
MQ API Beyond the Basics
[z/OS & distributed]

Jon Rumsey
IBM

Thursday 11th August
Session # 9513

What’s “New” in WebSphere MQ API

• WebSphere MQ V7 extended the MQ API in a number of
ways. In this presentation we will cover the new API changes
• Asynchronous Consumption of messages
• Asynchronous Put Response
• Read-ahead of messages
• Connection changes
• Message Properties + Selectors
• Simplified Browse + Co-operative Browse

• The changes for Publish/Subscribe have already been
covered in an earlier presentation

What’s New in WebSphere MQ API - Agenda

• Asynchronous Consumption of messages

• Asynchronous Put Response

• Read-ahead of messages

• Connection changes

• Message Properties + Selectors

• Simplified Browse + Co-operative Browse

Asynchronous Consumption of Messages

Client/Server

Asynchronous Consumption of Messages

Simplifies programming
• Allocates message buffers
• Wait on multiple queues
• Easy to cancel
• Can register an Event handler

MQCONN

MQOPEN
MQCB

MQOPEN
MQCB

MQCTL

MQPUT
MQCMIT

Callback function

Asynchronous Consumption of Messages - Notes

• Asynchronous consumer allows the application to register an interest in messages
of a certain type and identify a callback routine which should be invoked when a
message arrives. This has the following advantages to the traditional MQGET
application.

• Simplifies programming
The application can continue to do whatever it was doing without needing to tie up a
thread sitting in an MQGET call.

• Allocates message buffers
The application does not need to 'guess' the size of the next message and provide
a buffer just large enough. The system will pass the application a message already
in a buffer.

• Wait on multiple queues
The application can register an interest in any number of queues. This is very much
simpler than using MQGET where one generally ended up polling round the
queues.

• Easy to cancel
The application can use either MQCTL or MQCB to stop consuming from a queue
at any time. This is awkward to achieve when an application is using MQGET

• Can register an Event handler
The application is notified of events such as Queue Manager quiescing or
Communications failure.

Define your call-back functions

• MQOPEN a queue
• or MQSUB using

MQSO_MANAGED
• MQCB connects returned hObj

to call-back function
• Operations (MQOP_*)
• CallbackType

• Message Consumer
• Event Handler
MQCBD CBDesc = {MQCBD_DEFAULT};
cbd.CallbackFunction = MessageConsumer;
cbd.CallbackType = MQCBT_MESSAGE_CONSUMER;
cbd.MaxMsgLength = MQCBD_FULL_MSG_LENGTH;
cbd.Options = MQCBDO_FAIL_IF_QUIESCING;

MQOPEN(hConn,
 &ObjDesc,
 OpenOpts,
 &hObj,
 &CompCode,
 &Reason);

MQCB (hConn,
 MQOP_REGISTER,
 &cbd,
 hObj,
 &md,
 &gmo,
 &CompCode,
 &Reason);

• The MQCB verb ties a function (described in the Call-Back Descriptor (MQCBD)) to
an object handle. This object handle is any object handle that you might have used
for an MQGET. That is, one that was returned from an MQOPEN call or an MQSUB
call (using MQSO_MANAGED for example).

• The MQCB verb has a number of Operations. We see an example of
MQOP_REGISTER on this foil which tells the queue manager that this function
(described in the MQCBD) should be called when messages arrive for the specified
object handle. You can do the inverse of the operation with MQOP_DEREGISTER
to remove a previously registered call-back function. Also we have
MQOP_SUSPEND and MQOP_RESUME which we will cover a little later.

• There are actually two types of call-back function you can define. A message
consumer which is tied to an object handle, and receives messages or error
notifications about the specific queue such as MQRC_GET_INHIBITED; and an
event handler which is tied to the connection handle and receives error notifications
about the connection such as MQRC_Q_MGR_QUIESCING.

• One of the benefits of using asynchronous consume is that the queue manager
manages the buffer your message is in. This means that your application doesn’t
have to worry about truncated messages and acquiring bigger buffers in the case of
MQRC_TRUNCATED_MSG_FAILED. The default is to use
MQCBD_FULL_MSG_LENGTH, but if you wish to restrict the size of messages
presented to your call-back function, you can put a length in the MaxMsgLength
field of the MQCBD.

Define your call-back functions - Notes

MQGMO differences

MQGET Asynchronous Consume

Combining
MQGMO_BROWSE_FIRST +
MQGMO_BROWSE_NEXT

MQRC_OPTIONS_ERROR Delivers first message then automatically
switches to BROWSE_NEXT

MQGMO_WAIT with
MQGMO.WaitInterval = 0 MQGET will return immediately with

MQRC_NO_MSGS_AVAILABLE if
there are no messages

Only called with
MQRC_NO_MSGS_AVAILABLE if just
started or has had a message since last
2033

MQGMO_NO_WAIT
The message consumer will never be
called with
MQRC_NO_MSGS_AVAILABLEMQGMO_WAIT with

MQGMO.WaitInterval =
MQWI_UNLIMITED

MQGET will never return with
MQRC_NO_MSGS_AVAILABLE

MQGMO_SET_SIGNAL Allowed Not allowed

MQGMO differences - Notes
• The MQCB call provides an MQGMO structure which you will be familiar

with from using MQGET. The MQGMO is used for Asynchronous Consume
as well as for MQGET. It is after all the way to describe how to consume
your message whether synchronously or asynchronously. Some of the
attributes/options in the MQGMO operate slightly differently when used for
Asynchronous Consume and this foil details those differences.

