

» A Hardware & Software Overview

Eli M. Dow <emdow@us.ibm.com:>

© 2011 IBM Corporation

 Overview:

» Hardware
» Software
» Questions

Early implementations of Watson
ran on a single processor where it

took 2 hours to answer a single
question

Luckily, the DeepQA computation is
embarrassing parallel

The rest of these slides will attempt
to show how and why

© 2011 IBM Corporation

 Hardware

» IBM Power750
» CPU
» Memory
» Networking

© 2011 IBM Corporation

 This is where the
 magic happens...

© 2011 IBM Corporation

POWER 750:
1-4 sockets,
With Max 32

Logical Cores

© 2011 IBM Corporation

2,880
POWER7

Processor Cores

© 2011 IBM Corporation

So Watson has 90
Power750 Servers

2880 cores x 1 Server = 90 Servers
1 Watson 32 cores

© 2011 IBM Corporation

10 Racks of IBM
POWER 750

Servers

© 2011 IBM Corporation

© 2011 IBM Corporation

The Watson hardware is
capable of around 80

TeraFLOPs

That is to say,
80,000,000,000,000
operations/second

© 2011 IBM Corporation

Watson would likely be
 ~ 114th on the Top 500

Supercomputers list.

© 2011 IBM Corporation

16 TB of RAM

© 2011 IBM Corporation

Well equipped
desktops have
0.007 TB Ram

(8GB)

© 2011 IBM Corporation

zEnterprise Business Class:
 1.4 TB RAM

(248GB on a Model M10)

zEnterprise Enterprise Class
~3 TB RAM

(3,056GB on a Model M80)

© 2011 IBM Corporation

1 TB could hold 17,000
hours of music.

To put that in perspective
that’s 708 days of non-stop

listening to music
(~2 years)

© 2011 IBM Corporation

1 TB = 320,000
HD photos

Watson could store
More than 5.1 Million

© 2011 IBM Corporation

1 TB could hold
250 DVDs

© 2011 IBM Corporation

1 TB could hold
1,000 copies of the

Encyclopedia
Britannica.

© 2011 IBM Corporation

10 TB could hold the
printed collection of

the Library of
Congress.

© 2011 IBM Corporation

© 2011 IBM Corporation

© 2011 IBM Corporation

© 2011 IBM Corporation

Watson only really stores about 1TB of actual
text data (~1,000 x Encyclopedia Britannica).

Data was stored in RAM because the latency is
too high when seeking on rotational disks.

© 2011 IBM Corporation

 “The network is the computer”

- John Burdette Gage

© 2011 IBM Corporation

Networking required for Watson:

Watson is self-contained and not
connected to the Internet.

But it has to move around a lot of
data between compute nodes with

ridiculously low latency...

© 2011 IBM Corporation

1 x IBM J16E (EX8216) switch - populated
with 15 x 10GbE line cards.

The J16E (EX8216) is massively scalable
providing a 12.4 Tbps fabric and 2 billion

packets-per-second (pps) line-rate
performance.

Juniper Networks

© 2011 IBM Corporation

All of the hardware is available for sale at
your friendly international purveyor of

business machines.

Estimated retail cost of similarly equipped
IBM Power 750 server: $34,500 USD.

For 90 Servers → ~ $3 Million USD

Realistically, most organizations do not
need 3 second response times → smaller
configurations.

© 2011 IBM Corporation

 Software

» Operating System
» MiddleWare
» Custom Software

© 2011 IBM Corporation

So lets talk about the
operating system
Watson uses...

This Operating System
was originally

developed by a
Finnish student

working alone in 1991

© 2011 IBM Corporation

Answer: Linux

 Linux
Enterprise Server 11

This relational
database server runs
on Windows, z/OS,

AIX, Linux, and IBM i

© 2011 IBM Corporation

Answer:
IBM DB2

Specifically:

VERSION HERE

© 2011 IBM Corporation

IBM
DeepQA
software

Content Acquisition

The First step of DeepQA is content acquisition

The Goal is to identify relevant content source material to
harvest possible answers from

Combination of manual and automatic steps involved:
What kinds of questions will be asked?

Characterize the application domain

Analyzing example questions → primarily manual

Domain analysis → automatic/statistical analysis helps

Highly Relevant Content

Given the kinds of questions and
broad domain of the Jeopardy
Challenge, the sources for Watson
include a wide range of
encyclopedias, dictionaries,
thesauri, news articles, literary
works, music databases, IMDB etc

Content Acquisition Continued

From a reasonable baseline corpus of text, we then want to
automatically expand that textual information by adding other
relevant, informative text.

