
PTFs you can now have 1 connection per task versus the previous 1 connection per JVMServer.

61
© 2011 IBM Corporation

CICS DS: DB2 or Derby: Database Use

• Could use ZRM REST, or ZRM API (previous slides)

• Can get/use a connection:

// Groovy code:
import zero.data.groovy.Manager
…
def data = zero.data.Manager.create('mydb')
def results = data.queryList('SELECT * FROM table')

• “mydb” is the ‘dbKey’ and corresponds to the example on the

previous slides

• “zero.data” will match the ‘dbKey’ and use the configuration

properties from the Global Context (i.e. the items you placed in your

zero.config)

• After you have a ‘Manager’, you can use various APIs including

raw JDBC, however ‘zero.data’ APIs are more friendly

62
© 2011 IBM Corporation

Notes:

• When using the Derby or DB2 database, you can use ZRM and/or the ZRM APIs

• Additionally, you can use zero.data APIs to access your database data

63
© 2011 IBM Corporation

CICS DS: Options for Database Creation

• Use existing table, have your DB2 admin create the table
for you, use your regular backup procedures, etc

• Use ZRM (Zero Resource Manager)

• Discussed previously

• Code your own table create

• Use ‘zero runsql [dbKey] file’

CREATE TABLE employees (
username varchar(32) NOT NULL,
firstname varchar(16) NOT NULL,
lastname varchar(16) NOT NULL,
location varchar(64) NOT NULL,
phonenumber varchar(16) NOT NULL,
PRIMARY KEY (username)

);

64
© 2011 IBM Corporation

Notes:

• Earlier in the presentation we talked about defining database tables using ZRM and the zero model
sync command

• Most customers will have a DB2 administrator and fairly ridge procedure for getting access to DB2
tables, even in a test environment. If you are in this category, no problem, you can have your CICS
Dynamic Scripting application use an existing DB2 table(s).

• As an additional option, you can specify SQL commands to define tables, alter tables to add new
columns and other SQL commands in files. You can then execute the commands using the zero
runsql command.

65
© 2011 IBM Corporation

CICS DS: SQL

• In code below, use queryFirst() if you want the

first or only row, use queryList() if you want nn

rows

// get input parameter
string username = request.params.employeesId[]

// get DataManager for specified database
def data = zero.data.groovy.Manager.create('mydb')

// Retrieve employee record via Data Zero
def employeeRecord = data.queryFirst
("SELECT * FROM employees WHERE username=$username")

66
© 2011 IBM Corporation

Notes:

• This slide is an example of using the zero.data API. You will notice that it allows you to leverage your
SQL skills.

• The first line of code just gets an input parameter from a request that came in over the Web. An
explanation of what’s going on here is beyond the scope of this presentation.

• The ‘mydb’ is the dbkey specified in the config/zero.config file

• There are few different method you will use to make SQL request. A couple of them are queryFirst()
if you expect to get one-at-most results returned, or queryList if you want allow for the possibility of
having multiple results returned from your SQL

67
© 2011 IBM Corporation

CICS DS: SQL: Prepared Statements

• Can avoid assembling SQL statements from fragments

(error prone)

• Can help avoid SQL injection attack

def id = request.params.id[]
def result = mgr.queryFirst
("select * from employees where id = ?", id)

def id = request.params.id[]
def result = mgr.queryFirst
("select * from employees where id = ${id}")

def args = ['tag': '%'+request.params.tag[]+'%']
def result = mgr.queryList
("select * from employees where tags like :tag", args)

68
© 2011 IBM Corporation

Notes:

• This slide shows three additional approaches when interacting with your database.

• Having a ‘prepared statement’ is less prone to error than dynamically constructing your SQL from
segments and will likely cut down on the possibility of an SQL injection attack where the attacker
places SQL in one of your Web browser form fields, which you then place inside your dynamically
created SQL statements.