• MQGMO_WAIT with MQGMO.WaitInterval = 0 operates just like
MQGMO_NO_WAIT when one uses on an MQGET, but in the case of
asynchronous consumers we wish to avoid the consumer from polling in a
busy loop in this case, so it operates more like a backstop marker to show
when the end of a batch of messages has been reached.

• Note that MQGMO_NO_WAIT, and MQGMO_WAIT with a WaitInterval of
MQWI_UNLIMITED are quite different when passed to MQGET but with
the MQCB call their behaviour is the same. The consumer will only be
passed messages and events, it will never be passed the reason code
indicating no messages. Effectively MQGMO_NO_WAIT will be treated as
an indefinite wait. This is to prevent the consumer from endlessly being
called with the no messages reason code.

The call-back function

• Fixed prototype
• Call-back context (MQCBC)

• CallType – why fn was called
• CompCode + Reason detail any

error
• State – Consumer state

• Saves coding all possible
Reasons

A

struct tagMQCBC
{
 MQCHAR4 StrucId;
 MQLONG Version;
 MQLONG CallType;
 MQHOBJ Hobj;
 MQPTR CallbackArea;
 MQPTR ConnectionArea;
 MQLONG CompCode;
 MQLONG Reason;
 MQLONG State;
 MQLONG DataLength;
 MQLONG BufferLength;
 MQLONG Flags;
};

MQLONG MessageConsumer(MQHCONN hConn,
 MQMD * pMsgDesc,
 MQGMO * pGetMsgOpts,
 MQBYTE * Buffer,
 MQCBC * pContext)

• Your call-back function can have any name you want, but it must conform to the
prototype shown. When called with a message, you are passed the Message
Descriptor (MQMD), the message buffer and the Get-Message Options structure
(MQGMO) which contains a number of output fields about the message you have
been given. You will know you have been given a message because the CallType
field in the Call Back Context (MQCBC) will be set to either
MQCBCT_MSG_REMOVED or MQCBCT_MSG_NOT_REMOVED (which one
depends on the get options you used, i.e. browse or a few specific errors).

• Your message consumer can also be called with CallType set to
MQCBCT_EVENT_CALL (this is also the only way an Event handler can be called).
The message consumer will be given events that are pertinent to the queue it is
consuming from, for example, MQRC_GET_INHIBITED whereas the event handler
gets connection wide events. If there is an error to report, in the case of an
MQCBCT_EVENT_CALL or in some cases for MQCBCT_MSG_NOT_REMOVED,
it will be reported in the CompCode and Reason fields of the MQCBC. When a
Reason code is delivered to a call-back, the State field of the MQCBC details what
has happened to the consumer as a result of the specific Reason. It can be used to
simplify application programming by informing the application what has happened to
the consumer function rather than the application having to know for each reason
code what the behaviour will be. States such as
MQCS_SUSPENDED_USER_ACTION which detail that some user intervention will
be needed before message consumption can continue.

The call-back function - Notes

Control your message consumption

• MQCTL controls whether
message consumption is
currently operable

• Operations
• MQOP_START
• MQOP_START_WAIT
• MQOP_STOP
• MQOP_SUSPEND (MQCB too)
• MQOP_RESUME (MQCB too)

• Give up control of the hConn for call-backs to use

• Change current call-backs operating
• Either MQOP_SUSPEND the connection
• Or from within a currently called call-back

MQCTLO ctlo = {MQCTLO_DEFAULT};
ctlo.Options = MQCTLO_FAIL_IF_QUIESCIN
MQCTL(hConn,
 MQOP_START,
 &ctlo,
 &CompCode,
 &Reason);

...

MQCTL(hConn,
 MQOP_STOP,
 &ctlo,
 &CompCode,
 &Reason);

• Once you have defined all your message consumers using MQCB calls –
you may have several – then use the MQCTL call to tell the queue
manager you are ready to start consuming messages. Once you have
called MQCTL for a specific hConn you give up control of that hConn and it
is passed to the call-backs to use. If you try to use it for any other MQ call
you will receive MQRC_HCONN_ASYNC_ACTIVE. The exception to this is
another call to MQCTL to either MQOP_STOP or MQOP_SUSPEND
message consumption.

• Use MQOP_STOP when your application is finished consuming messages.
Use MQOP_SUSPEND (and then subsequently MQOP_RESUME) when
you wish to briefly pause message consumption while you, for example,
MQOP_REGISTER another MQCB call or MQOP_DEREGISTER an
existing one. While the whole hConn is suspended none of the call-backs
will be delivered messages. You may wish to only suspend a particular
object handle, in which case you can use MQOP_SUSPEND on an MQCB
call.

• Calls to change the call-backs currently operating can also be made inside
another call-back removing the need to suspend the connection in order to
make changes such as this.

Control your message consumption - Notes

Administrative view of consumer state

• Consumer state can be
seen in DISPLAY CONN
• Object handle state

• Also on DISPLAY QSTATUS
• Connection handle state

• If a connection or call-back is suspended and so
cannot currently consume messages, its
ASTATE value will reflect this fact

Starting MQSC for queue manager TEST1.

