
1© 2011 IBM Corporation

z/OS JavaTM Security
Saheem Granados
IBM Corp.
sgranado@us.ibm.com

August 9, 2011
Session 9550

Java and JVM are registered trademarks of Oracle and/or its
affiliates

2© 2011 IBM Corporation

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.
IBM®
RACF®
Z800
Z900
z/OS®
* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

All other products may be trademarks or registered trademarks of their respective companies.

Notes:
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer
configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and
the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in
your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those
products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

3© 2011 IBM Corporation

What is Java Security?

Java framework - Set of common cross platform programming APIs in
Java Platform, Standard Edition (Java SE) administered by Oracle
Java Security Extensions - Set of common APIs to extend Java to add
Security capabilities
Provides Java Applications easy access to complex Security
capabilities within Java framework
Java Security extensions were integrated into base Java 2 (J2SE)
framework in SDK 1.4.0 (available since 2Q2002)

4© 2011 IBM Corporation

Java Security Service Provider Architecture
Bird's Eye View

Service Classes (engines)
ƒ represent cryptographic and other security-related services (operations)

–Cipher, KeyAgreement, KeyGenerator, Mac, SecretKeyFactory
ƒ abstract in nature
ƒ Service Provider Interface (SPI)

–methods which must be implemented (also abstract)
ƒ Application Programming Interface (API)

–public methods defined by engine needed to use services

Provider architecture
ƒ supplies algorithm implementations for service classes
ƒ collection of all implementations referred to as "service provider" or simply

"provider"
ƒ supports the development of plug-replaceable components (providers)

More information at
http://download.oracle.com/javase/6/docs/technotes/guides/security/crypto/HowToImplA
Provider.html

5© 2011 IBM Corporation

Java Security Service Provider Architecture
(continued)

Provider configuration determines in which provider desired algorithm
is found, during relevant initialization method
Two ways to select provider containing algorithm:
ƒ If no specific provider is designated on initialization, the providers are checked in

provider list order (specified in java.security configuration file), selecting the first
provider which satisfies engine/algorithm/key type support

–Cipher c1 = Cipher.getInstance("DES")
–c1.init(Cipher.ENCRYPT_MODE, myKey)

ƒ Location of java.security file
–default: ${java-home}/lib/security/java.security
–JVM startup parameter: java -Djava.security.properties=/my.user/java.security

6© 2011 IBM Corporation

Java Security Service Provider Architecture
(continued)

ƒ an explicit getInstance() call to create a cipher instance with a particular provider
will select algorithm for cipher from designated provider, if it implements it (throws
exception, otherwise)

–Cipher c1 = Cipher.getInstance("DES", "IBMJCECCA")
c1.init(Cipher.ENCRYPT_MODE, myKey)

7© 2011 IBM Corporation

IBM Java Security Providers

IBMJCE - Java Cryptographic Extension
IBMJCECCA - JCE using z/OS hardware crypto (z/OS only)
IBMJSSE2 - Java Secure Sockets Extension (SSL & TLS)
IBMPKCS11Impl - Public Key Cryptographic Standard #11
IBMJAAS - Java Authentication and Authorization Service
IBMJGSS - Generic Security Services - Kerberos, GSS-API
IBMCERTPATH - Certificate Path Validation
IBMSASL - Simple Authentication & Security Layer
IBMXMLCryptoProvider - XML Digital Signatures
IBMXMLEncProvider - XML Digital Encryption
SAF Interfaces - System Authorization Facility (z/OS only)

8© 2011 IBM Corporation

IBM Java Cryptography Extension - IBMJCE

Implements platform-independent Cryptography API into Java SE as a
standard extension (JDK 1.4)
ƒ Cryptography is performed via software

Replaces IBMJCA (Java Cryptographic Architecture) capabilities (from
1.3.0 JDK level)
ƒ Digital Signatures, Hashing, keystore
ƒ Extends to add more capabilities

Includes many algorithms for
ƒ Encryption/Decryption (Symmetric and Asymmetric algorithms), Sign/Verify
ƒ Key agreement, Message Authentication Code (MAC)

9© 2011 IBM Corporation

IBM Java Cryptography Extension - IBMJCE
(continued)

Digital Signatures via RSA and DSA (Digital Signature Algorithm)
Hashing - SHA1 (Secure Hash Algorithm), MD2 (Message Digest),
MD5
Keystore - Symmetric and Asymmetric keys protected by 3DES
Symmetric Algorithms - DES (Data Encryption Standard), 3DES, AES
(Advanced Encryption Standard), PBE (Password Based Encryption),
Blowfish, Mars, RC2, RC4
ƒ Cipher Modes - Electronic Code Block (ECB), Cipher Block Chaining (CBC), Cipher

Feedback Mode (CFB), Output Feedback Mode (OFB), Propagating Cipher Block
Chaining (PCBC)

Asymmetric Algorithms - RSA (Rivest-Shamir-Adelman)
Key Agreement - Diffie-Hellman
Hash-based Message Authentication Code (HMAC) - MD5, SHA1