Generally this is how it works:
1) Identify seed documents and retrieve related ones from the

web
2) Extract self-contained text snippets from the related web

docs
3) Score the snippets based on whether they are informative w/

respect to the orig seed doc
4) Merge the most informative snippets into the expanded

corpus

This information comprises Watson's unstructured knowledge which is
the bulk of the information used to answer questions

Content Acquisition Continued

DeepQA leverages other kinds of semistructured
and structured content as well

Another step in the content-acquisition process
is to identify and collect these resources,

which include databases, taxonomies, and
existing ontologies

The live system itself uses this expanded
corpus and does not have access to the web

during play

© 2011 IBM Corporation

Apache Hadoop
http://hadoop.apache.org/

Question Analysis

 The first step in the run-time question-answering
process is question analysis.

 During question analysis the system attempts to
understand what the question is asking and
performs the initial analyses that determine how
the question will be processed by the rest of the
system

 Well known areas of research covers some of this
– Relations
– Named Entities
– Logical forms
– Semantic labels

Question Analysis Continued

We will briefly talk about 3 of the
question analysis methods that
helped with jeopardy:

1) Question Classification
2) Lexical Answer Typing
3) Relation Detection

Question Analysis 1/3: Question Classification

Question classification - the task of identifying
question types, or parts of questions, that
require special processing

Question classification may identify:
puzzle questions
math questions
definition questions
etc

Include anything from single words with double
meanings to entire clauses that have certain
syntactic, semantic, or rhetorical purpose

Question Analysis 2/3: LAT Detection

A lexical answer type is a word or noun phrase in the
question that specifies the type of the answer without

trying to understand its semantics. It answers what kind
of answer the question is looking for, not the answer

itself.

LAT determination is important for confidence scoring:

Wrong type → low confidence. Right type → higher
confidence.

DeepQA uses many independently developed answer-
typing algorithms

Question Analysis 3/3: Relation Detection

Most questions contain relations, whether they are syntactic subject-
verb-object predicates or semantic relationships between entities:

For example, in the question, “They’re the two states you could be
reentering if you’re crossing Florida’s northern border,” we can

detect the relation borders(Florida,?x,north).

Watson uses relation detection throughout the QA process and can use
detected relations to query a triple store and directly generate

candidate answers

The breadth of relations in the Jeopardy domain and the variety of
ways in which they are expressed means Watson effectively uses
curated databases to “look up” answers in less than 2% of clues

Question Analysis 3/3: Relation Detection

For the DB2 experts in the room, a giant DB2 database wont work...

Watson’s use of existing databases depends on the ability to analyze the
question and detect the relations covered by the databases. In 20,000
Jeopardy questions IBM found the distribution of relations extremely flat:

Roughly speaking, detecting the most frequent relations in the domain
can at best help in ~25% of questions, and the benefit of relation

detection drops off fast with the less frequent relations

Broad-domain relation detection remains a major area of research

Question Decomposition Is Key

One requirement driven by analysis
of Jeopardy clues was the ability to handle
questions that are better answered through
decomposition

DeepQA uses rule-based deep parsing and
statistical classification methods to
recognize whether questions should be
decomposed & to determine how best to
break them up

Embarrassingly Parallel Decomposable
Question Life-cycle

We will talk about this pipeline in more detail on the next few slides.

At many points along the path several branches are taken in parallel.

Hypothesis Generation

Hypothesis generation - takes results of
question analysis phase & produces
candidate answers by searching the

system’s sources (we talked about those
sources a while ago) & extracting answer-

sized snippets from the search results

» Primary Search
» Candidate Answer Generation

Hypothesis Generation 1 of 2: Primary Search

Search performed in hypothesis generation is called “primary search”
to distinguish it from search performed during evidence gathering

 Goal → Find as many potentially answer-bearing content fragments as
possible with the expectation that later phases of content analytics

will weed out the right answer from all the candidates

A variety of search techniques used:
 multiple text search engines (ex, Lucene)
 document search
 passage search,
 knowledge base search using SPARQL on triple stores
 generation of multiple search queries for a single question

Hypothesis Generation 2 of 2:
Candidate Answer Generation

With copious search results in hand, Watson moves on to candidate generation

Techniques appropriate to the kind of search results we are looking for are
applied to generate candidate answers. For instance, Passage search results
which require a more detailed analysis of the passage text to identify
candidate answers from the passage

If LAT indicated we are looking for names, we seek out candidate answers which
are names from the passage. Some sources, such as a triple store and
reverse dictionary lookup, produce candidate answers directly

If correct answer(s) are not generated at this stage as candidates, the system
has no hope of answering the question → This step significantly favors recall
over precision, w/ expectation that later pipeline will tease out a correct
answer

System design goal → tolerate noise in early stages of the pipeline and drive up
precision downstream. Watson generates several hundred candidate
answers at this stage

Soft Filtering: Do not do work that you don't have to.