DIS CONN(30A1C94720001901) TYPE(ALL)
AMQ8276: Display Connection details.
 CONN(30A1C94720001901)
 TYPE(CONN)
 APPLTAG(AsyncConsumer.exe) APPLTYPE(USER)
 ASTATE(STARTED) CONNOPTS(MQCNO_SHARED_BINDING)

 ASTATE(ACTIVE)
 OBJNAME(Q2) OBJTYPE(QUEUE)
 OPENOPTS(MQOO_INPUT_SHARED,MQOO_FAIL_IF_QUIESCING)
 HSTATE(ACTIVE) READA(NO)

 ASTATE(ACTIVE)
 OBJNAME(Q1) OBJTYPE(QUEUE)
 OPENOPTS(MQOO_INPUT_SHARED,MQOO_FAIL_IF_QUIESCING)
 HSTATE(ACTIVE) READA(NO)

DIS CONN(30A1C94720001901) TYPE(ALL)
AMQ8276: Display Connection details.
 CONN(30A1C94720001901)
 TYPE(CONN)
 APPLTAG(AsyncConsumer.exe) APPLTYPE(USER)
 ASTATE(STARTED) CONNOPTS(MQCNO_SHARED_BINDING)

 ASTATE(ACTIVE)
 OBJNAME(Q2) OBJTYPE(QUEUE)
 OPENOPTS(MQOO_INPUT_SHARED,MQOO_FAIL_IF_QUIESCING)
 HSTATE(ACTIVE) READA(NO)

 ASTATE(ACTIVE)
 OBJNAME(Q1) OBJTYPE(QUEUE)
 OPENOPTS(MQOO_INPUT_SHARED,MQOO_FAIL_IF_QUIESCING)
 HSTATE(ACTIVE) READA(NO)

Administrative view of consumer state - Notes
• Message consumers are tied to object handles and their existence is reflected in

the various administration views that show you details about object handles. These
are DISPLAY CONN TYPE(HANDLE) and DISPLAY QSTATUS TYPE(HANDLE).
The field ASTATE will indicate whether a consumer has even been registered and
what state it is currently in. Similar information is also available for the connection
handle with an ASTATE field on DISPLAY CONN TYPE(CONN) as well.

• Connection handle ASTATE
• SUSPENDED
• STARTED
• STARTWAIT
• STOPPED
• NONE - No MQCTL call has been issued against the connection handle.

• Object handle ASTATE
• ACTIVE
• INACTIVE – MQCB done, but no MQCTL in STARTED state at the moment.
• SUSPENDED
• SUSPTEMP
• NONE – No MQCB call has been issued against this object handle.

Asynchronous Put Response

Client

Asynchronous Put Response

MQCONN

MQOPEN

MQOPEN

MQPUT

MQPUT

MQPUT

MQPUT

MQCMIT

Server

Asynchronous Put Response - Notes
• Asynchronous Put (also known as 'Fire and Forget') is a recognition

of the fact that a large proportion of the cost of an MQPUT from a
client is the line turnaround of the network connection. When using
Asynchronous Put the application sends the message to the server
but does not wait for a response. Instead it returns immediately to
the application. The application is then free to issue further MQI
calls as required. The largest speed benefit will be seen where the
application issues a number of MQPUT calls and where the network
is slow.

• Once the application has competed it's put sequence it will issue
MQCMIT or MQDISC etc which will flush out any MQPUT calls
which have not yet completed.

• Because this mechanism is designed to remove the network delay it
currently only has a benefit on client applications. However, it is
recommended that applications that could benefit from it, use it for
local bindings as well since in the future there is the possibility that
the server could perform some optimisation when this option is
used.

Put Response Options

• MQPMO_ASYNC_RESPONSE
• MQPMO_SYNC_RESPONSE

• MQPMO_RESPONSE_AS_Q_DEF
• MQPMO_RESPONSE_AS_TOPIC_

DEF

• DEFPRESP
• SYNC
• ASYNC

• Returned (output) Message
Descriptor (MQMD)
• ASYNC

• ApplIdentityData
• PutApplType
• PutApplName
• ApplOriginData
• MsgId
• CorrelId

• SYNC
• Full MQMD is completed

FRUIT
Price/Fruit

Put Response Options - Notes

• You can make use of asynchronous responses on MQPUT by means of an
application change or an administration change. Without any change your
application will be effectively using MQPMO_RESPONSE_AS_Q_DEF
which will be resolved to whatever value is defined on the queue definition.
You can choose to deliberately use asynchronous responses by using
MQPMO_ASYNC_RESPONSE, and you can choose to always have
synchronous responses by using MQPMO_SYNC_RESPONSE.

• The queue and topic objects have an attribute DEFPRESP which is where
the MQPMO_RESPONSE_AS_Q_DEF/TOPIC_DEF are resolved from.
This has values ASYNC and SYNC.

• Apart from not being informed of any failures to put the message on the
queue, the other change when using ASYNC is that only some fields in the
Message Descriptor (MQMD) are actually filled in when it is returned as an
output structure to the putting application. The remaining fields are
undefined when using ASYNC responses.

Last error retrieval

• Application will not find out
about failure to put to queue
• Ignore the situation
• Issue an MQCMIT
• Issue the new verb MQSTAT

A

struct tagMQSTS
{
 MQCHAR4 StrucId;
 MQLONG Version;
 MQLONG CompCode;
 MQLONG Reason;
 MQLONG PutSuccessCount;
 MQLONG PutWarningCount;
 MQLONG PutFailureCount;
 MQLONG ObjectType;
 MQCHAR48 ObjectName;
 MQCHAR48 ObjectQMgrName;
 MQCHAR48 ResolvedObjectName;
 MQCHAR48 ResolvedQMgrName;
};

MQSTS sts = {MQSTS_DEFAULT};
MQSTAT(hConn,
 MQSTAT_TYPE_ASYNC_ERROR,
 &sts,
 &CompCode,
 &Reason);

• Because the client does not wait for a response from the MQPUT call it will
not be told at MQPUT time whether there was a problem putting the
message. For example, the queue could be full. There are three things the
application can do :
• Ignore the situation

In many cases of say a non-persistent message the application does
not care too much whether the message makes it or not. If no response
it received then another request can be issued within a few seconds or
whatever.

