
DB2 10 for z/OS Optimization and 
Query Performance Improvements

James Guo
DB2 for z/OS Performance

IBM Silicon Valley LabIBM Silicon Valley Lab

August 11, 2011   6 PM – 7 PM
Session Number 9524



© Copyright IBM Corporation 2011. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule 
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES 
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE 
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF 
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT 
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM 
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE 
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS 

Disclaimer

© 2011 IBM Corporation2

RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS 
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR 
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND 
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR 
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 and z/OS are trademarks or registered trademarks of International Business Machines 
Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their 
first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law 
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common 
law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark 
information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.



Agenda

§ Bind/Prepare

– Plan management

– Hints/Bind options

– Explain

– Dynamic Statement Caching

© 2011 IBM Corporation3

– REOPT

§ Optimizer costing

§ Runtime query performance

§ Indexing

§ Complex queries



Plan Management Overview

§ Ability to backup your static SQL packages (DB2 9)

§ At REBIND

– Save old copies of packages in Catalog/Directory

– Switch back to previous or original version

§ Two flavors

© 2011 IBM Corporation4

§ Two flavors

– BASIC
• 2 copies: Current and Previous

– EXTENDED
• 3 copies: Current, Previous, Original

– Default controlled by a ZPARM

– Also supported as REBIND options

One of the concerns when customers migrate their system to a new version of DB2 is the performance of some of their thousands of SQL queries may regress. Usually we recommend customers to rebind their static SQL to take advantages of the new optimization enhancements delivered in the new release. 
The idea of plan stability is to provide the functionality of backing up the previous plans. It makes it possible to recover when the performance of the new access plan proves to be less efficient than the previous plan.
There are two flavors, BASIC and EXTENDED, where in BASIC you can store 2 copies and in EXTENDED you can store 3 copies. The default is controlled by a ZPARM and it is also supported as REBIND options.




Plan Management - BASIC support

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

© 2011 IBM Corporation5

Current copy

previous copy

current copy

previous copy

move

delete

move
move

Chart is to be read from bottom to top

The diagram shows the scenario of BASIC support. It is to be read bottom up. At the left hand side, when you rebind using PLANMGMT(BASIC), we discard the previous copy, take the current copy and store it as the previous copy, and take the newly generated copy as the current copy. 
Then when you switch, you basically swap around the current copy and the previous copy.



Plan Management - EXTENDED support

current copy

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

original copy

clone

Incoming copy

© 2011 IBM Corporation6

current copy

previous copy

move

delete

current copy

previous copy

move

original copy

clone

delete

This diagram shows the EXTENDED support. The previous copy is thrown to the trash can. The current copy becomes the precious copy. Only the first time you execute this, when we don’t have the original copy stored, do we take the current copy and store it as the original copy. And the newly generated copy becomes the current. 
For rebind, we don’t touch the original but swap around current and previous. But if you do rebind SWITCH(ORIGINAL), the previous goes to the trash, the current becomes the previous, and the original becomes the current. We don’t throw the original copy, it stays where it was. 



DB2 10 Updates to Plan Management

§ SYSIBM.SYSPACKCOPY

– New catalog table

– Hold SYSPACKAGE-style metadata for any previous or original 
package copies

– No longer need to SWITCH to see information on inactive copies

DB2 10 for z/OS

© 2011 IBM Corporation7

• Complaint from DB2 9

§ APRETAINDUP option of REBIND

– Default YES

• Retain duplicate for BASIC or EXTENDED

– Optional NO

• Do not retain duplicate access path as PREVIOUS or ORIGINAL
– PREVIOUS/ORIGINAL must be from DB2 9 or later



Access Path Stability with statement level hints

§ Current limitations in hint matching

– QUERYNO is used to link queries to their hints – a bit fragile

– For dynamic SQL, require a change to apps – can be impractical

§ New mechanisms:

– Associate query text with its corresponding hint … more robust

DB2 10 for z/OS

© 2011 IBM Corporation8

– Associate query text with its corresponding hint … more robust

– Hints enforced for the entire DB2 subsystem

• irrespective of static vs. dynamic, etc.

– Hints integrated into the access path repository

§ PLAN_TABLE isn’t going away

§ Only the “hint lookup” mechanism is being improved.