69
© 2011 IBM Corporation

CICS DS: Externalized SQL Statements

• Can place SQL statements in your “config/zero.config”

/config/db/mydb/statements = {
"GET_ALL" : "select * from employees",
"GET_BY_TAG":"select * from employees where tags in :tag",
"ADD":"insert into employees(firstname, lastname)
values (?,?)"
}

• In your application code

// usage example in groovy
def args = ['tag': '%'+request.parms.tag[]+'%']
def result = mgr.queryList('GET_BY_TAG', args)

70
© 2011 IBM Corporation

Notes:

• You can, if you want, place all of your SQL statements in your config/zero.config file.

• This has the benefit of having all of your SQL statements in one location will aid in code reviews or
inspections/suggestions from your database administrator.

• The code segment on the bottom of the slide shows how you might use the SQL statements in your
application. The sample is coded in Groovy.

71
© 2011 IBM Corporation

CICS DS: REST: onList() (do it yourself)

• def onList() {
try {
// Get configured DataManager for data access
def data = zero.data.groovy.Manager.create('mydb')
// Retrieve employee records via Data Zero
def result = data.queryArray('SELECT * FROM employees')
request.view = 'JSON'
request.json.output = result
render()

} catch (Exception e) {
if (e.getCause() instanceof java.sql.SQLException) {
request.status = HttpURLConnection.HTTP_INTERNAL_ERROR
request.error.message = "The db may not have "+

"been initialized."
request.view = "error"
render()

}
}

}

72
© 2011 IBM Corporation

Notes:

• This sample shows how you might implement your own REST interface for a GET request against
your collection.

• This code segment would be in a script in your app/resources directory.

• CICS Dynamic Scripting will invoke ‘well known’ functions in your program depending on whether
there was a GET request against the collection, a GET request of a specific member of the collection,
or a POST, PUT, DELETE request.

• Notice the use of a ‘renderer’ to format the data in JSON format.

• You can customize supplied renderers if you want.

73
© 2011 IBM Corporation

CICS DS: REST: onCreate() (do it yourself)

• def onCreate() {
// Convert entity to JSON object
def emp = zero.json.Json.decode(request.input[])
// Get DataManager for data database
def data =

zero.data.groovy.Manager.create('employee_db')
// Insert employee record via Data Zero APIs
data.update("""
INSERT INTO employees (username, firstname, lastname,
location, phonenumber) VALUES ($emp.username,
$emp.firstname, $emp.lastname, $emp.location,
$emp.phonenumber) """)

// Set a Location header with URI to the new record
locationUri = getRequestedUri(false) + '/' +

emp['username']
request.headers.out.Location = locationUri
request.status = 201; // created
request.view = 'JSON'
request.json.output = emp
render()

}

74
© 2011 IBM Corporation

Notes:

• Similar to the previous slide for a GET request against a collection, the is a POST request for a new
member of a collection.

• Notice the altering of the URI

• Again, notice the use of a renderer to format the data in JSON format.

• You can customize the supplied renderers if you would like. See the Project Zero documentation.

75
© 2011 IBM Corporation

CICS DS: DB Output in XML Sample

• In your application’s code:

def writer = new StringWriter()
def xml = new groovy.xml.MarkupBuilder(writer)
def data = zero.data.groovy.Manager.create(‘mydb')
xml.people(xmlns: 'http://xmldata.myco.com') {

data.eachRow('SELECT * FROM people') {
row ->

person {
firstName(row[‘firstname']) { }
lastName(row[‘lastname']) { }
location(row['location']) { }

}
}

}
println writer.toString()

• Evaluates to:

<people xmlns='http://xmldata.myco.com'>
<person>

<firstName>Jerry</firstName>
<lastName>Cuomo</lastName>
<location>North</location>

</person>
</people>

76
© 2011 IBM Corporation

Notes:

• The are various data formatting capabilities in CICS Dynamic Scripting, to include XML. This slide
shows an example of the Groovy MarkupBuilder.