10© 2011 IBM Corporation

IBM Java Cryptography Extension - IBMJCE
(continued)

IBMJCE z/OS platform-specific
ƒ Same code and capabilities as other IBM platforms
ƒ Adds the capability to use SAF-based keys/certificates (any external security

managers implementing SAF interfaces, such as RACF)
–keystore for SAF Digital Certificate (key ring) Support
–certificates always accompanied by public key and optionally accompanied by a
private key to create an asymmetric key pair

–no symmetric key support
Code is common on IBM platforms at SDK 1.4.2 level & above
Granted Cryptographic Module Validation Program (CMVP) FIPS 140-
2 level 1 certification
ƒ Separate FIPS-only provider (IBMJCEFIPS)
ƒ http://csrc.nist.gov/groups/STM/cmvp/index.html

11© 2011 IBM Corporation

Java Security Cryptographic Strength

Full Function versus Limited Key Size Cryptography
ƒ Default: US_export_policy.jar and local_policy.jar pre-installed in directory ${java-

home}/lib/security: limited function cryptography with no export restrictions
ƒ Exception: IBMJCECCA provider (beginning with SDK 6 SR 7)

–disregards cryptographic strength implied by installed policy files
–relies on cryptographic hardware enablement established during ordering and
manufacturing to comply with import restrictions and import licensing
requirements in certain countries outside of the United States.

–determines the maximum allowable key size for a given applet/application
ƒ Other crypto providers (such as IBMJCE) and IBMJCECCA (prior to SDK 6 SR 7)

adhere to cryptographic strength implied by installed policy files
ƒ Download new policy files from

http://www.ibm.com/systems/z/os/zos/tools/java/products/sdk601jcecca.html
ƒ Replace files US_export_policy.jar and local_policy.jar in ${java-home}/lib/security:

full function cryptography

12© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA

IBM Implementation of JCE Cryptography using z/OS Common
Cryptographic Architecture (CCA) hardware cryptographic devices
Replaces those JCE capabilities available via CCA hardware
Almost no changes to Java JCE Applications
ƒ key generation
ƒ java.security (properties file) provider order

Allows a JCE application to take advantage of hardware cryptography
without extensive knowledge of hardware cryptography
ƒ Uses Integrated Cryptographic Services Facility (ICSF) for hardware interfaces
ƒ Requires ICSF installation and initiation
ƒ Remember to activate hardware

13© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA (continued)

Enhances security
ƒ Cryptographic processing done via secure devices
ƒ Adds Protected (secure) keys (never available in the clear when in use or storage)
ƒ Can be used for key management(sign/verify & encrypt/decrypt) OR

signature(sign/verify only)
Exploits performance of crypto hardware
ƒ Moves Cryptographic operations off the CPU and onto the hardware cryptographic

device

14© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA (continued)

To use the IBMJCECCA provider on the z/OS platform, you must have
the following:
ƒ A zSeries processor incorporating cryptographic hardware

ƒ IBMJCECCA will exploit cryptographic hardware capabilities where available,
via the Cryptographic Co-processor Facility (CCF) or CP Assist hardware
(CPACF) and/or PCI-X or PCIe adapter crypto processors available on z800 or
z900 and later generation processors.

ƒ ICSF must be running
ƒ Update the security provider list to include

com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
See the z/OS Cryptographic Services Integrated Cryptographic
Services Facility (ICSF) documentation for a description of the
functions available for each of the configurations.

15© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA (continued)

Details on cryptographic hardware cards may be found at
http://www.ibm.com/security/cryptocards/
http://publib.boulder.ibm.com/infocenter/zos/v1r11/index.jsp?
topic=/com.ibm.zos.r11.csfb500/sandh.htm

16© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA (continued)

Types of cryptographic hardware utilization:
ƒ Clear hardware key pairs and symmetric keys - keys stored in a clear and

unprotected representation
–greatest throughput
–lowest hardware security for symmetric keys and asymmetric key pairs

ƒ PKDS (Public/private Key Data Set) key pairs - private key is encrypted with the
system master key so that the clear text version of this key can never be viewed or
retrieved (secure key); key pair is stored in a system key storage area (a RACF-
protected data set)

–highest level of security supported by IBMJCECCA provider for asymmetric key pairs
ƒ CKDS (Cryptographic Key Data Set) symmetric keys - key is encrypted with the

system master key so that the clear text version of this key can never be viewed or
retrieved (secure key); key is stored in a system key storage area (a RACF-
protected data set)
nhighest level of security supported by IBMJCECCA provider for symmetric keys

17© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA (continued)

ƒ Protected hardware symmetric keys – key is encrypted with the system master
key so that the clear text version of this key can never be viewed or retrieved
(secure key); key token is returned to application and stored in JCE keystore

–highest level of security supported by IBMJCECCA for symmetric keys

 More info at
ftp://public.dhe.ibm.com/s390/java/jce4758/java601/API_users_guide.html#AppF

18© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA (continued)