Access Path Repository – Hints/Statement level 

SYSQUERY

Options & 

New SYSIBM tables

© 2011 IBM Corporation9

SYSQUERYPLAN

Options & 
Overrides

access path 
copy 1

access path 
copy N

SYSQUERYOPTS

REOPT, STARJOIN, etc.

The access path repository holds important query metadata (such as query text), query access paths and other information (such as optimization options). The repository supports versioning by maintaining copies of access paths and associated options for each query. Note that we use the term 'copy' instead of 'version' in order to avoid any confusion with package versions that are also supported by DB2.
The repository comprises of several new catalog tables. The central tables are:
• SYSIBM.SYSQUERY is the central table of the access path repository. It holds one row for each static or dynamic SQL query that is to exploit user-specified hints/options.
• SYSIBM.SYSQUERYPLAN holds contains the plan hint information for the
queries in the SYSIBM.SYSQUERY table..
• SYSIBM.SYSQUERYOPTS holds miscellaneous information about each copy of a query in SYSQUERY.




Statement level hints (cont.)

§ Steps to use new hints mechanism

– Populate a user table DSN_USERQUERY_TABLE with query text 

– Populate PLAN_TABLE with the corresponding hints 

– Run new command BIND QUERY

DB2 10 for z/OS

© 2011 IBM Corporation10

– Run new command BIND QUERY

• To integrate the hint into the repository. 

– FREE QUERY can be used to remove the hint.



Statement-level BIND options

§ Statement-level granularity may be required rather than:

– Subsystem level ZPARMs (STARJOIN, SJTABLES, MAX_PAR_DEGREE)

– Package level BIND options (REOPT, DEF_CURR_DEGREE)

§ For example

DB2 10 for z/OS

© 2011 IBM Corporation11

§ For example

– Only one statement in the package needs REOPT(ALWAYS)

§ New mechanism for statement-level bind options:

– Similar to mechanism used for hints

– DSN_USERQUERY_TABLE can also hold per-statement options

REOPTCHAR(1)�NOT NULLThe value of the REPOT bind option that is in effect for the plan:
1
REOPT(ONCE)
A
REPOT(AUTO)
N
REOPT(NONE)
Y
REOPT(ALWAYS)
blank
REOPT is not specified
GSTARJOINCHAR(1)�NOT NULLWhether star join is enabled:
Y
Star join is enabled
N
Star join is disabled
blank
Star join is not specified
GMAX_PAR_DEGREEINTEGER�NOT NULLThe maximum parallel degree. This column will contain a value between 0 and 254. If the value of the column is -1, the maximum parallel degree is not specified.GDEF_CURR_DEGREECHAR(3)�NOT NULLWhether query parallelism is enabled:
ONE
Query parallelism is disabled
ANY
Query parallelism is enabled
blank
Query parallelism is disabled
GSJTABLESINTEGER�NOT NULLThe number of tables specified in a query to qualify for star join processing. If this column contains -1, star join processing is not specified.



Literal Replacement

§ Dynamic SQL with literals can now be re-used in the cache 

– Literals replaced with & 
• Similar to parameter markers but not the same

§ To enable either you:-

– Put CONCENTRATE STATEMENTS WITH LITERALS in the PREPARE 
ATTRIBUTES clause

DB2 10 for z/OS

© 2011 IBM Corporation12

– Or set LITERALREPLACEMENT in the ODBC initialization file

– Or set the keyword enableLiteralReplacement=’YES’ in the JCC Driver

§ Lookup Sequence

– Original SQL with literals is looked up in the cache

– If not found, literals are replaced and new SQL is looked up in the cache
• Additional match on literal usability
• Can only match with SQL stored with same attribute, not parameter marker

– If not found, new SQL is prepared and stored in the cache

In DB2 10 for z/OS, more SQL can now be re-used in the cache.
To enable this you can do one of the following.
On the client the PREPARE statement can be changed to include the ‘CONCENTRATE STATEMENTS WITH LITERALS’
The JCC Driver on the client side can be changed to include the keyword “enableliteralReplacement=‘YES’”
Set LITERALREPLACEMENT in the ODBC initialization file in z/OS – this will enable all SQL coming into DB2 through ODBC to have literal replacement enabled.