• Note that the MarkupBuilder also allows you to add attributes to XML tags

77
© 2011 IBM Corporation

CICS DS: Atom Feeds
• // code to show it can be done… declare the feed

def atom_feed = [:]
atom_feed.title = 'Sample Atom Feed'
atom_feed.updated = new Date()
atom_feed.entries = []

// loop thru creating members and adding them to the feed
//declare a member entry in the feed
def member_entry = [:]
member_entry.id = '1'
member_entry.title = 'Title Information'
member_entry.updated = new Date()
member_entry.summary= 'Summary Info‘
// add detail member content from database to next line
member_entry.content = 'This is detailed content'
// add the member to the feed
atom_feed.entries += member_entry

// format and send the feed
request.view='atom'
request.atom.output = atom_feed
render()

78
© 2011 IBM Corporation

Notes:

• This slide doesn’t show any database interaction, but it does show that there is an Atom renderer,
and that it is fairly easy to place your data in a formation that can be understood by the Atom
renderer.

• If you are familiar with Atom feeds, the sample will look pretty simple. If you are not familiar with
Atom feeds, well, see the next slide as to what is produced from this code.

79
© 2011 IBM Corporation

CICS DS: Output from previous slide

<?xml version="1.0"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<id>http://host:8888/resources/aFeed</id>
<title type="text">Sample Atom Feed</title>
<link href="http://host:8888/resources/aFeed" rel="self">
</link>
<entry>
<id>http://host:8888/resources/aFeed/1</id>
<title type="text">Title Information</title>
<link href="http://host:8888/resources/aFeed/1" rel="self">
</link>
<summary type="text">Summary Info</summary>
<updated>2011-08-04T02:25:37.887Z</updated>
<content type="text">This is detailed content</content>

</entry>
<updated>2011-08-04T02:25:37.887Z</updated>

</feed>

80
© 2011 IBM Corporation

Notes:

• This is the ATOM data produced from the previous slide.

• For an Atom feed, there is a feed tag for the ‘root’ element of the document. There are some values
about the feed itself, and then there is an entry tag for each member entry of the collection
represented by the feed.

• If this was the result of a request of information pertaining to a specific member entry, then ‘root’
element of the XML document would be ‘entry’.

• If you are returning information from CICS in the form of an Atom feed, you are

81
© 2011 IBM Corporation

Where else do I get Data?

• Can use JCICS API (there is a bridge to Java)

• LINK to a CICS program

• READ VSAM file

• READ TSQ

• etc

• Data to/from CICS resource (field-level access to your

PHP, Groovy, or Java program – i.e. getters/setters)

• JZOS – can analyze ‘ADATA’ compiler information and

generate Java data class

• RAD’s J2C wizards – CICS Java Data Bindings

• Output: Can use CICS DS Renderers (or println/echo)

82
© 2011 IBM Corporation

Notes:

• Since you are running in a CICS environment you are likely to want to LINK to an existing program to
get data, or directly access a CICS resource.

• One of the challenges you will have with interacting with CICS resources or LINKing is to bridge
between the object-oriented world of Java, Groovy, or PHP, and the series-of-bytes, field-oriented
world of CICS resources, COMMAREAs, and channels and containers

• Once you have obtained data from a CICS resource, you can use the CICS Dynamic Scriptin
renderers to format the data.

83
© 2011 IBM Corporation

Interfacing with CICS Programs

<?php
// Instansiate a COMMAREA representation
// The CustProgCommarea class was created from a COBOL
// data layout using RAD, but could have used JZOS also

$commArea = new Java('com.ibm.ddw.customer.CustProgCommarea');
// Set some data in the commarea by calling method on the class

$commArea->setRequest__type('R');
$commArea->setCustomerId('00000001');
// Use the JCICS class to call a CICS program

$program = new Java('com.ibm.cics.server.Program');
$program->setName('CUSTPROG');
try {

$program->link($commArea->getBytes());
} catch (CICSException $e) {

echo $e->getMessage();
exit;

}
echo "Return value is " . $commArea->getCustomerFirstName();
?>

84
© 2011 IBM Corporation

Notes:

• For the code example on this slide, we used the J2C wizards to create a CICS Java data Binding.
• We also could have used JZOS. We would have compiled the target CICS program (CUSTPROG in

this case) with the ADATA compiler option. We would have used the ADATA information
representing the COMMAREA of the CUSTPROG program as input to the JZOS classes to generate
a Java object that represents the COMMAREA (which we would have called CustProgCommarea (or
whatever name we wished to use)).

