IBM Systems & Technology Group

Patrick O'Rourke pmorour@us.ibm.com Executive Briefing Center

Watson takes on Jeopardy!

Advanced computing system has potential to take business intelligence to a new level

- Dates: February 14 / 15 / 16 2011
- Competition with humans at the game of Jeopardy:
 - Human vs. Machine contest.
- Competition: Two most successful Jeopardy contestants of all time

Watson Overview

Watson History.

- 3+ years development by IBM scientists
- IBM Research Software Stack

Why Jeopardy?

- Grand challenge for a computing system
- Broad range of subject matter,
- Speed at which contestants must provide both accurate responses
- Determine a confidence they are correct

Choosing the Right Technology Platform

Factors Affect Choosing the Right Platform

Would you purchase a family car solely on one factor?

Car	Server Platform	
Purchase price	Purchase price	
Gas mileage, cost of repairs, insurance cost	Cost of operation, Power consumption, Floor space	
Reliability	Reliability	
Safety, maneuverability, visibility, vendor service	Availability, Disaster recovery, Vendor service	
Storage capacity, number of seats, towing capacity	Scalability & Throughput	
Horsepower	Chip performance	
Dash board layout Steering wheel location	Instrumentation & Skills	
Handling, comfort, features	Manageability	
Driving Needs / Requirement	People hauler, Carry goods, Usage , Driving Conditions	
Looks, styling, size	Peer and Industry recognition	

5

General Workload Attributes

Transaction Processing and Database

High Transaction Rates High Quality of Service Peak Workloads Resiliency and Security

Analytics and High Performance

Compute or I/O intensive High memory bandwidth Floating point Scale out capable

Business Applications

Scale High Quality of Service Large memory footprint Responsive infrastructure

Web, Collaboration and Infrastructure

Highly threaded Throughput-oriented Scale out capable Lower Quality of Service

6

Main Watson Software Components (Linux Based)

- Watson system used **UIMA** as its principal infrastructure for component interoperability
- Made extensive use of the **UIMA-AS** scale-out capabilities that can exploit modern, highly parallel hardware architectures.
- UIMA manages all work flow and communication between processes, which are spread across the cluster.
- **Apache Hadoop** manages the task of preprocessing Watson's enormous information sources by deploying UIMA pipelines as Hadoop mappers, running UIMA analytics.
- **DeepQA**, a "Collection of Algorithms" that can be divided into independent parts, each executed by a separate processor / Computation is embarrassing parallel. It gathers, evaluates, weighs and balances different types of evidence, delivering the answer with the best support it can find.

Watson Apps Environment...

22 Different Process Types

Heavily Parallelized

389 Processes

- 199 C++
- 190 Java

Threads were heavily core multi-threaded

Threads had various memory requirements

Watson:

Processes 80 trillion operations (teraflops) per second Accessing 200 million pages of content

 Against 6 million logic rules to "Understand" the nuances, meanings, and patterns in spoken human language

8

Data Sources

Sources of information for Watson:

- Encyclopedias
- Dictionaries
- Thesaurus
- Newswire articles
- Literary works
- Bible
- Databases, taxonomies, and ontologies.
 - IMDb
 - DBpedia
 - Wordnet
 - YAGO
- Wikipedia (Full text)

200 million pages of structured and unstructured content

- I Million books
- > 4 TB of disk storage
- Functional memory > 7/ 8 TB of memory

😻 IEMWATSON

9

DeepQA Computing: Memory Intensive

built on UIMA-AS for scale-out and speed

10 🚯 IEMWATSON

© 2011 IBM Corporation

IBM

Workload characterization....

x86 & Power

Candidates

- 1. Data Intensive Large working set and/or high I/O content applications
 - 2. I/O Bound e.g. High I/O content applications
 - 3. Mixed Low e.g. Multiple, data-intense applications or skewed OLTP, MQ
 - 4. Mixed High e.g. Multiple, cpu-intense simple applications
 - 5. Database e.g. Oracle DBMS or dynamic HTTP server

Mainframe & Power

- 6. Java Light e.g. Data intensive java applications
 - 7. Java Heavy e.g. CPU intensive java applications
 - 8. Skewless OTLP e.g. Simple and predictable transaction processing
 - 9. **Protocol Serving** e.g. Static HTTP, firewall, etc.
 - 10. **CPU Intensive** e.g. Numerically intensive, etc.

Defining Platform Requirements

Choosing the Right Platform for Watson...

System z™	POWER™	System x™
CISC	RISC	x86
Throughput	Performance	Standardization
Quality of Service	Scalability	X86 Performance
Resource Utilization	Work / Resource / HPC	X86 Scalability
System Virtualization	Resource Virtualization	Lowest HW Cost
4	Scale Up Scale Out	

Choosing the Right Platform?