Literal Replacement …

§ Example:

WHERE ACCOUNT_NUMBER = 123456

– This would be replaced by

WHERE ACCOUNT_NUMBER = &

DB2 10 for z/OS

© 2011 IBM Corporation13

§ Performance Expectation

– Using parameter marker still provides best performance

– Biggest performance gain for repeated SQL with different literals 

– NOTE: Access path is not optimized for literals

• True for parameter markers/host variables today
• Need to use REOPT for that purpose



Agenda

§ Bind/Prepare

§ Optimizer costing

– RUNSTATS

– Cost model enhancements

– Subquery costing

© 2011 IBM Corporation14

– Subquery costing

§ Runtime query performance

§ Indexing

§ Complex queries



Autonomic Statistics Solution Overview

§ Autonomic Statistics is implemented though a set of Stored Procedures 

– Stored procedures are provided to enable administration tools and 
packaged applications to automate statistics collection.

• ADMIN_UTL_MONITOR
• ADMIN_UTL_EXECUTE
• ADMIN_UTL_MODIFY

DB2 10 for z/OS

© 2011 IBM Corporation15

– Working together, these SP’s 
• Determine what stats to collect 
• Determine when stats need to be collected
• Schedule and Perform the stats collection
• Records activity for later review

– See Chapter 11 "Designing DB2 statistics for performance" in the DB2 10 for z/OS Performance 
Monitoring and Tuning Guide for details on how to configure autonomic monitoring directly within DB2.



RUNSTATS Simplification/Performance Overview

§ RUNSTATS options to SET/UPDATE/USE a stats profile

– Integrate specialized statistics into generic RUNSTATS job

• RUNSTATS … TABLE tbl COLUMN(C1)… SET PROFILE
– Alternatively use SET PROFILE FROM EXISTING STATS

• RUNSTATS … TABLE tbl COLUMN(C5)… UPDATE PROFILE

DB2 10 for z/OS

© 2011 IBM Corporation16

• RUNSTATS … TABLE tbl COLUMN(C5)… UPDATE PROFILE
• RUNSTATS … TABLE tbl USE PROFILE

§ New option for page-level sampling

– But what percentage of sampling to use?

• RUNSTATS … TABLE tbl TABLESAMPLE SYSTEM AUTO



Optimizer Validation with Realtime Stats

§ Index Probing & RTS lookup

– Estimate # of rids within a given start/stop index key range at bind/prepare

§ Exploited when these two conditions are met.

– Query has matching index-access local predicate 

DB2 10 for z/OS

© 2011 IBM Corporation17

– Predicate contain literals, or REOPT(ALWAYS|ONCE|AUTO)

§ And 1 of the following is also true

– Predicate is estimated to qualify no rows

– Stats indicate the table contains no rows 

– Table is defined as VOLATILE or qualifies for NPGTHRSH

§ New EXPLAIN table to externalize runtime estimates

– User managed DSN_COLDIST_TABLE



DB2 10 - Minimizing Optimizer Challenges

§ Potential causes of sub-optimal plans 

– Insufficient statistics 

– Unknown literal values used for host variables or parameter markers

§ DB2 10 Optimizer will evaluate the risk for each predicate

DB2 10 for z/OS

© 2011 IBM Corporation18

§ DB2 10 Optimizer will evaluate the risk for each predicate

– For example: WHERE BIRTHDATE < ?

• Could qualify 0-100% of data depending on literal value used

– As part of access path selection

• Compare access paths with close cost and choose lowest risk plan

Cost-based optimization may not always generate the optimal plan due to a number of reasons, such as:
• Insufficient statistics, for example, join selectivity of predicate 'T1.C1=T2.C1'.
• Non-substantiated query optimization assumption, for example, RANGE predicate default selectivity table.
• Unpredictable runtime resource availability, for example, RID pool usage.
• etc.
In all, the plan picked by purely cost-based optimization lacks the robustness to prepare for various scenarios on some queries. Safe Optimization has the goal to generate an access plan that has the lowest risk associated with it, within the range of access paths that are considered close to being the lowest cost.



