CICS and the Cloud

Ian J Mitchell
IBM Hursley

Tuesday 9th August 2011
Session Number 9600
IBM's statements regarding its plans, directions, and intent are subject to change or withdrawal at IBM's sole discretion. Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.
Agenda

- A (very) Brief History of Computing
- The Anatomy of a Cloud
- What can you do with CICS in a cloud style?
In the beginning….

…was the mainframe

- The IBM S/360
- IBM created the first fully *virtualized* hardware machine in 1967
- and made it a standard feature of all the S/370 mainframes in 1972

Many *Virtual Machines* able to run on a single mainframe, sharing the CPUs, memory, storage and network

Users accessed the VMs from *thin clients* (“dumb terminals”)

The usage of the mainframe was broken down in detail to allow charge-back to the users’ departments
and then things got distributed…

- The ‘80’s saw the shift to Personal Computing…
 - Democratization of computing, making it cheaper for more people to have access to computers
 - Initially a shift to “computers for all”, with each user having the whole machine dedicated just to them

- … the 90’s to Client-Server computing
 - Sharing data and applications via Client PCs and Server PCs
 - User typically using a *Fat Client*
 - Hardware and Software license costs per machine
...and the web took this to the extreme

- The turn of the millennium saw further democratization of computing...
 - Now a shift to “sharing for all” and “content for all”
 - But also a shift back to thin clients (the web browser) to access the applications as services

- …and emergence of standards to re-connect the distribution
 - to try and help to join back up all the distributed computers
 - Grids, Web Services, and Utility Computing have visions of “Virtual Organizations”
Meanwhile...the hardware “free lunch” runs out

- Whilst processors had been getting faster and faster, individual PCs could handle the increasing workloads

- But although transistors continue to shrink, we could no longer make them run faster and faster*
 - The solution was to scale out (with multi-cores and commodity hardware) rather than scale up
But what was wrong with this picture?

- The key values from the mainframe platform were lost
 - The management capabilities of a single platform
 - The high utilization
 - The redistribution of costs of the platform to its users

Server machines bought and installed for specific applications

- Many different operating systems, software and middleware to manage
- Very low utilization per server
- All consuming power
- All needing cooling

Source: IDC, 2008
With the economic climate, and ecological issues, things had to change...

- **Doing more with less**
 Reduce capital expenditures and operational expenses

- **Reducing risk**
 Ensure the right levels of security and resiliency across all business data and processes

- **Higher quality services**
 Improve quality of services and deliver new services that help the business grow and reduce costs

- **Breakthrough agility**
 Increase ability to quickly deliver new services to capitalize on opportunities while containing costs and managing risk
So what is Cloud Computing?

• “The Cloud” is the infrastructure that a “service” runs on
 • A collection of resources pooled together, and **virtualized**
 • **Standardized** service running on **virtual resources** in that pool
 • As demand increases, the service is **rapidly provisioned** through **automation**, on more **virtual resources** from the pool – **elastic scaling**

• Effectively, it’s the value proposition of the mainframe, client-server, and web, all converging together

10 of 37
The NIST Definition of Cloud Computing

- Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model promotes availability and is composed of five essential characteristics, three service models, and four deployment models.
(Essential) Characteristics

- **On-demand Self Service**
 - A consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with each service’s provider.

- **Broad Network Access**
 - Capabilities are available over the network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAs).

- **Resource Pooling**
 - The provider’s computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to consumer demand. …

- **Rapid Elasticity**
 - Capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly scale out and rapidly released to quickly scale in. …

- **Measured Service**
 - Cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). …

Draft NIST Working Definition of Cloud Computing
Service Models

- **Cloud Software as a Service (SaaS).** The capability provided to the consumer is to use the provider’s applications running on a cloud infrastructure. ...

- **Cloud Platform as a Service (PaaS).** The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages and tools supported by the provider. ...

- **Cloud Infrastructure as a Service (IaaS).** The capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. ...