Digital Signatures via RSA and DSA (DSA on z900/z800 only)
Hashing - SHA-1, SHA-256, SHA-384, SHA-512 , MD2, MD5
Keystore - Symmetric and Asymmetric keys protected by 3DES
Symmetric Algorithms - DES, 3DES, PBE, AES
ƒ Cipher Modes - ECB, CBC, CFB, OFB, PCBC

Asymmetric Algorithms - RSA
HMAC – MD2, MD5, SHA1, SHA-256, SHA-384, SHA-512

Adds the capability to use SAF based keys/certificates (RACF)
ƒ keystore for SAF Digital Certificate (key ring) Support

19© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA (continued)

New in SDK 6.0.1:
ƒ Support for AES Protected Keys
ƒ Enhanced ICSF Exception Handling

20© 2011 IBM Corporation

z/OS Java Cryptography Extension -
IBMJCECCA (continued)

Documentation available at
http://www.ibm.com/systems/z/os/zos/tools/java/products/sdk601jcecca.html

 http://www.ibm.com/systems/z/os/zos/tools/java/faq/javasecurityfaq.html

21© 2011 IBM Corporation

IBM Public Key Cryptographic Standard #11 -
IBMPKCS11Impl

Implementation of RSA's Public Key Cryptographic Standard #11
ƒ New provider introduced in SDK 6
ƒ Smart card interface standard
ƒ APIs define cryptographic objects (keys, certificates, etc) and all the functions

needed to use, create/generate, modify and delete those objects
ƒ Supports subset of V2.20 PKCS#11 spec

Implemented in Java for z/OS using the IBMPKCS11Impl provider
ƒ Uses JCE and JCA frameworks to add capability to use hardware cryptographic

devices through PKCS#11 interfaces
Requires minimum level z/OS V1R9

22© 2011 IBM Corporation

IBM Public Key Cryptographic Standard #11 -
IBMPKCS11Impl (continued)

Supported algorithms:
ƒ Signature.MD5withRSA
ƒ Signature.SHA1withRSA
ƒ Signature.SHA256withRSA
ƒ Signature.RSAforSSL
ƒ Cipher.RSA/SSL/PKCS1Padding
ƒ Cipher.RSA/SSL/NoPadding
ƒ Cipher.RSAforSSL
ƒ Cipher.DES/CBC/NoPadding
ƒ Cipher.DES/CBC/Pad
ƒ Cipher.DES/ECB/NoPadding
ƒ Cipher.DESede/CBC/NoPadding
ƒ Cipher.DESede/CBC/Pad
ƒ Cipher.DESede/ECB/NoPadding
ƒ Cipher.AES/CBC/NoPadding
ƒ Cipher.AES/CBC/Pad
ƒ Cipher.AES/ECB/NoPadding

23© 2011 IBM Corporation

IBM Public Key Cryptographic Standard #11 -
IBMPKCS11Impl (continued)

Supported algorithms (continued):
ƒ KeyPairGenerator.RSA
ƒ KeyGenerator.DES
ƒ KeyGenerator.DESede
ƒ KeyGenerator.AES
ƒ MessageDigest.MD5
ƒ MessageDigest.SHA1
ƒ MessageDigest.SHA-256
ƒ KeyFactory.RSA
ƒ SecretKeyFactory.DES
ƒ SecretKeyFactory.DESede
ƒ SecretKeyFactory.AES

See http://www.ibm.com/systems/z/os/zos/tools/java/products/j6pkcs11implgd.html

24© 2011 IBM Corporation

IBM Public Key Cryptographic Standard #11 -
IBMPKCS11Impl (continued)

To use the IBMPKCS11Impl provider on the z/OS platform, you
must have the following:
ƒ A system at the z/OS V1R9 level or higher and IBM z/OS Java

SDK V6.0.0 or higher
ƒ A zSeries processor incorporating cryptographic hardware

–IBMPKCS11Impl will exploit cryptographic hardware capabilities
where available, via the Cryptographic Co-processor Facility (CCF) or
CP Assist hardware (CPACF) and/or PCI-X or PCIe adapter crypto
processors available on z800 or z900 and later generation processors.

ƒ Update the security provider list to include
com.ibm.crypto.pkcs11impl. provider.IBMPKCS11Impl
ƒ ICSF must be running

25© 2011 IBM Corporation

IBM Public Key Cryptographic Standard #11 -
IBMPKCS11Impl (continued)

See the z/OS Cryptographic Services Integrated Cryptographic
Services Facility (ICSF) documentation (z/OS V1R9 or later) for a
description of the functions available for each of the configurations.
Details on cryptographic hardware cards may be found at
http://www.ibm.com/security/cryptocards/
http://publib.boulder.ibm.com/infocenter/zos/v1r11/index.jsp?
topic=/com.ibm.zos.r11.csfb500/sandh.htm

Usage Notes
ƒ Only clear keys supported in the Token Data Set (TKDS); no secure key

support
–use IBMJCECCA if secure keys are required

ƒ No support in IBMPKCS11Impl on z/OS for PKCS#11 hardware
exploitation by IBMJSSE2