Extending VOLATILE TABLE usage

DB2 10 for z/OS

§ VOLATILE TABLE support added in DB2 V8

– Targeted to SAP Cluster Tables
• Use Index access whenever possible
• Avoids list prefetch 

– Can be a problem for OR predicates or UPDATEs at risk of loop

© 2011 IBM Corporation19

§ DB2 10 provides VOLATILE to general cases

– Tables matching SAP cluster tables will maintain original limitations
• Table with 1 unique index

– Tables with > 1 index will follow NPGTHRSH rules
• Use Index access whenever possible
• No limitation on list prefetch
• Less chance of getting r-scan when list-prefetch plan is only alternative



Agenda

§ Bind/Prepare

§ Optimizer costing

§ Runtime query performance

– Sort/sort avoidance

© 2011 IBM Corporation20

– Sparse index

– Predicate application

§ Indexing

§ Complex queries



Sort Performance Enhancements

§ FETCH FIRST n ROWS ONLY (FFnR) and Sort

– DB2 9 added in-memory replacement for FFnR to avoid sort

• Provided (n * (sort key + data)) < 32K

– DB2 10 extends this to 128K

§ Avoid workfile usage for small sorts

DB2 9 & 10 for z/OS

© 2011 IBM Corporation21

§ Avoid workfile usage for small sorts

– DB2 9 avoided allocating WF for final sort only

• If <= 255 rows and result < 32K (sort key + data)

– DB2 10 extends this to intermediate sorts also

• Except for parallelism or SET function



Improvements to predicate application 
§ Major enhancements to OR and IN predicates

– Improved performance for AND/OR combinations and long IN-lists
• General performance improvement to stage 1 predicate processing

– IN-list matching
• Matching on multiple IN-lists
• Transitive closure support for IN-list predicates
• List prefetch support 

DB2 10 for z/OS

© 2011 IBM Corporation22

• List prefetch support 
• Trim IN-lists from matching when preceding equals are highly filtering

– SQL pagination
• Single index matching for complex OR conditions

§ Many stage 2 expressions to be executed at stage 1

– Stage 2 expressions eligible for index screening
• Not applicable for list prefetch

– Externalized in DSN_FILTER_TABLE column PUSHDOWN



IN-list Table - Table Type 'I' and Access Type 'IN'

§ The IN-list predicate will be represented as an in-memory table if:

– List prefetch is chosen, OR

– More than one IN-list is chosen as matching.

– The EXPLAIN output associated with the in-memory table will have:
• New Table Type: TBTYPE – ‘I’

DB2 10 for z/OS

© 2011 IBM Corporation23

• New Table Type: TBTYPE – ‘I’
• New Access Type: ACTYPE – ‘IN’ 

SELECT *
FROM T1
WHERE T1.C1 IN (?, ?, ?); 

QBNO   PLANNO   METHOD TNAME            ACTYPE  MC  ACNAME     QBTYPE     TBTYPE PREFETCH

1          1              0         DSNIN001(01)  IN 0                      SELECT    I          
1          2              1         T1                     I             1    T1_IX_C1  SELECT   T          L

If IN-list predicate is selected as the matching predicate, it will be accessed as an in-memory table. 
In the EXPLAIN output in the PLAN_TABLE, this access to the in-memory table is associated with a new table type 'I' and new access type 'IN'.




IN-list Predicate Transitive Closure (PTC)

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1 

AND T1.C1 IN (?, ?, ?)

AND T2.C1 IN (?, ?, ?) ßßßß Optimizer can generate 
this predicate via PTC 

DB2 10 for z/OS

© 2011 IBM Corporation24

§ Without IN-list PTC (DB2 9)

– Optimizer will be unlikely to consider T2 is the first table accessed

§ With IN-list PTC (DB2 10)

– Optimizer can choose to access T2 or T1 first.

Even If there is an index on T2(C1), if there is no transitive closure for IN-list predicate, Optimizer normally will not consider using this index when T2 is the outer table.   

When T2 is the inner table, a sort merge join  will normally not be, considered as a good access path because of lacking local predicate to reduce inner work file size.

Both these issues are addressed with transitive closure.



