Session 09563

Virtual Security Zones on z/VM

Alan Altmark
IBM Lab Services z/VM and Linux Consultant
Alan_Altmark@us.ibm.com
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

IBM* z9*
IBM logo* z10
System Storage* z/OS*
System z* z/VM*
System z9*
System z10*

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Intel is a trademark of Intel Corporation in the United States, other countries, or both.
Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
Red Hat, the Red Hat "Shadow Man" logo, and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc., in the United States and other countries.
* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
Agenda

- Introduction
- Securing System z hardware
- A multi-zone network
- VLANs and traffic separation
- Enforcing the rules
The Myth of Mainframe Security
The Reality of Mainframe Security
Securing the Hardware
z/VM Security begins with System z security

- Protect the HMC
 - Don’t share user IDs
 - …but don’t be afraid to connect it to your internal network
 - Limit span of control as appropriate; add roles

- Protect the I/O configuration
 - Create a separate LPAR that is authorized to modify the I/O config
 - Give partitions access only to devices they require
System z Hardware Security

LPAR 1
- z/VM production

LPAR 2
- z/OS production

LPAR 3
- Dynamic I/O configuration management authority
- Minimal z/OS or z/VM

PR/SM
- I/O device access is controlled by PR/SM

- Ethernet
- HiperSockets
WARNING: Shared Open Systems Adapters

A shared OSA creates a “short circuit” between LPARs unless QDIO data connection isolation is used on z10 or z196
WARNING: HiperSockets

A HiperSocket is a LAN segment.
Treat it like one.
Multi-zone networks
A DMZ (demilitarized zone) is the name given to the subnet that insulates critical network components (servers) from a public network.
Multi-zone Network on System z
Firewalls

“Where, oh, where has my firewall gone?”
Inboard (internal) firewalls
Outboard (external) firewalls
Combination firewalls
Guest LANs with HiperSockets

LPAR 1

web
web
web
web

web

app
app
app

app

PR/SM

Internet

= Firewall Router

LPAR 2

z/VM

= Firewall Router

z/OS
DB2

HiperSockets
HiperSockets & z/OS packet filters

LPAR 1

z/VM

PR/SM

HiperSockets

= Firewall Router
“Tempting, but no…”
Virtual Switches
VLANs and traffic separation
VLAN-unaware VSWITCH

SET VSWITCH FLOOR2
GRANT LINUXn

← Virtual access port

← Physical access port on VLAN 10
IEEE VLANs

- If you run out of ports, you don’t throw it away, you daisy chain (“trunk”) it to another switch.
Trunk Port vs. Access Port

- Access port carries traffic for a single VLAN
- Host not aware of VLANs

- Trunk port carries traffic from all VLANs
- Every frame is tagged with the VLAN id
Access vs. Trunk

Access port and Trunk port

When used on a trunk port, the switch will associate (but not tag) it with the native VID.
SET VSWITCH FLOOR1
GRANT LINUX2
PORTTYPE TRUNK
VLAN 10 20

SET VSWITCH FLOOR1
GRANT LINUX3
PORTTYPE ACCESS
VLAN 20

FLOOR1

VLAN 10

VLAN 20

Virtual trunk port →

Virtual access port

Physical trunk port

© Cisco Corp
Network with VSWITCH (fully shared)

With 1 VSWITCH, 3 VLANs, and a multi-domain firewall
Multi-zone Network with VSWITCH (red zone physical isolation)

With 2 VSWITCHes, 3 VLANs, and a multi-domain firewall
Enforcing the Separation
Turn off backchannel communications

- No user-defined Guest LANs
 - `VMLAN LIMIT TRANSIENT 0`
- No virtual CTC
 - `MODIFY COMMAND DEFINE IBMCLASS G PRIVCLASS M`
- No IUCV
 - Use explicit IUCV authorization in the directory, not IUCV ALLOW or IUCV ANY
- No secondary consoles
 - `MODIFY COMMAND SET SUBCMD SECUSER IBMCLASS G PRIVCLASS M`

- But what else might there be?
Turn off backchannel communication

- VMCF
 - MODIFY DIAGNOSE DIAG068 IBMCLASS G PRIVCLASS M

- ESA/XC mode address space sharing (ADRSPACE PERMIT)