• Issue an MQCMIT
If the messages put are persistent messages in syncpoint then if any of
them fail they will cause a subsequent MQCMIT call to also fail.

• Issue the new verb MQSTAT
This new verb allows the application at any time to flush all messages to
the server and respond with how many of the messages succeeded or
failed. The application can issue this verb as often as required

Last error retrieval - Notes

Read-ahead of messages

Read-ahead of messages

Client

MQCONN

MQOPEN

MQGET

MQGET

MQGET

Server Request for
‘n’ messages

Read-ahead of messages - Notes

• Read Ahead (also known as 'Streaming') is a recognition of the fact that a large
proportion of the cost of an MQGET from a client is the line turnaround of the
network connection. When using Read Ahead the MQ client code makes a request
for more than one message from the server. The server will send as many non-
persistent messages matching the criteria (such as MsgId) as it can up to the limit
set by the client. The largest speed benefit will be seen where there are a number of
similar non-persistent messages to be delivered and where the network is slow.

• Read Ahead is useful for applications which want to get large numbers of non-
persistent messages, outside of syncpoint where they are not changing the
selection criteria on a regular basis. For example, getting responses from a
command server or a query such as a list of airline flights.

• If an application requests read ahead but the messages are not suitable, for
example, they are all persistent then only one message will be sent to the client at
any one time. Read ahead is effectively turned off until a sequence of non-
persistent messages are on the queue again.

• The message buffer is purely an 'in memory' queue of messages. If the application
ends or the machine crashes these messages will be lost.

• Because this mechanism is designed to remove the network delay it currently only
has a benefit on client applications. However, it is recommended that applications
that might benefit from it, use it for local bindings as well since in the future there is
the possibility that the server could perform some optimisations when this option is
used.

Read-ahead Options

• MQOO_READ_AHEAD_AS_Q_DEF
• MQOO_NO_READ_AHEAD
• MQOO_READ_AHEAD

• MQSO_READ_AHEAD_AS_Q_DEF
• When using managed queues

• MQSO_NO_READ_AHEAD
• MQSO_READ_AHEAD

• DEFREADA
• NO
• YES
• DISABLED

MQOPEN

MQSUB
MQSO_MANAGED

Read-ahead Options - Notes

• You can make use of read-ahead on MQGET by means of an application
change or an administration change. Without any change your application
will be effectively using MQOO_READ_AHEAD_AS_Q_DEF on MQOPEN
which will be resolved to whatever value is defined on the queue definition.
You can choose to deliberately use read-ahead by using
MQOO_READ_AHEAD on your MQOPEN, and you can choose to turn off
read-ahead by using MQOO_NO_READ_AHEAD.

• If you are using a managed destination on MQSUB, by default your
application will be effectively using MQSO_READ_AHEAD_AS_Q_DEF
and taking its value from the model queue that is used to base managed
destinations on. Non-durable subscriptions using the default provided
model, SYSTEM.NDURABLE.MODEL.QUEUE, will find that read-ahead is
turned on. You can choose to deliberately use read-ahead by using
MQSO_READ_AHEAD on your MQSUB, and you can choose to turn off
read-ahead by using MQSO_NO_READ_AHEAD on your MQSUB.

• Queue objects have an attribute DEFREADA which is where the
MQOO/SO_READ_AHEAD_AS_Q_DEF are resolved from. This has
values YES and NO for this purpose and additionally a value DISABLED,
which over-rides anything specified by the application and turns off any
request for read-ahead on this queue.

Application Suitability
• Suitable for

• Non-persistent, non-transactional
consumption of messages
intended for this client only
• Non-durable subscriber
• Response messages to a query
• Message dispatching/routing

• Not suitable for
• Persistent, transactional messages
• Applications that continually change message selection criteria

• Use of some options implicitly turn off read-ahead
• Persistent messages – read-ahead turned off for that message
• Certain MQGMO options – read-ahead turned off for whole use of that

object handle (see next page)

• Changing message selection criteria can leave unconsumed
messages in the read-ahead buffer
• Highlighted by DISPLAY CONN TYPE(HANDLE) with

READA(BACKLOG) if the number of these gets high

AMQ8276: Display Connection details.
 CONN(153FCC4720008402)
 EXTCONN(414D5143544553543220202020202020)
 TYPE(CONN)
 APPLTAG(D:\ReadAhead.exe) APPLTYPE(USER)
 ASTATE(NONE) CHANNEL(SYSTEM.DEF.SVRCONN)
 CONNAME(127.0.0.1)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)
 USERID(hughson)

 OBJNAME(Q1) OBJTYPE(QUEUE)
 OPENOPTS(MQOO_INPUT_SHARED,MQOO_READ_AHEAD)
 HSTATE(ACTIVE) READA(BACKLOG)

Application Suitability - Notes

• Message read ahead is supported between MQ clients and MQ servers thus removing the
need for the MQ client to specifically request every message that is sent to it by the server.
Certain types of applications can benefit from providing the message criteria that they wish to
consume and having these messages sent to the client without the need for the client to
repeatedly tell the server the same message criteria.

• Read ahead works best when one is fairly certain that the messages really are intended for
this client, one is fairly certain they will be consumed by the client, and one knows ahead of
time in what manner they will be consumed. Ideal scenarios include a non-durable subscribe
of non-persistent messages using an asynchronous consumer; a simple request/reply
application getting multiple reply messages; or a message dispatching or routing application.
By contrast, a point to point get of a persistent message in a transaction is not suitable for
read ahead. However it is the low-cost, non-transactional case which customers expect to be
quick and therefore read ahead is ideal in these circumstances.