Draft NIST Working Definition of Cloud Computing
Cloud computing is an Evolution that helps deliver IT and business benefits

Virtualized
- Higher utilization
- Economy of scale benefits
- Lower capital expense

Standardized
- Easier access
- Flexible pricing
- Reuse and share
- Easier to integrate

Automated
- Faster cycle times
- Lower operating expense
- Optimized utilization
- Improved compliance
- Optimized security
- End user experience

Doing more with less

Higher quality services

Breakthrough agility and reducing risk
Cloud Computing Deployment Models

Flexible Deployment Models

Private ...
Privately owned and managed.
Access limited to client and its partner network.
Drives efficiency, standardization and best practices while retaining greater customization and control.

Public ...
Service provider owned and managed.
Access by subscription.
Delivers select set of standardized business process, application and/or infrastructure services on a flexible price per use basis.

Hybrid ...
Access to client, partner network, and third party resources.

Cloud Services

Cloud Computing Model

ORGANIZATION

CULTURE

GOVERNANCE

Standardization, capital preservation, flexibility and time to deploy

Customization, efficiency, availability, resiliency, security and privacy
Cloud Computing Deployment Models

Flexible Deployment Models

Private ...

Enterprise data center
Private cloud

Managed private cloud
Third-party operated

Enterprise
Hosted private cloud
Third-party hosted and operated

Enterprise
Shared cloud services

Public ...

Users
Public cloud services

Hybrid ...

16 of 37
There are a range of layers to clouds

- **SaaS**
- **PaaS**
- **IaaS**

Applications
- IBM
- Lotus
- Google
- Netsuite
- Taleo

Platforms
- Salesforce
- Microsoft
- IBM

Infrastructure
- Amazon
- GoGrid
- Rackspace
- VMware
- IBM
There are a range of layers to clouds

SaaS

PaaS

IaaS

Applications

Infrastructure

Platforms

COBOL

JAVA

Google

CICS Dynamic Scripting

CICS TS 4.1

SHARE in Orlando 2011
An IBM architectural view of cloud computing
Common Role definitions

Cloud Service Consumer

- Business / financial responsibility for consumed services
- Accounted for used services instances
- Uses service instances provided by service provider.
- Requests service instances and changes of service instances (typically on behalf of Consumer Business Manager)
- Provides access to services for service users

Cloud Service Provider

- Manages technical infrastructure required for providing cloud services
- Offers all types of services (SPI) created by service creator
- Accounts services consumers for services potentially offered by service provider themselves and services offered on behalf of service creator
- Responsible for enabling a customer to use the cloud service, incl. boarding, integration, and process adoption

Cloud Service Developer

- Designs, implements, and maintains service templates (technical aspect)
- Service Providers offer services based on a management infrastructure. They may also create services.
- Service Providers can build their services by (optionally) consuming services provided by other service providers.
- Service Providers can host services created by other service creators (on top of their own services)

Multi-tenancy in Cloud environments
Agenda:

- CICS Explorer
- CICS Deployment Assistant
- A bit of vision....
Why CICS Explorer?

- Simplify CICS
 - New users, familiar user interface, high learning curve, grey hair investment

- Integration platform
 - Value of the sum exceeds the part, first class cross tool scenario integration.

- Wide and deep
 - Streamline process and add value to experienced CICS professionals
Explorer Landscape

System Z

FTP

CICS

DA Server

MQ Queue Manager(s)

RDz

RDz Daemon

Message Broker

SM Explorer

MQ Explorer

Not all plug-ins shown
The Look: CICS Explorer
CICS Explorer V1.0.1 system Z support

- CICS Explorer base component
 - Integrates into CICS Explorer SDK
- Access via FTP to:
 - Datasets
 - USS File System
 - Spool
- Usually zero-config for the ‘host component’
 - It’s FTP!
 - So probably already running!
 - Secure FTP supported
 - Bad news however if client cannot reach host using FTP…
CICS Explorer CMCI Topologies
CICS Deployment Assistant v1.1 – Functions I