–use IBMJCECCA if hardware exploitation with IBMJSSE2 required

26© 2011 IBM Corporation

IBM Public Key Cryptographic Standard #11 -
IBMPKCS11Impl (continued)

Where to start?
ƒ Java Public Key Cryptographic Standards #11 Implementation Provider Overview at

http://www.ibm.com/systems/z/os/zos/tools/java/products/j6pkcs.html
ƒ z/OS IBMPKCS11Impl Guide (configuration, initialization, supported algorithms) at

http://www.ibm.com/systems/z/os/zos/tools/java/products/j6pkcs11implgd.html
Additional references:
ƒ z/OS Cryptographic Services Integrated Cryptographic Services Facility Writing

PKCS#11 Application SA23-2231
ƒ Java Security PKCS#11 Implementation Provider document and IBMPKCS11Impl

classes and methods API documentation
–http://www.ibm.com/developerworks/java/jdk/security/60/secguides/pkcs11implDocs/IBM

JavaPKCS11ImplementationProvider.html
ƒ z/OS Security Server RACF Command Language Reference SA22-7687 and z/OS

Security Server RACF Security Administrator's Guide SA22-7683 for information on
RACDCERT
ƒ z/OS Cryptographic Services System Secure Sockets Layer Programming SC24-5901

(for gskkyman information)

27© 2011 IBM Corporation

IBM Java Secure Sockets Extension -
IBMJSSE2

Implements SSL 3.0 and TLS 1.0 as Java 2 standard extensions
ƒ 100% pure Java Implementation

Provides Authentication, Integrity and Privacy at the transport level
ƒ Privacy for browser to Web-Server e-business
ƒ Any secure data exchange

Supports a wide variety of SSL and TLS algorithm types
Supports common security algorithms
ƒ RSA, DSA, DES, AES, 3DES, RC4

Socket factories encapsulate socket creation, key and trust
management behavior for ease of use
Ability to create application specific Trust Manager or Key Manager for
application requirements
Code is common with other IBM platforms at SDK 5 and above
ƒ Allows for application portability

28© 2011 IBM Corporation

IBM Java Secure Sockets Extension -
IBMJSSE2

Features of IBMJSSE2 Provider :
ƒ Serviceability

–configurable tracing - dynamic debug tracing support is accessed with the system property
javax.net.debug

ƒ Uses IBM cryptographic providers
–IBMJSSE2 Provider uses IBM’s JCE providers: IBMJCE, IBMJCEFIPS, and IBMJCECCA

ƒ Supports using JSSE with hardware cryptographic accelerators and hardware keys
–performance improvements
–acceleration for handshake and payload
–hardware cryptographic accelerator exploitation based on key type and provider list order

ƒ Supports a second, PKIX-compliant TrustManager
–implemented using the default CertPath PKIX implementation (compliant with RFC 3280)
–default Trustmanager
–simple X.509-based TrustManager available

29© 2011 IBM Corporation

IBM Java Secure Sockets Extension -
IBMJSSE2 (continued)

Algorithms for key exchange and authentication
ƒ RSA, Diffie-Hellman, DSA

Algorithms for Data exchange
ƒ DES, 3DES, AES, RC4, RC2

Hashing Algorithms
ƒ SHA1, MD5

30© 2011 IBM Corporation

IBM Java Secure Sockets Extension -
IBMJSSE2 (continued)

Cipher Suites supported
ƒ SSL_RSA_WITH_RC4_128_MD5
ƒ SSL_RSA_WITH_RC4_128_SHA
ƒ SSL_RSA_WITH_AES_128_CBC_SHA
ƒ SSL_RSA_WITH_AES_256_CBC_SHA
ƒ SSL_RSA_WITH_DES_CBC_SHA
ƒ SSL_RSA_FIPS_WITH_DES_CBC_SHA
ƒ SSL_RSA_WITH_3DES_EDE_CBC_SHA
ƒ SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
ƒ SSL_DHE_RSA_WITH_AES_128_CBC_SHA
ƒ SSL_DHE_RSA_WITH_AES_256_CBC_SHA
ƒ SSL_DHE_RSA_WITH_DES_CBC_SHA
ƒ SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
ƒ SSL_DHE_DSS_WITH_AES_128_CBC_SHA
ƒ SSL_DHE_DSS_WITH_AES_256_CBC_SHA
ƒ SSL_DHE_DSS_WITH_RC4_128_SHA
ƒ SSL_DHE_DSS_WITH_DES_CBC_SHA
ƒ SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
ƒ SSL_RSA_EXPORT_WITH_RC4_40_MD5
ƒ SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

31© 2011 IBM Corporation

IBM Java Secure Sockets Extension -
IBMJSSE2 (continued)

Cipher Suites supported (continued)
ƒ SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
ƒ SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
ƒ SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
ƒ SSL_RSA_WITH_NULL_MD5
ƒ SSL_RSA_WITH_NULL_SHA
ƒ SSL_DH_anon_WITH_AES_128_CBC_SHA
ƒ SSL_DH_anon_WITH_AES_256_CBC_SHA
ƒ SSL_DH_anon_WITH_RC4_128_MD5
ƒ SSL_DH_anon_WITH_DES_CBC_SHA
ƒ SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
ƒ SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
ƒ SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
ƒ SSL_KRB5_WITH_RC4_128_SHA