• Read-ahead only applies to non-persistent messages. Any persistent messages will not be
affected by read-ahead. When the next message to be delivered is a persistent transactional
message, the client will wait until all buffered messages have been consumed and then
request the persistent message directly. Thus the quality of service for persistent messages is
unchanged.

• The use of certain MQGMO fields or options may turn-off the use of read-ahead even if it is
explicitly requested by the application. MQOO_READ_AHEAD is an advisory option. It will
also not be used if specified on a application that is connecting to queue manager that is pre-
V7 or when used on a bindings connected application. It does not cause an error in these
cases. The next page will detail the specific fields and options.

• Your application can change the selection of messages by MsgId and CorrelId when using
read ahead. Doing so may result in messages being delivered to the in-memory buffer that are
not subsequently consumed by the application since it never requests them later. This causes
a backlog of messages in the in-memory buffer and will cause read ahead not to function as
effectively as it might. This can be seen in DISPLAY CONN TYPE(HANDLE) with
READA(BACKLOG).

MQGMO options with Read-ahead
MQGET MQMD
values

MQGMO
fields MQGET MQGMO options

Permitted when read-ahead
is enabled and can be altered
between MQGET calls

MsgId
CorrelId

MQGMO_WAIT
MQGMO_NO_WAIT
MQGMO_FAIL_IF_QUIESCING
MQGMO_BROWSE_FIRST
MQGMO_BROWSE_NEXT
MQGMO_BROWSE_MESSAGE_UNDER_CURS
OR

Permitted when read ahead
is enabled but cannot be
altered between MQGET calls

Encoding
CodedCharSetID
Version

MsgHandle

MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_NO_SYNCPOINT
MQGMO_ACCEPT_TRUNCATED_MSG
MQGMO_CONVERT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MSG
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_MARK_BROWSE_*
MQGMO_UNMARK_BROWSE_*
MQGMO_UNMARKED_BROWSE_MSG
MQGMO_PROPERTIES_*
MQGMO_NO_PROPERTIES

MQGET Options that are not
permitted when read ahead is
enabled

MQGMO_SET_SIGNAL
MQGMO_SYNCPOINT
MQGMO_MARK_SKIP_BACKOUT
MQGMO_MSG_UNDER_CURSOR
MQGMO_LOCK
MQGMO_UNLOCK

MQRC_OPTIONS_ERRORMQRC_OPTIONS_CHANGED

MQGMO options with Read-ahead - Notes

• As noted on the previous page, some values you can specify on MQGET
will cause read-ahead to be turned off. The last row of the table indicate
which these are. If they are specified on the first MQGET with read-ahead
on, read-ahead will be turned off. If they are specified for the first time on a
subsequent MQGET then that MQGET call will fail with
MQRC_OPTIONS_ERROR.

• Some values cannot be changed if you are using read-ahead. These are
indicated in the middle row of this table and if changed in a subsequent
MQGET then that MQGET call will fail with MQRC_OPTIONS_CHANGED.

• The client applications needs to be aware that if the MsgId and CorrelId
values are altered between MQGET calls, messages with the previous
values may have already been sent to the client and will remain in the
client read ahead buffer until consumed (or automatically purged).

• Browse and destructive get cannot be combined with read-ahead. You can
use either, but not both. You can MQOPEN a queue for both browse and
get, but the options you use on the first MQGET call will determine which is
being used with read-ahead and any subsequent change will cause
MQRC_OPTIONS_CHANGED. You cannot therefore use
MQGMO_MSG_UNDER_CURSOR which is using the combination of both
browse and get.

Closing gracefully

• Tell queue manager to
stop reading ahead
• MQCO_QUIESCE

• If MQCLOSE returns
MQRC_READ_AHEAD_MSGS
• Still messages in the buffer
• Object handle still valid
• No more messages will be read-

ahead and sent down to the client

• If MQGET returns MQRC_HOBJ_QUIESCED_NO_MSGS
• Same as MQRC_NO_MSG_AVAILABLE only after MQCO_QUIESCE

• New close options
• MQCO_QUIESCE
• MQCO_IMMEDIATE

MQGET(hConn,
 hObj,
 :
 &CompCode,
 &RC);
if (RC == MQRC_NO_MSG_AVAILABLE ||
 RC == MQRC_HOBJ_QUIESCED_NO_MSGS)
 break;
MQCLOSE(hConn,
 &hObj,
 MQCO_QUIESCE,
 &CompCode,
 &RC);
if (RC != MQRC_READ_AHEAD_MSGS)
 break;

Closing gracefully - Notes

• In order to end an application gracefully when messages may be in the client-side
read-ahead buffer that have not yet been consumed by the application, use the new
close option MQCO_QUIESCE. This tells the queue manager to stop reading
messages ahead of the application, but will not close the object handle if there are
still messages in the client-side buffer. In this case the MQCLOSE will return with
MQRC_READ_AHEAD_MSGS and the application can continue to use the object
handle to get these remaining messages.

• When a subsequent MQGET call reaches the end of the messages in the buffer
after an MQCLOSE with MQCO_QUIESCE, it will return with
MQRC_HOBJ_QUIESCED_NO_MSGS which is the same as
MQRC_NO_MSG_AVAILABLE but is additionally indicating that there will never be
any more messages ever again because the sending of messages to the client has
been quiesced. At this point the application will be able to successfully MQCLOSE
the queue without throwing any unconsumed messages away.