- Discover Running CICS
 - Capture to a shareable ‘model’
 - Saved as a CICS DA project
 - Use Eclipse team support to share
- Display model
 - System Topology details
- Exploitation of CICS Explorer V1.0.1 system z support:
 - Data set/USS File system, completed spool
- Active Spool support
 - Look at your running CICS joblog
 - View SYSLOG
 - Enter MVS commands
CICS Deployment Assistant v1.1 – Functions II

- Specify Start Policy
 - Started task/job or Batch
 - Start a CICS based on pre-defined policy within CICS Explorer
 - Stop CICS
- Clone an existing CICS
 - Typically AOR/TOR
 - Some plumbing included
- SIT option display
 - SYSPARM resource for CICS TS V4
 - Subset of function for CICS TS V3
- Linkage between SM and DA perspectives
- Cheat-sheets
 - CICSPlex SM Setup
 - Upgrading CICS TS V3.1/V3.2 -> V4.1
Product Details

- Program Number: 5655-W48
- S&S PID: 5655-W62
- FMID: HGEM110
- GA date: 24 September 2010
- Product prefix: CPH

Client download:
 http://www.ibm.com/cics/explorer/download

Client prereqs:
- Same as CICS Explorer V1.0.1:
 - x86 platform
 - 32-bit
 - Linux (Red Hat 5, SUSE Linux Enterprise Server 10)
Explorer 1.0.1 / CICS DA Function Comparison:

<table>
<thead>
<tr>
<th>Function</th>
<th>CICS Explorer V1.0.1</th>
<th>CICS DA V1.1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit z/OS Dataset sequential and Partitioned</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Edit z/FS file</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Create new member</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Display ‘jobs’</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Select ‘job’ queue (Input/Output/Active)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Display completed spool</td>
<td>✓</td>
<td>✓*</td>
</tr>
<tr>
<td>Display active spool</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Display system log</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Display CICS Version 4 SIT options †</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Display CICS Version 3 SIT overrides</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

† - Requires UK60398 and UK60399

* - Faster with CICS DA
CICS DA 1.1 Prereqs

- CICS TS V3.1 or higher
 - Experience will be better with later versions of CICS TS
- z/OS 1.9 or higher
 - JES3 Users will need z/OS 1.10
 - Syslog support requires z/OS 1.11
 - JESplex auto detection requires z/OS 1.11
- For SIT support on V4:
 - CICS TS V4 Users need PTFs for APARs PM15214 and PM15583
 - CICSPlex SM
 - If systems to be managed not part of a CICSPlex SM managed
 CICSplex use DA cheat sheet to help set it up
Installation/Config

- Host Component Installation (< 30mins)
 - Standard SMP/E install
 - Small, just 3 datasets

- Host Component Configuration (< 30mins)
 - APF Authorise SCPHAUTH
 - Add SCPHLOAD to CICSPlex SM Web User Interface (WUI) Server
 - Add and Install CICS Resource definitions to WUI
 - System z support in CICS Explorer 1.0.1 requires
 - FTP JESINTERFACELEVEL=2

- Client Installation (< 30mins)
 - Download CICS Explorer 1.0.1 (if you don't already have it)
 - Download and Install CICS DA plugin
CICS DA Architecture: Access to z/OS

- Datasets
- Spool
- USS File System
- Input
- Output
- ISS Log
- Active
- FTP
- CICS DA Host
- System z Support (base)
- CICS DA Plugin
- CMCI

33 of 37
CICS DA Architecture: Discovery

MVS1
- CMAS
 - WUI
 - CICS
- FTP
 - System z Support (base)

MVS2
- CMAS
 - CICS

MVS3
- CICS

Discover
- CICS DA Plugin
What you experience...
A bit of vision...

Discovery
Creation of model from customer's running system.
CICS Artifacts and bindings to other systems and resources

Policy Expert
Apply IBM and customer policies for best practice.
Compliance checking and enforcement.

Provisioning
Deployment of resources as specified in a model according to chosen policies.

Model (CICS specific)
Applications, Systems, Topologies, Policies, Annotations

Foundation
Visualization, comparison, editing, versioning, sharing, server support, ...

VIRTUALIZATION + STANDARDIZATION + AUTOMATION = Cost
Flexibility

Remember that disclaimer!
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.