BlueGene

Blue Gene: Designed to overcome HPC hurdles

- Ultra-scalability for breakthrough science, broad range of HPC applicability
- Parallel workload scaling
- Low power, small footprint, low total cost of ownership (TCO)
- High reliability, 10-100X better MTBF/TF, low maintenance requirements
- Low latency, high performance inter-processor communications
- Reproducible, deterministic runs simplify tracing errors and tuning performance
- High memory bandwidth for data intensive applications
- Open source and standards-based programming environment

15 🚯 IEMWATSON

What is Blue Gene.....

Blue Gene continues its leadership performance in a space-saving, powerefficient package for the most performance- demanding applications

> **Node Card** 32 Compute Cards up to 2 I/O cards

Compute Card 1 chip, 20

DRAMs

435 GF/s 64 or 128 GB Rack

32 Node Cards

up to 64x10 GigE

I/O links

Cabled

14 TF/s 2 or 4 TB

13.6 GF/s 2 or 4 GB DDR2

13.6 GF/s 8 MB EDRAM

Chip

4 processors

16

Ouad-Core PowerPC

System-on-Chip

(SoC)

850 MHz

The system scales to 256 racks achieving 3.56 **PF**/s peak

Cores needed: >24,000

System

up to 256 racks

up to 3.56 PF/s

512 or 1024 TB

© 2011 IBM Corporation

Choosing the Right Platform?

System z

© 2011 IBM Corporation

System z

System z[™] (CISC)

CPU Performance – workload throughput per resource

Scalability – investment protection

Virtualization – Do more with less

Dynamic – shift resource to workloads

High Resource Utilization - use more of what you own

Reliability – higher service levels

zEnterprise: System of Systems

Managing multi-tier workloads and extending System z governance

Analytics Transaction Processing & Database Data Mining Applications Application Database Numerical Data Wareho Enterprise Sarch Online Transacus Processing Batch Business Applica* Vv. Collaboration and Infras `*ture* Enterprise Ce Planning System Management Customer Relationship Web Serving/Hosting Management Networking Application Development File and Print

© 2011 IBM Corporation

19

IEMWATSON

IBM zEnterprise System....

A new dimension in application architecture

Choosing the Right Platform?

© 2011 IBM Corporation

© 2011 IBM Corporation

Power 775 Compute Node

😵 IBMWATSON

POWER7 Compute Node		
Architecture	POWER7 256 core per node @ 3.84 GHz	
Cache	On Chip L2 & L3	
DDR3 Memory	Up to 2 TB per node	
PCI Expansion / Node	16 – 16X PCIe Gen 2, 1 - 8X PCIe Gen 2	
Storage Drawers	Up to 6 per rack Up to 384 SFF Drives / Drawer	
Ethernet / Node	Up to 16 Quad Port 1 Gb Up to 16 Dual Port 10/100	
Remote IO Drawers	None / Internal IO slots	
Cluster Attach	PERCS Fabric	
Power	N+1 Line Cords	
Cooling	Water	
Nodes	Up to 12 per rack	

23

Power 775 – Node Front View

PERCS POWER7 Hierarchical Structure

POWER7 Chip

8 Cores

POWER7 QCM & Hub Chips

- QCM: 4 POWER7 Chips
 - 32 Core SMP Image
- Hub Chip: One per QCM
 - Interconnect QCM, Nodes, and Super Nodes

POWER7 IH Node

- 2U Node
- 8 QCMs
 - 256 Cores

POWER7 'Super Node'

- 4 Drawers / Nodes
 - 1024 Cores

Full System

- Up to 512 'Super Nodes'
- 512K Cores

Cores needed: 3072

Hub Chip

© 2011 IBM Corporation

Choosing the Right Platform?

Power

POWER7 System Highlights

Balance System Design

Cache, Memory, and IO

POWER7 Processor Technology

- 6th Implementation of multi-core design
- On chip L2 & L3 caches

POWER7 System Architecture

- Blades to High End offerings
- Enhances memory implementation
- PCIe, SAS / SATA, SRIOV

Built in Virtualization

- Cores / Memory and IO
- Memory Expansion Mobility

Workload Flexibility

- Transaction Processing
- ERP Workloads
- High Performance Computing
- Consolidation

Availability

- Processor Instruction Retry
- Alternate Process Recovery
- Hot Add & Services

© 2011 IBM Corporation

POWER7 Portfolio Power 795 **Major Features:** Power 780 Modular systems with linear scalability PowerVM Virtualization Physical and Virtual Management **Power 770** Roadmap to Continuous Availability Binary Compatibility Energy / Thermal Management Power 750 **Power** Power 775 720 / 740 Power Power PowerHA PowerVI∕ Director 710 / 730 Power 755 or Busines **BladeCenter** PS700 / PS701 / PS702 **AIX 7.1** IBM i 7.1 PS703 / PS704