• The default value for MQCLOSE is MQCO_IMMEDIATE which will throw away any
unconsumed messages.

• If you are using read-ahead with asynchronous consume, when you have issued the
MQCLOSE with MQCO_QUIESCE call, your call-back will be called with the flag
MQCBCF_READA_BUFFER_EMPTY when the client-side proxy queue is empty.

Connection Changes

Connection Changes

• MQCNO_NO_CONV_SHARING
• MQCNO_ALL_CONVS_SHARE (default)

• MQCNO_CD_FOR_OUTPUT_ONLY
• Save MQCD on first MQCONNX call

• MQCNO_USE_CD_SELECTION
• Use saved MQCD on subsequent MQCONNX call

Queue Manager

Connection Changes - Notes

• MQCNO_ALL_CONVS_SHARE is the default value if none are used explicitly and
indicates that the application isn’t limiting the number of connections on the socket.
It leaves control of sharing entirely to the configuration at the server-connection end
of the channel. If the application indicates that the socket can be shared but the
SharingConversations (SHARECNV) channel definition is set to 1, no sharing
occurs and no warning is given to the application. Similarly, if the application
indicates that sharing is permitted but the SharingConversations definition is set to
zero, no warning is given, and the application exhibits the same behavior as a V6.0
client with regard to sharing conversations, read ahead, heartbeating and
administrator stop-quiesce: the application setting relating to sharing conversations
is ignored.

• MQCNO_NO_CONV_SHARING indicates that this application does not want to
share its socket regardless of the setting at the server-connection end of the
channel. This is particularly useful in situations where conversations are very
heavily loaded and therefore where contention is a possibility on the server-
connection end of the socket on which the conversations are shared.

• When obtaining your connection details from a client channel definition table
(CCDT), you may wish to deliberately choose the same connection for your next call
to MQCONNX. If so, you can request the MQCD describing the choice used from
the CCDT be returned to you on the first MQCONNX by using
MQCNO_CD_FOR_OUTPUT_ONLY, and then request it be used on the second
MQCONNX by using MQCNO_USE_CD_SELECTION.

Message Properties

Message Properties

• Control information about a message
• MQMD fields – pre-defined
• Message Properties – any value/type required

• User data – the message body
• User-defined format – as today
• Message Properties – any value/type required

Message PropertiesMessage Descriptor (MQMD)

Control Information User Data

Message Properties - Notes

• Message properties are a concept allowing meta-data or control
information to be carried with a message without the need to put it either in
a field in the MQMD or build it into the application user-data structure. This
control information may be nothing to do with the application, such as
tracking information – maybe inserted by an API exit or intermediate
serving application – which the end application can ignore, or may be
pertinent information that the application uses, perhaps to select messages
by.

• Either way, properties are neither part of the user data, nor part of the
MQMD. They are carried with the message and can be manipulated by
means of a number of new API calls.

Message Handle

• Represents the message

• Retrieved on MQGET

• Can be provided on MQPUT
• MQPMO.Action

• MQACTP_NEW
• MQACTP_FORWARD
• MQACTP_REPLY
• MQACTP_REPORT

• Represents the relationship between two messages

• Create using MQCRTMH

• Delete using MQDLTMH

MQCRTMH(hConn,
 &cmho,
 &hMsg
 &CompCode,
 &Reason);

gmo.MsgHandle = hMsg;
MQGET(hConn,
 );

pmo.Action = MQACTP_REPLY;
pmo.OriginalMsgHandle = hMsg;
MQPUT(hConn,
 );

Message Handle - Notes
• Message properties are manipulated via a message handle. When putting

or getting a message, a message handle can be associated with the
message in order to allow access to the message properties associated
with the message.

• This message handle is a handy mechanism to represent a message and
additionally allows the ability to tie messages together between MQGET
and MQPUT. Without it, there is no way to tell whether the message that
was just sent with MQPUT bears any relation to the message previously
retrieved with MQGET. There is probably a high likelihood that it is,
request/reply being a common model, but no certainty.

• If the message handle representing the message retrieved using MQGET
is passed into a subsequent MQPUT, with an Action that says
MQACTP_REPLY, it is now absolutely clear what the relationship is
between these two messages and any message properties that are
important for a reply type relationship can be automatically copied over.

• Before using a message handle, say on an MQGET, you must first create it
using the MQCRTMH verb. When you are finished using a message
handle, you should delete it using the MQDLTMH verb.

Message Properties

• Verbs to manipulate
• MQSETMP
• MQINQMP
• MQDLTMP

• All take a message handle

• Property types
• MQTYPE_BOOLEAN
• MQTYPE_BYTE_STRING
• MQTYPE_INT8 / 16 / 32 / 64
• MQTYPE_FLOAT32 / 64
• MQTYPE_STRING
• MQTYPE_NULL

• Compatibility with MQRFH2
• Pre-V7 JMS User properties
• API exits, MQMHBUF, MQBUFMH
• Apps

• MQGMO_PROPERTIES_FO
RCE_RFH2

• Queue attribute

MQSETMP(hConn,
 hMsg,
 &smpo,
 &propName,
 &propDesc,
 MQTYPE_STRING,
 valuelen,
 value,
 &CompCode,
 &Reason);

pmo.NewMsgHandle = hMsg;
MQPUT(hConn,
 );

Message Properties - Notes
• Having retrieved your message handle, you can then use it to manipulate

the message properties associated with the message.
• You can set a message properties on a message using the MQSETMP

verb, and inquire it using the MQINQMP verb. If you need to remove a
message property from a message handler, there is an MQDLTMP verb.