- DCSS

- And we can add new interfaces in an APAR

- Google “less than class g” by Rob van der Heij

- Too hard for some folks

- Consider RACF Mandatory Access Controls instead
 - AppArmor and SELinux provide the same capabilities for Linux
Multi-Zoning with RACF

- Mandatory access controls override end user controls
 - Users are assigned to one or more named projects
 - Minidisks, guest LANs, VSWITCHes, and VLAN IDs, NSSes, DCSSes, spool files
 - all represent data in those same projects
 - Users can only access data in their assigned projects
 - Overrides user- or admin-given permissions
Multi-Zoning with RACF

- A **Security Label** combines the concepts of
 - Security clearance (secret, top secret, eyes only)
 - Information zones

- Information zones apply to any place data may exist
 - disks, networks, and other users

- Security clearance
 - Ensures servers cannot see extra-sensitive data in their information zone
 - Prevents copying of data to medium that is readable by servers with lower security clearance (“No write down”)
 - Not prevalent since there is no equivalent in distributed networking solutions

- Label “dominance” is established based on intersection of zones and security clearance
 - Not just a simple string comparison
Multi-zone z/VM LPAR with RACF
Security Label Enforcement
Multi-Zoning with RACF

Create security levels and data partitions

RDEFINE SECDATA SECLEVEL ADDMEM(DEFAULT/100)

RDEFINE SECDATA CATEGORY ADDMEM(INTERNET DMZ APPS DATA COMMON)

RDEFINE SECLABEL PUBLIC SECLEVEL(DEFAULT) ADDCATEGORY(COMMON) UACC(NONE)

RDEFINE SECLABEL RED SECLEVEL(DEFAULT) ADDCATEGORY(DMZ COMMON) UACC(NONE)

RDEFINE SECLABEL GREEN SECLEVEL(DEFAULT) ADDCATEGORY(APPS COMMON) UACC(NONE)

RDEFINE SECLABEL BLUE SECLEVEL(DEFAULT) ADDCATEGORY(DATA COMMON) UACC(NONE)
Multi-Zoning with RACF

Assign virtual machines their SECLABELs

PERMIT RED CLASS(SECLABEL) ID(LXHTTP01) ACCESS(READ)
ALTUSER LXHTTP01 SECLABEL(RED)

PERMIT GREEN CLASS(SECLABEL) ID(LXWAS001) ACCESS(READ)
ALTUSER LXWAS001 SECLABEL(GREEN)
Multi-Zoning with RACF

- But sometimes a server serves the Greater Good, providing services to all users
- Exempt server from label checking
- Assign system servers label SYSNONE

```
PERMIT SYSNONE CLASS(SECLABEL) ID(TCPIP) ACCESS(READ)
ALTUSER TCPIP SECLABEL(SYSNONE)
```
Multi-Zoning with RACF

- Assign labels to resources
 - VMMDISK – Minidisk
 - VMLAN – Guest LANs and Virtual Switches
 - RALTER VMMDISK LXHTTP01.201 SECLABEL(RED)
 - RALTER VMLAN SYSTEM.NET1 SECLABEL(RED)
 - RALTER VMLAN SYSTEM.NET2.0307 SECLABEL(GREEN)
 - RALTER VMLAN SYSTEM.NET2.0410 SECLABEL(BLUE)

- If you intend to activate TERMINAL or VMSEGMT classes, those resources all need SECLABELs
Multi-Zoning with RACF

- Activate RACF protection
 - SETROPTS CLASSACT(SECLABEL VMMDISK VMLAN)
 - SETROPTS RACLIST(SECLABEL)
 - SETROPTS MLACTIVE(WARNINGS)
 - If resource doesn’t have a seclabel, message is issued and seclabels are ignored.

 Or
 - SETROPTS MLACTIVE(FAILURES)
 - If resource doesn’t have a seclabel, command fails.
 - This is more secure!
Summary

- Check network design with network architect

- Place firewalls where the network security team wants them to go

- Use common sense
 - Protect the hardware
 - Protect your data
 - Protect your servers
 - Protect your company
 - Protect yourself!!
Reference Information

- This presentation

- z/VM Security resources

- z/VM Secure Configuration Guide

- System z Security

- z/VM Home Page
 - http://www.VM.ibm.com