ƒ SSL_KRB5_WITH_RC4_128_MD5
ƒ SSL_KRB5_WITH_3DES_EDE_CBC_SHA
ƒ SSL_KRB5_WITH_3DES_EDE_CBC_MD5

32© 2011 IBM Corporation

IBM Java Secure Sockets Extension -
IBMJSSE2 (continued)

Cipher Suites supported (continued)
ƒ SSL_KRB5_WITH_DES_CBC_SHA
ƒ SSL_KRB5_WITH_DES_CBC_MD5
ƒ SSL_KRB5_EXPORT_WITH_RC4_40_SHA
ƒ SSL_KRB5_EXPORT_WITH_RC4_40_MD5
ƒ SSL_KRB5_EXPORT_WITH_DES_CBC_40_SHA
ƒ SSL_KRB5_EXPORT_WITH_DES_CBC_40_MD5

ƒ Also available for TLS (Cipher Suite name may begin with "SSL" or "TLS")
ƒ See

http://www.ibm.com/developerworks/java/jdk/security/60/secguides/jsse2Docs/JSSE
2RefGuide.html

Can exploit IBMJCECCA hardware crypto provider for handshake and
payload encrypt/decrypt operations

33© 2011 IBM Corporation

IBM
Java Authentication and Authorization Service –
JAAS

Oracle's Java Authentication and Authorization Services (JAAS)
framework was released with JDK 1.3.0
ƒ Extends from Java 2 code source-based Security model

IBM's implementation adds support for Principal (userid) based
security
ƒ Authentication of a user
ƒ Java Authorization by code source and user
ƒ Enforce new access controls based on who has authenticated
ƒ Based on grants in java.policy file

–grant permissions to specific principals

34© 2011 IBM Corporation

z/OS-Specific
Java Authentication and Authorization Service
(continued)

z/OS Login
ƒ User authentication via SAF
ƒ Active authentication - Regular password based authentication
ƒ Passive authentication - Form Java Principal construct from current z/OS userid

associated with the thread of execution
ThreadSubject.doAs
ƒ Authorization within doAs loop
ƒ Change the identity of the underlying z/OS thread within doAs loop

SAFPermission
ƒ Extend Java Permission to use SAF Interfaces
ƒ New Java permission to allow Java applications to do authorization checks with

SAF for SAF protected resources

35© 2011 IBM Corporation

z/OS-Specific
Java Authentication and Authorization Service
(continued)

New in SDK 6.0.0:
ƒ Added new JAAS login module that enables users to perform authentication

using credentials stored in an LDAP directory service

z/OS documentation available at
http://www.ibm.com/systems/z/os/zos/tools/java/products/jaas14.html

36© 2011 IBM Corporation

z/OS SAF Interfaces

Java static class methods provide an interface to the z/OS Security
Server using SAF (System Authorization Facility) and z/OS services
to provide basic authentication and authorization services.
ƒ PlatformSecurityServer class

–IsActive(), resourceIsActive()
ƒ PlatformUser class

–authenticate(), changePassword(), isUserInGroup()
ƒ PlatformAccessControl.checkPermission()
ƒ PlatformThread.getUserName()

z/OS documentation available at
http://www.ibm.com/systems/z/os/zos/tools/java/products/j5security.html

For information about additional RACF user and group administration
APIs shipped with RACF, please see
http://www.ibm.com/systems/z/os/zos/features/racf/racfjsec.html

37© 2011 IBM Corporation

IBM Java Generic Security Services - JGSS

Used for secure message exchange between communicating
applications

Uniform access to security services atop a variety of underlying
security mechanisms
ƒ Kerberos
ƒ Generic Security Service Application Program Interface (GSS-API) defined

in RFC 2853

38© 2011 IBM Corporation

IBM Java Generic Security Services - JGSS
(continued)

Java GSS-API and JSSE2 provide same basic set of security
features.... key differences:
ƒ GSS-API token-based application-driven communication and can use any

communication channel; JSSE2 socket-based only
ƒ GSS-API allows the client to delegate its credentials to the server when

using Kerberos
ƒ GSS-API permits selective encryption of messages; JSSE2 is all or none

proposition per handshake
ƒ Protocol capabilities differ

–JSSE2 supports SSL, TLS, and kerberos
–JGSS supports GSS-API and kerberos
–some client/server exchanges require one or the other

39© 2011 IBM Corporation

IBM Java Generic Security Services - JGSS
(continued)

Code is common with other IBM platforms at SDK 1.4 level
ƒ 100% pure Java implementation
ƒ Allows for application portability

New in SDK 6.0.0:
ƒ Added CipherText Stealing mode
ƒ Simple and Protected Negotiation (SPNEGO) mechanism included

z/OS documentation available at
http://www.ibm.com/systems/z/os/zos/tools/java/products/jgss14.html