SQL Pagination

§ Targets 2 types of queries

– Cursor scrolling (pagination) SQL

• Retrieve next n rows
– Common in COBOL/CICS and any screen scrolling application

• Not to be confused with “scrollable cursors” 

– Complex OR predicates against the same columns

DB2 10 for z/OS

© 2011 IBM Corporation25

– Complex OR predicates against the same columns

• Common in SAP

§ In both cases:

– The OR (disjunct) predicate refers to a single table only.

– Each OR predicate can be mapped to the same index. 

– Each disjunct has at least one matching predicate.



• Scroll forward to obtain the next 20 rows 
– Assumes index is available on (LASTNAME, FIRSTNAME)
– WHERE clause may appear as:

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY') 

OR (LASTNAME>'JONES')

Simple scrolling – Index matching and ORDER BY

DB2 10 for z/OS

© 2011 IBM Corporation26

– DB2 10 supports
• Single matching index access with sort avoided

– DB2 9 requires 
• Multi-index access, list prefetch and sort
• OR, extra predicate (AND LASTNAME >= ‘JONES’) for matching 

single index access and sort avoidance

ORDER BY LASTNAME, FIRSTNAME;

The new method is to convert this OR predicate into a range list with two ranges. Therefore, there will be at most 2 index probes, the 1st probe is for LASTNAME='JONES' and FIRSTNAME>'WENDY'.
All remaining 'JONES' will be scanned through the PHONEBOOK table until there are no more rows that qualify the 1st probe predicates or the application stops fetching. These rows appear in the index
in ascending order which satisfies the ORDER BY ordering and thus there is no requirement to sort the rows.




• Given WHERE clause
– And index on one or both columns

WHERE (LASTNAME=‘SMITH' AND FIRSTNAME=‘JOHN') 

OR (LASTNAME=‘JONES’);

Complex OR predicates against same index

DB2 10 for z/OS

© 2011 IBM Corporation27

OR (LASTNAME=‘JONES’);

QBlockno Planno Accessname Access_Type Matchcols Mixopseq

1 1 IX1 NR 2 1

1 1 IX1 NR 1 2

The new method is to convert this OR predicate into a range list with two ranges. There will be 2 index probes, the 1st one is (LASTNAME='JONES' AND FIRSTNAME='WENDY'), the 2nd one is
(LASTNAME='SMITH' AND FIRSTNAME='JOHN'). Both  index probes have two matching columns on the index.



Minimizing impact of RID failure

§ RID overflow can occur for

– Concurrent queries each consuming shared RID pool

– Single query requesting > 25% of table or hitting RID pool limit

§ DB2 9 will fallback to tablespace scan*

DB2 10 for z/OS

© 2011 IBM Corporation28

§ DB2 9 will fallback to tablespace scan*

§ DB2 10 will continue by writing new RIDs to workfile

– Work-file usage may increase

• Mitigate by increasing RID pool size (default increased in DB2 10).
• MAXTEMPS_RID zparm for maximum WF usage for each RID list

* Hybrid join can incrementally process. Dynamic Index ANDing will use WF for failover.

RID access, including List prefetch and Hybrid Join(HBJ), becomes a performance challenge when the RID-pool overflows. When it happens, RID access falls back to tablespace scan and it loses all index filtering.  In attempting to prevent RID pool overflow, query optimization has introduced threshold checking logic at bindtime.  However, it still can not completely avoid plan fallback. Besides that, it could block some queries from exploiting RID access.
This enhancement is designed to address the RID access issue. At runtime, RID list processing will continue by writing the RIDs to a workfile instead of falling back to a tablespace scan.

Hybrid join already supports incremental RID processing once a RID limit is reached, and DB2 9 Dynamic Index ANDing already supports writing RIDs to WF instead of falling back to tablespace scan.