😽 IEMWATSON

Power 750/755 System

POWER7		
POWER7 Architecture	32 Cores @ 3.55 GHz 88 compute nodes 2 I/O nodes	
DDR3 Memory	70 nodes 128GB, 30 nodes 256GB	
System Unit SAS SFF Bays	6 HDD 146GB @ 15k	
System Unit IO Expansion Slots	 (1) FC1983 dual port 1Gb Ethernet (1) FC5769 10Gb Fiber SR (RED RIVER) In the 2 I/O nodes: (1) FC5903 SAS RAID Controller, (SQUIB-E) 	
Integrated SAS / SATA	Yes	
System Unit Integrated Ports	3 USB, 2 Serial, 2 HMC	
Integrated Virtual Ethernet	Dual 10 Gb HEA	
IO Drawers w/ PCI slots	(4) FC5886 Charlotte SAS enclosure, 2 per I/O node with (12) 300GB cross cabled	
Redundant Power and Cooling	Yes AC Single phase 240 VAC	
EnergyScale	Active Thermal Power Management Dynamic Energy Save & Capping	

POWER7 Hardware Selection

Resources

- Needed 2844 cores by June 2010 plus early systems for porting
- 32 core images seemed to match the Jeopardy apps best
- Looked at the following:
 - P7 770: Not dense enough to fit in 10 racks
 - P7 775: Would look the best but schedule did not show it would be stable enough before GA
 - P7 750: Best fit for density

Jeopardy! System Comparison

Current P7 750 vs. Potential P7 775 and Blue Gene

System Details	Power 750	Power 775	BG/P
Frames	10	1	6
Compute Nodes	88	11 Drawers (88 Virtual nodes)	6144 (Each 4 way)
IO Nodes	2	0.25 Virtual node	48
Total Cores	2880	3072	24576
CPU speed	3.55 GHz	~3.8 GHz	850 MHz
Interconnect	10 Gb Ethernet	HFI	Proprietary
Est. Total Power	145kW	226kW	240kW
Cooling Type	Air	Water	Air Optional water
Frame size	19"	30"	48''x38''

Software

Low Level:

SLES 11, JAVA, CNFS, GPFS, xCat,

Middleware:

Apache UIMA (open source)

Applications:

- DeepQA Main analytical engine which ran on Power 7
- Avatar Ran on Mac notebook

Voice:

 Synthesis, strategies for betting, buzzing in, clue selection and exchanging info with Jeopardy Computers all ran on Windows 7 Lenovo desktop

Resiliency

- Extra nodes added into the system
- Two Management Nodes for redundant xCAT cluster management
- Dual HMC systems
- Parts locker on site for most commonly failed parts
- Extra Ethernet switches and blades on hand for final taping
- I/O solution was built in redundancy and GPFS software to manage
- 10 extra systems on site to be used for "Parts"
 - Part of these systems were installed as a 6 node test cluster
 - •Used to stage new code before applied to the full system
 - •Used as a debug platform for bugs in the main system

System Storage

Selection

- Options: Fiber Channel and SAS Direct Attach
 - Fiber Channel
 - Performance better than SAS (4Gb/s vs 3Gb/s)
 - Good reliability but more parts to fail (controller, disk drawers, switch)
 - Took up more space than SAS
 - SAS Storage Drawer
 - Performance was adequate
 - Simple design with direct attach
 - Good RAS with cross cabling between 2 drawers and 2 I/O servers

Hardware

- I/O Servers
 - Two Power 750s for redundancy
 - Each 750 has 2 Exp12S drawers with (12) 300GB HDDs
 - > "X" cabled between the 2 I/O servers so that each server could access
 - the others disk if disk drawers went down or a server went down
 - Managed by CNFS and GPFS software

33 🚯 IEMWATSON

Network

Selection Process

Cluster network selection

- DDR InfiniBand
 - Performance was much more than needed
 - •Ethernet had rock solid stability where performance was not a factor
- 1Gb Ethernet and 10Gb blocking
 - Not enough performance
 - •Looked at from a cost perspective
- Performance was met with non-blocking 10Gb switch

Hardware

FSP Network :

- > (3) 48 port Juniper E48 1Gb Ethernet switch (one not used)
- Cluster network
 - ►(1) Juniper IBM Ethernet Switch J08E (4274-E08)

Node adapter

- >10Gb HEA was used to interconnect the nodes to the 10Gb switch
- >10Gb PCIe adapter was installed as a back up

34 🛛 👸 IEMWATSON

Why Power for Watson/DeepQA?

Workload Optimized System Design

- All components of the stack tuned for throughput and latency
- Tight integration of application specific acceleration technologies (future)

POWER7 Technology

- High single thread performance and throughput capacity
- Large L3 with low latency
- High bandwidth to memory and large shared memory footprint
- High speed SMP fabric and scaling
- High level of reliability and application availability

Watson Stack

- Rapid application development and prototyping
- Open source infrastructure (e.g. UIMA, Hadoop)
- Thousands of parallel processes

Power 750

Choosing the Right Technology Platform

Factors Affect Choosing the Right Platform

Choosing the Right Platform	
Purchase price	
Gas mileage & cost of repairs	
Reliability	
Vendor support services	
Capacity & Options	
Horsepower	
Computing Requirements	
Handling & Features	
Looks, styling, size	