40© 2011 IBM Corporation

IBM Java Certification Path - IBMCERTPATH

Provides classes for creating, building, and validating certification
paths (also known as "certificate chains").
When checking the certificate's CRL Distribution Points extension,
recognizes both HTTP and LDAP URLs.
To enable CRL Distribution Points extension checking, use the
system property com.ibm.security.enableCRLDP

41© 2011 IBM Corporation

IBM Java Certification Path - IBMCERTPATH
(continued)

New in SDK 6.0.0:
ƒ Enhanced CRL validation and CRL processing to more closely comply with the PKIX

Certificate and CRL Profile (RFC 3280) Section 6.3, entitled "CRL Validation"
ƒ Added com.ibm.security.enableDELTACRL system property to use both delta CRLs

and complete CRLs if revocation checking is enabled by caller
ƒ Added com.ibm.security.enableAIAEXT system property to use LDAP URIs found in

any Authority Information Access extensions within certificates on the certificate
path

z/OS documentation available at
http://www.ibm.com/systems/z/os/zos/tools/java/products/certpath14.html

42© 2011 IBM Corporation

IBM Java Simple Authentication & Security Layer -
IBMSASL

A method for adding authentication support to connection-based
protocols
Defined to be mechanism-neutral: the application need not be
hardwired into using any particular SASL mechanism.
API supports both client and server applications.
Allows applications to select the mechanism to use based on desired
security features
Also allows developers to use their own, custom SASL mechanisms

43© 2011 IBM Corporation

IBM Java Simple Authentication & Security Layer -
IBMSASL (continued)

Supports the following client and server mechanisms:
ƒ Client mechanisms

–PLAIN (RFC 2595) - supports cleartext username/password authentication.
–CRAM-MD5 (RFC 2195) - supports a hashed username/password authentication
scheme.

–DIGEST-MD5 (RFC 2831) - defines how HTTP Digest Authentication can be
used as a SASL mechanism

–GSSAPI (RFC 2222) - uses the GSSAPI for obtaining authentication information;
supports Kerberos v5 authentication

–EXTERNAL (RFC 2222) - obtains authentication information from an external
channel (such as TLS or IPsec)

ƒ Server mechanisms
–CRAM-MD5
–DIGEST-MD5
–GSSAPI (Kerberos v5)

Documentation available at
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/saslDocs/ibm.sasl.provider.guide.html

44© 2011 IBM Corporation

IBM Java XML Digital Signature

New provider in SDK 6 implementing JSR105
W3C XML digital signature syntax and processing
(http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Overview.html)
Standard set of APIs for XML digital signature services
ƒ Perform detached (over data external to sig element), enveloped(over data in same

XML doc), and enveloping(over content within element of sig itself) signatures
ƒ Sign arbitrary binary data and include within an XML document

–yields XML Signature element containing or referencing signature data
Supported algorithms:
ƒ Signature Algorithms: SHA1withDSA, SHA1withRSA
ƒ Macs: HmacSHA1

Documentation available at
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/xml
secDocs/overview-dsig.html

45© 2011 IBM Corporation

IBM Java XML Digital Encryption

New provider in SDK 6 implementing JSR106
W3C XML digital encryption syntax and processing
(http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html)
Standard set of APIs for XML digital encryption services
ƒ Perform fine-grained, element-based encryption of fragments within an XML

document
ƒ Encrypt arbitrary binary data and include within an XML document

–yields XML Encryption element containing or referencing the cipher data
Supported algorithms:
ƒ Data encryption -Triple DES, AES
ƒ Key transport - RSA-v1.5, RSA-OAEP
ƒ Symmetric key wrap - Triple DES, AES
ƒ Transform – Base64, XPath, XSLT

Documentation available at
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/xmlsecDocs/overvie
w.html

46© 2011 IBM Corporation

Java Security components - Summary

IBM Java SDK
ƒ IBMJCE - Java Cryptographic Extension
ƒ IBMJCECCA - Java Cryptographic Extension using CCA hardware cryptographic

devices (z/OS only)
ƒ IBMJSSE2 - Java Secure Sockets Extension (SSL and TLS)
ƒ IBMPKCS11Impl - Public Key Cryptographic Standard #11
ƒ IBMJAAS - Java Authentication and Authorization Service
ƒ IBMJGSS - Generic Security Services - Kerberos, GSS-API
ƒ IBMCERTPATH - Certificate Path Verification
ƒ IBMSASL - Simple Authentication & Security Layer
ƒ IBMXMLCryptoProvider - XML Digital Signatures
ƒ IBMXMLEncProvider - XML Digital Encryption
ƒ SAF Interfaces (z/OS only)

Provides Java Applications easy access to complex Security
capabilities within the Java Platform framework (Java SE)
Documentation: http://www.ibm.com/developerworks/java/jdk/security/index.html