Key step in managing resource versus precision trade-off is the
application of lightweight scoring algorithms to prune the
initial, likely large, candidate set before more intensive

scoring components are run

Watson combines lightweight analysis scores into a soft filtering
score. Candidate answers that pass a soft filter threshold

proceed to hypothesis and evidence scoring

The model and threshold are based on machine learning

Watson currently lets ~100 candidates pass the soft filter but
this value is tunable

Hypothesis Evidence Retrieval

Each candidate answer that passes the soft filter moves on to
the next stage where Watson gathers additional supporting

evidence

Watson architecture uses many evidence-gathering techniques

Particularly effective technique for jeopardy is is passage
search where the candidate answer is added as a required

term to the primary search query derived from the question.
This will retrieve passages that contain the candidate answer

used in the context of the original question terms.

Hypothesis Scoring

The scoring step is where the bulk of the deep content analysis is performed,
and this is where Watson determines the degree of certainty supporting

candidate answers

Many different scorers → each consider different dimensions of the evidence

common format for the confidence scores, imposing few restrictions on the
semantics of the scores themselves → enables DeepQA devs to rapidly

deploy, mix, and tune components to support each other.

Watson employs more than 50 scoring components that produce scores ranging
from formal probabilities to counts to categorical features, based on
evidence from different types of sources including unstructured text,

semistructured text, & triple stores.

Scorers consider things like text passage source reliability, geospatial location,
temporal relationships, taxonomic classification, popularity (or obscurity),

etc.

Final Ranking and Answer Merging

It is one thing to return documents that
contain key words from the question

It is quite another to analyze the
question content enough to identify

the precise answer

Watson must determine an accurate
assessment of confidence

Answer Merging

 Without merging, ranking algorithms
would be spending time trying to

compare multiple generated answers
that represent the same concept

To prevent that from happening,
Watson uses an ensemble of

algorithms to identify equivalent &
related hypotheses (ex, Abraham

Lincoln and Honest Abe)

Answer Merging

After merging, the system must rank the hypotheses and
estimate confidence based on their merged scores

Watson uses a machine-learning approach based on many
training questions with known answers

Watson’s uses multiple trained models to handle different
question classes. Certain scores which may be crucial
in identifying the correct answer for a factoid question

may not be useful on puzzle questions

© 2011 IBM Corporation

Apache UIMA
http://uima.apache.org/

The components in DeepQA are
implemented as UIMA annotators

UIMA annotators are software
components that analyze text and
produce annotations (assertions)

about that text

 As Watson evolved, it has grown to
include hundreds of these

components

Example UIMA Annotator Java Implementation
public class RoomNumberAnnotator extends JCasAnnotator_ImplBase {

 // create regular expression pattern for Yorktown room number

 private Pattern mYorktownPattern = Pattern.compile("\\b[0-4]\\d-[0-2]\\d\\d\\b");

 // create regular expression pattern for Hawthorne room number

 private Pattern mHawthornePattern = Pattern.compile("\\b[G1-4][NS]-[A-Z]\\d\\d\\b");

 public void process(JCas aJCas){

 // The JCas obj is the data obj in UIMA where info is stored. Get doc text from Jcas

 String docText = aJCas.getDocumentText();

 // Search for Yorktown room numbers

 Matcher matcher = mYorktownPattern.matcher(docText);

 int pos = 0;

 while (matcher.find(pos)) {

 // match found – create annotation in the JCas with some additional meta info

 RoomNumber annotation = new RoomNumber(aJCas);

 annotation.setBegin(matcher.start());

 annotation.setEnd(matcher.end());

 annotation.setBuilding("Yorktown");

 annotation.addToIndexes();

 pos = matcher.end();

 }

 }

}

Speed and Scale Out: UIMA-AS & OpenJMS

UIMA-AS is part of Apache UIMA

Enables scale out of UIMA applications using
asynchronous messaging

Handles all communication, messaging, and queue mgmt
necessary using the open JMS standard.

The UIMA-AS deployment of Watson enabled competitive
run-time latencies in the 3–5 second range.

http://openjms.sourceforge.net/

© 2011 IBM Corporation

Most of the middleware running on
Watson, with the notable exception of

DB2, is open source.

Additionally we can say that the
majority of new software was written

in Java and C++

© 2011 IBM Corporation

 Questions ?

 Thank You

© 2011 IBM Corporation

IBM Watson:
A Hardware & Software Overview

 Eli M. Dow
<emdow@us.ibm.com>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