• When setting a message property, you must provide its name, value and
type. The types are shown on the foil. When inquiring a message property
you are given its type on return, or you can request it is converted into
another type if required. When deleting a message property you simply
provide the property name.

• Additionally there are two other message property related API calls,
MQMHBUF, and MQBUFMH. These will convert the message properties
related to the message into an MQRFH2 header. These calls may be
useful in an API exit that was previously written to manipulate MQRFH2s –
perhaps for JMS User properties in a prior release. Any applications that
require an MQRFH2 for JMS User properties (as in previous releases) can
request this with the option MQGMO_PROPERTIES_FORCE_MQRFH2 –
or control it by means of an attribute on the queue being used.

Selection of messages

• MQSUB
• Subscribing to specific publications on a topic

• MQOPEN
• Getting message from a queue

SubDesc.SelectionString.VSPtr = “Origin = ‘Florida’”;
SubDesc.SelectionString.VSLength = MQVS_NULL_TERMINATED
ObjDesc.SelectionString.VSPtr = “Colour = ‘Blue’”;
ObjDesc.SelectionString.VSLength = MQVS_NULL_TERMINATED;

FRUIT
Price/Fruit

Selection of messages - Notes
• Message properties can also be used to selectively consume messages. In

a subscribing application you can make a subscription for messages on a
specific topic, but additionally only those message on that specific topic
which match certain criteria. For example, if you were subscribing on the
price of oranges, you might only actually be interested in those where the
message property ‘Origin’ had the value ‘Florida’. Doing this means that
other messages that do not match what you require are never even put to
the subscription destination queue so you do not need to discard those
messages that you don’t want.

• You can also do selection of messages at MQOPEN time if a point-to-point
application wishes to pick out only certain messages. This can be very
advantageous for a network connected client application where the saving
in network usage is important. Beware deep queues though – MQ is not a
database and does not have arbitrary indices for direct access to any
message with any arbitrary selection criteria.

Migration administration for Message Properties

• PROPCTL
• Channel
• Queue

• Values
• COMPAT (default)
• NONE
• ALL
• FORCE

• PSPROP
• Administrative Subscriptions

Properties with a prefix

mcd
jms
usr
mqext

Migration administration (Properties) - Notes

• Applications that are not written to use these new message property APIs – that is
all your current procedural language applications – would see any message
properties as an MQRFH2 header. If you start writing applications to add message
properties or if you have JMS applications which are using user properties already,
the queue attribute PROPCTL allows you to control this.

• COMPAT only provides message properties to the application if the message
contains properties recognised as JMS user properties that would have been
provided to the application prior to V7 anyway.

• If you application is written to use a message handle, the only value that affects it is
FORCE, which over-rides the fact that a message handle is used by the application
and forces and MQRFH2 to be used anyway.

• Channels that a connected to pre-V7 queue managers need to know whether it is
appropriate to flow new message properties to those queue managers. If V6
applications are written to expect MQRFH2s anyway, you may wish to flow your
new message properties to V6 queue managers, but by default COMPAT means
that only those recognised as JMS user properties are flowed.

• When making an administrative subscription (using the DEFINE SUB command)
you can restrict properties from being added to the messages put on the destination
queue using the PSPROP attribute. One use of administrative subscriptions is to
allow non-pub/sub (and likely non-V7) enabled applications to receive publications.
The queue manager does add some message properties to each publication
however, such as the TopicString, and an unaware application would not be
expecting those.

Simplified Browse + Cooperative Browse

Simplified Browse

• Browsing a queue for all messages
• Using

MQGMO_BROWSE_FIRST
then
MQGMO_BROWSE_NEXT

• Problems with
• Priority Inserts
• Rollbacks
• Latency in picking up these messages

• Browsing a queue for all messages
• Using

MQGMO_BROWSE_FIRST +
MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_HANDLE

9

5

5

5
5

5
5
5
5
5

5

5

5

Simplified Browse

• Browsing a queue for all messages
• Using

MQGMO_BROWSE_FIRST
then
MQGMO_BROWSE_NEXT

• Problems with
• Priority Inserts
• Rollbacks
• Latency in picking up these messages

• Browsing a queue for all messages
• Using

MQGMO_BROWSE_FIRST +
MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_HANDLE

9

5

5

5
5

5
5
5
5
5

5

5

5

Simplified Browse - Notes

• Browsing a queue for all messages using the MQGMO Options
MQGMO_BROWSE_FIRST followed by repeated calls with
MQGMO_BROWSE_NEXT suffers from “missed” messages when browsing due to
priority insertions and rollbacks of messages that were previously destructively got
from the queue. There is a latency involved in finding these missed messages as
the application has to go back to the start of the queue once it reaches the end to
check if it had missed any.

• An application that wishes to browse all the messages on a queue in the order that
they would be returned to a destructive MQGET can in MQ V7 use the following
MQGMO Options:-

• MQGMO_BROWSE_FIRST +
MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_HANDLE +
MQGMO_WAIT

• Repeated calls to MQGET with these options would return each message on the
queue in turn. Each message returned is considered, by the object handle using in
the MQGET call, to be marked. This prevents repeated delivery of messages even
though MQGMO_BROWSE_FIRST is used to ensure that messages are not
skipped. If MQRC_NO_MSG_AVAILABLE is returned, then at the time when the
call was initiated, there were no messages on the queue that have not been
browsed and that satisfied any match options supplied.