47© 2011 IBM Corporation

JRIO Deprecation – from z/OS Java SDK 6.0.1

IBM Java Record I/O (JRIO) Deprecation
ƒ Deprecation started from the z/OS Java SDK 6.0.1 products
ƒ No new function will be added to JRIO in future SDK releases
ƒ Customers and ISVs are strongly recommended to migrate their existing Java

applications to use IBM JZOS Batch Toolkit (abbreviated as “JZOS”)
Migration from JRIO to JZOS
ƒ JZOS is the z/OS Java direction for access to mainframe datasets
ƒ JZOS not only has equivalent function to JRIO but also offers many additional

benefits over JRIO, including AMS IDCAMS, LOCATE/OBTAIN capabilities
ƒ New functions will continue to be added in JZOS in future SDK releases

Documentation available at
 IBM Java Record I/O (JRIO) to IBM JZOS Batch Toolkit Migration and Sample

Code
http://www.ibm.com/systems/z/os/zos/tools/java/products/jzos/sdk601_jrio2jzos_mig.html

 JZOS Java Launcher and Toolkit Overview
http://www.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html

48© 2011 IBM Corporation

Questions?

49© 2011 IBM Corporation

Java Security - Appendix

Miscellaneous Items of Interest.....

50© 2011 IBM Corporation

Java Security - Glossary

AES - Advanced Encryption Standard; an improved block cipher successor to DES.
Asymmetric Key Cipher - Also known as public-private key cryptography system; a cryptography
system that uses two different keys to lock and unlock (encrypt and decrypt) messages and files.
See Public-private Key Cryptography System.
Attribute (PKCS#11) – A characteristic of an object, e.g., key label.
Authentication - The process of verifying that a file or message has not been altered in route from
the distributor to the recipient(s).
Block Cipher - A method for encrypting data in chunks (several or many contiguous bits) as
opposed to encoding bit-by-bit like a stream cipher.
Blowfish - A block cipher that employs the asymmetric key model.
CBC - Cipher Block Chaining: A method of operating a symmetric block cipher that uses feedback
to combine previously generated ciphertext with new plaintext.
CCA - Common Cryptographic Architecture
Certificate - A certificate is a data file that identifies an individual, organization, or business.
Certificates are obtained from specialized certificate-issuing companies such as VeriSign, and can
be used to encrypt data and/or confirm the certificate owner's identity.
Certificate Revocation List - When using public key infrastructure, this list enumerates revoked
certificates for subscribers, along with the reason(s) for revocation.

51© 2011 IBM Corporation

Java Security - Glossary (continued)

CFB - Cipher Feedback: A block cipher mode that processes small increments of plaintext into
ciphertext, instead of processing an entire block at a time.
Cipher - A cryptographic algorithm used to encrypt and decrypt files and messages.
Ciphertext Stealing mode - A technique used in block cipher mode operations for encrypting
messages which aren't evenly divisible into blocks, without yielding any ciphertext expansion.
Common Cryptographic Architecture - A collection of software components that provide common
application interfaces to secure, high-speed cryptographic services on various platforms via
hardware cryptographic devices.
CMVP - Cryptographic Module Validation Program
CRL - Certificate Revocation List
Cryptographic Module Validation Program - The Computer Security Division at NIST maintains a
number of cryptographic standards, and coordinates validation programs for many of those
standards. The Cryptographic Module Validation Program (CMVP) encompasses validation testing
for cryptographic modules and algorithms.
DES - Data Encryption Standard. A cipher developed by the United States government in the 1970s
to be the official encryption algorithm of the U.S. (FIPS 46-3 proposed to be withdrawn by National
Institute of Standards and Technology. http://csrc.nist.gov/Federal-register/July26-2004-FR-DES-
Notice.pdf.)

52© 2011 IBM Corporation

Java Security - Glossary (continued)

Digest Authentication - Per IETF RFC # 2617, an authentication mechanism which verifies that both
parties to a communication know a shared secret (a password) using a scheme based on
cryptographic hashes.
Digital Signature - A small piece of code that is used to authenticate the sender of data. Digital
signatures are created with encryption software for verification purposes. A private key is used to
create a digital signature, and a corresponding public key can be used to verify that the signature
was really generated by the holder of the private key.
ECB - Electronic Codebook Encryption: A block cipher mode (each block is encrypted individually)
that uses no feedback.
ElGamal - An asymmetric cipher algorithm.
Federal Information Processing Standards - Under the Information Technology Management
Reform Act (Public Law 104-106), the Secretary of Commerce approves standards and guidelines
that are developed by the National Institute of Standards and Technology (NIST) for Federal
computer systems. These standards and guidelines are issued by NIST as Federal Information
Processing Standards (FIPS) for use government-wide.
FIPS - Federal Information Processing Standards
Generic Security Service Application Program Interface - Per IETF RFC 2078, provides security
services to callers in a generic fashion, supportable with a range of underlying mechanisms and
technologies and hence allowing source-level portability of applications to different environments.