• In the code example we use a “new Java()” request to get an instance of the class that represents the
CUSTPROG program’s COMMAREA.. We then invoke methods on the class to set values (the
example invokes the setCustomerID() method).

• After data values are set in the object that represents the COMMAREA, we create a new Program
object and use the setName() method to indicate the program we are referring to has a name of
“CUSTPROG” (because CUSTPROG is the name of the target CICS program). We then invoke the
link method of the CICS Program object, passing the byte array that represents the COMMAREA.

• In the code example, you can see that after the program invocation, we are accessing getters in the
data object to obtain the information returned by the CUSTPROG program in the COMMAREA.

• This slide illustrates a LINK to a program using a COMMAREA, but channels and containers may
also be used, plus many other CICS API are supported.

• JCICS JavaDoc:

• http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.jcics.javado
c/com/ibm/cics/server/package-tree.html

85
© 2011 IBM Corporation

Interfacing with CICS VSAM File
<?php
// Used RAD for the CustProgFileLayout class, could have used JZOS

$recordLayout = new
Java('com.ibm.ddw.customer.datalayouts.CustProgFileLayout');

// the record key for the KSDS VSAM CUSTDATA file

$theKey = '00000001';
try {

// Use the JCICS class to read from a KSDS VSAM file

$custFile = new Java('com.ibm.cics.server.KSDS');
$custFile->setName('CUSTDATA');
$recordHolder = new Java('com.ibm.cics.server.RecordHolder');
$readKey = mb_convert_encoding($theKey, "1047", "iso-8859-1");
$custFile->read($readKey, $recordHolder);
$recordLayout->setBytes($recordHolder->value);

} catch (CICSException $e) {
echo $e->getMessage();
exit;

}
echo "Return value is ".$recordLayout->getCustomerFirstName();
?>

86
© 2011 IBM Corporation

Notes:

• Like the LINK example, we have created a CICS Java Data Binding that represents the layout of our
VSAM file.

• In this example we again use the Java bridge to allow us to use the JCICS classes.

• We are reading a KSDS file, so we instanciate a KSDS object and set it to the name of the VSAM file
with which we will interact.

• We create a ‘record holder’ and pass it to CICS on the read method along with the record key.

87
© 2011 IBM Corporation

Tutorials, Samples, and Demos

88
© 2011 IBM Corporation

Summary -- Session #09608

• What is CICS Dynamic Scripting

• Review data-related concepts

• ZRM (Zero Resource Model)

• Define/dump/load database tables

• REST access and ZRM API access

• More database options

• Configuration

• Defining tables

• Accessing table data

• Implementing your own REST interfaces

• Formatting data (JSON, XML, ATOM)

• Accessing Data via the JCICS API

89
© 2011 IBM Corporation

References

• See my presentation from 2011 Winter SHARE for a CICS Dynamic
Scripting Overview (there is a notes page for each slide)

• JCICS JavaDoc:
• http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.jci

cs.javadoc/com/ibm/cics/server/package-tree.html

• CICS InfoCenter:
• http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.smash.doc/s

mash_overview.html

• CICS on projectzero.org:
• http://projectzero.org/cics

• ProjectZero forum:
• http://projectzero.org/forum

• Tutorials:
• www.w3schools.com

90
© 2011 IBM Corporation

Notes:

• An excellent way to grow your skills on CICS Dynamic Scripting is to look at the Tutorials, Samples,
and Demos available on the Project Zero Web site.

• The CICS InfoCenter lists the Project Zero Tutorials, Samples, and Demos that work in CICS
Dynamic Scripting.

• The CICS InfoCenter has directions on how to install Project Zero Demos in CICS Dynamic Scripting.

• If you don’t yet have CICS Dynamic Scripting installed, try installing WebSphere sMash DE
(Development Edition), which is free for download and development.