Browse with Mark options

• MQGMO_MARK_BROWSE_HANDLE
• MQGMO_UNMARKED_BROWSE_MSG

• MQGMO_UNMARK_BROWSE_HANDLE

• Messages stay marked until
• The object handle is closed
• The message is unmarked for this handle by a call to MQGET using

the previously returned MsgToken with the option
MQGMO_UNMARK_BROWSE_HANDLE

• The message is returned from a call to destructive MQGET
This is true even if the MQGET is subsequently rolled-back

• The message expires

Browse with Mark Options - Notes

• On the previous foil we saw the use of
MQGMO_MARK_BROWSE_HANDLE to mark which messages we had
already seen. The undo action is
MQGMO_UNMARK_BROWSE_HANDLE.

• We also saw the use of MQGMO_UNMARKED_BROWSE_MSG for
requesting that we are only given messages that we have not already
marked as having seen.

• Messages don’t stay marked forever though. There are various events that
can remove marks.

Cooperative Browse

• Optimistic Browse
• MQGMO_BROWSE_FIRST +

MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_CO_OP

• Dispatch message to consumer
• Or if unable to process

• Unmark
• MQGET for returned MsgToken
• MQGMO_UNMARK_BROWSE_CO_OP

• Pessimistic Browse
• MQGMO_BROWSE_FIRST +

MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_HANDLE

• If able to process
• Mark cooperatively

• MQGET for returned MsgToken
• MQGMO_MARK_BROWSE_CO_OP

• Dispatch to consumer

App App App

Cooperative Browse - Notes

• “Dispatching” applications are applications which browse messages from a queue, and
(sometimes by inspecting the message) determine and start the appropriate application to
destructively consume the message and process it. Multiple of these dispatching applications
browsing the same queue can get in one another’s way causing unnecessary starting of
consuming applications.

• There are two view points to take with multiple dispatching applications.
• An optimistic one – that is, it is most likely that the messages that the dispatching

application finds on the queue are ones it can process
• A pessimistic one – that is, many of the messages that the dispatching application finds

need to be processed by another of the dispatching applications.
• Examples of these multiple dispatching applications include:-

• Cloned dispatcher – such as the CICS Bridge on WebSphere MQ for z/OS
This is an optimistic dispatcher

• Multiple dispatchers where processing order is important – such as WAS dispatching
MDBs
This is a pessimistic dispatcher

• Multiple dispatchers where processing order is unimportant
This can be an optimistic dispatcher

• With cooperative browse, rather than a set of marks for one object handle, there is a
cooperative set of marks for the queue as a whole.

Cooperative Browse Options

• MQOO_COOP

• MQGMO_MARK_BROWSE_CO_OP
• MQGMO_UNMARKED_BROWSE_MSG

• MQGMO_UNMARK_BROWSE_CO_OP

• ALTER QMGR MARKINT(integer | NOLIMIT)
• Time out after which time if no application has destructively got the

message it is returned to the unmarked pool for reprocessing.

Cooperative Browse Options - Notes

• In order to indicate you wish to cooperate with other applications browsing
this queue and be aware of their marked messages, you must MQOPEN
the queue using the MQOO_CO_OP option.

• Instead of using MQGMO_MARK_BROWSE_HANDLE, you use
MQGMO_MARK_BROWSE_CO_OP to indicate that the marks are to be
visible to all cooperating applications. To undo there is an option
MQGMO_UNMARK_BROWSE_CO_OP.

• In case a cooperatively marked message has been dispatched, but the
consuming application has abended, there is a timeout to return messages
such as this back to the pool to be reprocessed.

Summary

• Asynchronous Consumption of messages

• Asynchronous Put Response

• Read-ahead of messages

• Connection changes

• Message Properties + Selectors

• Simplified Browse + Co-operative Browse

Summary - Notes

• WebSphere MQ V7 has substantially increased the functionality of
the MQ API providing mechanisms for more efficient applications
and ease of use improvements to avoid some of the more
complicated parts of the MQ API.

The rest of the week...
Monday Tuesday Wednesday Thursday Friday

08:00 More than a buzzword:
Extending the reach of
your MQ messaging
with Web 2.0

Batch, local, remote, and
traditional MVS - file
processing in Message
Broker

Lyn's Story Time -
Avoiding the MQ
Problems Others have Hit

09:30 WebSphere MQ 101:
Introduction to the
world's leading
messaging provider

The Do’s and Don’ts of
Queue Manager
Performance

So, what else can I do? -
MQ API beyond the basics

MQ Project Planning
Session

11:00 MQ Publish/Subscribe The Do’s and Don’ts of
Message Broker
Performance

Diagnosing problems for
Message Broker

What's new for the MQ
Family and Message
Broker

12:15 MQ Freebies! Top 5
SupportPacs

The doctor is in. Hands-
on lab and lots of help
with the MQ family

Using the WMQ V7 Verbs
in CICS Programs

01:30 Diagnosing problems
for MQ

WebSphere Message
Broker 101: The Swiss
army knife for
application integration

The Dark Side of
Monitoring MQ - SMF
115 and 116 record
reading and
interpretation

Getting your MQ JMS
applications running, with
or without WAS

03:00 Keeping your eye on
it all - Queue
Manager Monitoring
& Auditing

The MQ API for
dummies - the basics

Under the hood of
Message Broker on
z/OS - WLM, SMF and
more

Message Broker Patterns -
Generate applications in an
instant

04:30 Message Broker
administration for
dummies

All About WebSphere
MQ File Transfer Edition

For your eyes only -
WebSphere MQ
Advanced Message
Security

Keeping your MQ service
up and running - Queue
Manager clustering

06:00 Free MQ! - MQ Clients
and what you can do
with them

MQ Q-Box - Open
Microphone to ask the
experts questions

Questions & Answers

Please fill out your evaluation forms
Session # 9513