53© 2011 IBM Corporation

Java Security - Glossary (continued)

GSS-API - Generic Security Service Application Program Interface
HMAC - Keyed-Hash Message Authentication Code
ICSF - Integrated Cryptographic Services Facility
Integrated Cryptographic Services Facility - Asoftware component of z/OS which provides the
administrative interface and a large set of application interfaces to cryptographic hardware and
services.
IPSec - IP Security
IP Security - A set of protocols developed by the IETF to support secure exchange of packets at the
IP layer.
Kerberos - A protocol which is used to enable users to perform secure logins to a network of inter-
communicating computers.
Key - A collection of bits, usually stored in a file, which is used to encrypt or decrypt a message.
Key Agreement - A key exchange mechanism used by two parties to agree on a secret session
key.
Keyed-Hash Message Authentication Code - A FIPS standard specifying the use of cryptographic
hash functions in the algorithms which generate a message authentication code.
LDAP - Lightweight Directory Access Protocol
MAC - Message Authentication Code
MD5 - Message Digest 5

54© 2011 IBM Corporation

Java Security - Glossary (continued)

Message Authentication Code - A message digest which uses a key to create the message digest
value, useful for ensuring the integrity of data being sent over an insecure network.
Message Digest - A number generated by applying a mathematical algorithm to any arbitrary data,
used to verify data integrity.
OAEP - Optimal Asymmetric Encryption Padding
Object (PKCS#11) – An item stored on a token, e.g., certificate, key, etc.
OCSP - Online Certificate Status Protocol
OFB - Output Feedback: A block cipher mode that uses feedback similar to the Cipher Feedback
(CFB) mode, differing in how shift register is filled.
Online Certificate Status Protocol - Per IETF RFC # 2560, a protocol which enables applications to
determine the (revocation) state of an identified certificate, in lieu of using a CRL.
Optimal Asymmetric Encryption Padding - An encryption padding scheme used to process plaintext
before asymmetric encryption (i.e. RSA).
PBE - Password-Based Encryption (PKCS#5) - A cipher which encrypts using a secret key derived
from a password.
PCBC - Propagating Cipher Block Chaining: much like CBC mode, except that both the plaintext
and the ciphertext of the previous block are used, rather than just the ciphertext.
PKDS - Public-private Key Data Set

55© 2011 IBM Corporation

Java Security - Glossary (continued)

PKCS#11 - Public Key Cryptographic Standard #11; a smart card interface standard.
PKIX - An IETF working group established to develop new standards apropos to the use of X.509-
based Public Key Infrastructures in the Internet.
Private Key - The secret key of a public-private key cryptography system. This key is used to "sign"
outgoing messages, and is used to decrypt incoming messages.
Public Key - The public key of a public-private key cryptography system. This key is used to confirm
"signatures" on incoming messages or to encrypt a file or message so that only the holder of the
private key can decrypt the file or message.
Public-private Key Cryptography System - A cryptography system that uses two different keys to
lock and unlock (encrypt and decrypt) messages and files. The two keys are mathematically linked
together. An individual's public key is distributed to other users and is used to encrypt messages to
the individual. The individual keeps the private key secret and uses it to decrypt messages sent with
the public key.
Public-private Key Data Set - An ICSF-managed dataset used to store asymmetric cryptographic
keys
RC2 - Rivest Cipher #2 - A block cipher algorithm owned by RSA Data Security, Inc.
RC4 - Rivest Cipher #4 - A stream cipher algorithm owned by RSA Data Security, Inc.
RSA - Rivest-Shamir-Adelman: a family of algorithms that employ the asymmetric key model.
SAF - System Authorization Facility

56© 2011 IBM Corporation

Java Security - Glossary (continued)

SASL - Simple Authentication & Security Layer
Secure Hash Algorithm - An algorithm developed by NIST to generate message digests.
Secure Sockets Layer - A protocol for encrypting information before being transmitted over the
Internet.
Session (PKCS#11) – A logical connection between an application and a token.
SHA1 - Secure Hash Algorithm
Simple Authentication & Security Layer - Per IETF RFC # 2222, a method for adding authentication
support to connection-based protocols.
Slot (PKCS#11) – A logical view of a card reader, numbered 0 – n. A slot number has a 1 to 1
relationship with a token name.
Stream Cipher - A method of encrypting data bit-by-bit, as opposed to encoding a contiguous chunk
of data all at once like a block cipher.
SSL - Secure Sockets Layer
Symmetric Key - The key that is used to encrypt a file or message is the same key that is used to
decrypt the file or message.
System Authorization Facility - A part of the z/OS operating system which provides standard
interfaces to services of external security managers for purposes of performing access control
checking and authentication.
Token (PKCS#11) – A logical view of a crypto device, e.g., smart card (virtual or real).

57© 2011 IBM Corporation

Java Security - Glossary (continued)

TKDS - Token Data Set
TLS - Transport Layer Security
Transport Layer Security - Per IETF RFC # 2246, a protocol which provides communications
privacy over the Internet. The protocol allows client/server applications to communicate in a way
that is designed to prevent eavesdropping, tampering, or message forgery.
TripleDES - A method of improving the strength of the DES algorithm by using it three times in
sequence with different keys. Also known as DESede.
Trust Manager - A service for managing cryptographic certificates of trust
URI - Uniform Resource Identifier
XML - Extensible Markup Language
XPath - XML Path Language
XSLT - Extensible Stylesheet Language Transformations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