Agenda

§ Bind/Prepare

§ Optimizer costing

§ Runtime query performance

§ Indexing

© 2011 IBM Corporation29

§ Indexing

– Index on expression

– Tracking index use

– Sparse index

– Include columns

§ Complex queries



Index Include Columns

§ Index INCLUDE columns

– Create an Index as UNIQUE, and add additional columns

– Ability to consolidate redundant indexes

DB2 10 for z/OS

© 2011 IBM Corporation30

INDEX1 UNIQUE (C1) Consolidate to 
INDEX2 (C1,C2) INDEX1 UNIQUE (C1) INCLUDE (C2)



Agenda

§ Bind/Prepare

§ Optimizer costing

§ Runtime query performance

© 2011 IBM Corporation31

§ Indexing

§ Complex queries

– Parallelism

– BI/DW



Parallelism Enhancements - Effectiveness

§ Previous Releases of DB2 may use Key Range Partitioning

– Key Ranges Decided at Bind Time

– Based on Statistics (low2key, high2key, column cardinality)

• Assumes uniform data distribution
• Histograms can help

DB2 10 for z/OS

© 2011 IBM Corporation32

• Histograms can help
– But rarely collected

– If Statistics are outdated or data is not uniformly distributed what 
happens to performance?

The problems with key range partitioning
The key ranges are decided at bind time by optimizer based on statistics (low2key, high2key, and column
cardinality) and the assumption of uniform data distribution within low2key and high2key. This makes
DB2 too dependant on the availability and accuracy of the statistics. Also the assumption of uniform data
distribution does not always stand. DB2 is too vulnerable to performance disasters with key range partitioning.



Key range partition - Today
Large_T

10,000,000 rows
C2      C3

Workfile

SELECT  *
FROM     Medium_T M, 
                Large_T     L
WHERE   M.C2 = L.C2
     AND    M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

3-degree parallelism
12-31-2007

09-30-2007

Medium_T
10,000 rows
C1       C2

DB2 10 for z/OS

© 2011 IBM Corporation33

M.C1 is date column, assume currentdate is 8-31-2007, after the 
between predicate is applied, only rows with date between 
06-03-2007 and 8-31-2007 survived, but optimizer chops up the key 
ranges within the whole year after the records are sorted :-(

SORT 
ON C2

2,500 rows

Partition the 
records according 
to the key ranges

25%

09-30-2007
08-31-2007

01-01-2007

05-01-2007
04-30-2007

5,000,000 rows



Parallelism Effectiveness – Record range

§ DB2 10 can use Dynamic record range partitioning

– Materialize the intermediate result in a sequence of join processes

– Results divided into ranges with equal number of records

– Division doesn't have to be on the key boundary 
• Unless required for group by or distinct function

DB2 10 for z/OS

© 2011 IBM Corporation34

• Unless required for group by or distinct function

– Record range partitioning is dynamic
• no longer based on the key ranges decided at bind time

– Now based on number of composite records and parallel degree
• Data skew, out of date statistics etc. will not have any effect on performance 

What is dynamic record range partitioning and why is it good?
DB2 will materialize the intermediate result in a sequence of join process, and the results
will be divided into ranges with equal number of records. This division doesn't have to be on the key
boundary unless it is required for group by or distinct function. Record range partitioning is dynamic because
partitioning is no longer based on the key ranges decided at bind time, instead, it is based on the
number of composite side records and the number of workload elements. All the problems associated
with key partitioning, such as the limited number of distinct values, lacking of statistics, data skew or data
correlation, are bypassed and for sure the composite side records are distributed evenly.



Dynamic record range partition

DB2 10 for z/OS

Large_T
10,000,000 rows

C2      C3

SELECT  *
FROM     Medium_T M, 

Large_T     L
WHERE   M.C2 = L.C2
AND    M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

3-degrees parallelism

Medium_T
10,000 rows
C1       C2

© 2011 IBM Corporation35

Workfile

SORT 
ON C2

2,500 rows

3-degrees parallelism

Partition the records -
each range has same 
number of records

Partitioning now takes place on the work file after it is sorted – that way each parallel task will have the same number of rows to process.



Parallelism Effectiveness - Straw Model

§ Previous releases of DB2 divide the number of keys or pages by the 
number representing the parallel degree

– One task is allocated per degree of parallelism

– The range is processed and the task ends 

– Tasks may take different times to process

DB2 10 for z/OS

© 2011 IBM Corporation36

§ DB2 10 can use the Straw Model workload distribution method 

– More key or page ranges will be allocated than the number of parallel 
degrees

– The same number of tasks as before are allocated (same as degree)

– Once a task finishes it’s smaller range it will process another range

– Even if data is skewed this new process should make processing faster  


