WebSphere Application Server Version 8
New z/OS Exploitation/Differentiation

David Follis
IBM

August 11, 2011
Session Number 9485
WebSphere Application Server Sessions

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>#</th>
<th>Title</th>
<th>Speaker</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td>3:00</td>
<td>9483</td>
<td>Using IBM's New Cross-Platform Installer on z/OS</td>
<td>Mierzejewski</td>
<td>Oceanic 5</td>
</tr>
<tr>
<td>Thursday</td>
<td>8:00</td>
<td>9482</td>
<td>WAS Version 8 – Overview</td>
<td>Follis</td>
<td>Europe 2</td>
</tr>
<tr>
<td>Thursday</td>
<td>9:30</td>
<td>9486</td>
<td>WAS Version 8 – Batch Update</td>
<td>Hutchinson</td>
<td>Europe 2</td>
</tr>
<tr>
<td>Thursday</td>
<td>11:00</td>
<td>9485</td>
<td>WAS Version 8 – New z/OS Exploitation/Differentiation Features</td>
<td>Follis</td>
<td>Europe 2</td>
</tr>
<tr>
<td>Thursday</td>
<td>1:30</td>
<td>9484</td>
<td>WAS Version 8 – High Availability Enhancements</td>
<td>Follis</td>
<td>Europe 2</td>
</tr>
<tr>
<td>Thursday</td>
<td>3:00</td>
<td>9488</td>
<td>WAS - Back to Basics Part 1</td>
<td>Loos</td>
<td>Europe 2</td>
</tr>
<tr>
<td>Thursday</td>
<td>4:30</td>
<td>9489</td>
<td>WAS - Back to Basics Part 2</td>
<td>Stephen</td>
<td>Europe 2</td>
</tr>
<tr>
<td>Friday</td>
<td>8:00</td>
<td>9490</td>
<td>WAS for z/OS - Level 2 Update</td>
<td>Stephen</td>
<td>Europe 2</td>
</tr>
<tr>
<td>Friday</td>
<td>9:30</td>
<td>9487</td>
<td>WAS for z/OS – PotPourri</td>
<td>Follis, Hutchinson, Loos, Mierzejewski, Stephen, etc.</td>
<td>Europe 2</td>
</tr>
</tbody>
</table>
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

<table>
<thead>
<tr>
<th>Trademark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS*</td>
<td>Parallel Sysplex*</td>
</tr>
<tr>
<td>DB2*</td>
<td>RACF*</td>
</tr>
<tr>
<td>GDPS*</td>
<td>System z9</td>
</tr>
<tr>
<td>Geographically Dispersed Parallel Sysplex</td>
<td>WebSphere*</td>
</tr>
<tr>
<td>HiperSockets</td>
<td>z/OS</td>
</tr>
<tr>
<td>IBM*</td>
<td>zSeries*</td>
</tr>
<tr>
<td>IBM eServer</td>
<td></td>
</tr>
<tr>
<td>IBM logo*</td>
<td></td>
</tr>
<tr>
<td>IMS</td>
<td></td>
</tr>
</tbody>
</table>

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
Disclaimer

- The information contained in this documentation is provided for informational purposes only. While efforts were many to verify the completeness and accuracy of the information contained in this document, it is provided “as is” without warranty of any kind, express or implied.
- This information is based on IBM’s current product plans and strategy, which are subject to change without notice. IBM will not be responsible for any damages arising out of the use of, or otherwise related to, this documentation or any other documentation.
- Nothing contained in this documentation is intended to, nor shall have the effect of, creating any warranties or representations from IBM (or its suppliers or licensors), or altering the terms and conditions of the applicable license agreement governing the use of the IBM software.
- Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
- All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
Granular RAS Controls
You often start with one application and one application server...

A second application yields a second server...

And so on...

And so on...

Until...

AUGH!!!
Why can't we just do this?
Or really (on z/OS) this...

And let WLM separate the applications by service class

How does WLM know which requests are for which applications?

The Classification XML file....
How it Works

The file supplies a set of criteria to match requests to transaction class names, which then match with rules in the CB subsystem type.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Classification SYSTEM "Classification.dtd">
<Classification schema_version="1.0">
  <InboundClassification type="iiop" ...
    (classification information)  
  </InboundClassification>
  <InboundClassification type="http" ...
    (classification information)  
  </InboundClassification>
  <InboundClassification type="sip" ...
    (classification information)  
  </InboundClassification>
  <InboundClassification type="mdb" ...
    (classification information)  
  </InboundClassification>
  <InboundClassification type="sib" ...
    (classification information)  
  </InboundClassification>
</Classification>
```

From that we get goals and importance based on specific transactions based on criteria in the classification XML file.
Another big issue with multiple applications in one server.

TIMEOUTS

Timeout configuration is at the server level, per protocol

For example, HTTP has these variables:

- `protocol_http_timeout_output`
- `protocol_http_queue_timeout_percent`
- `server_region_http_stalled_thread_dump_action`

And for all protocols:

- `server_region_request_cputimeused_limit`
- `server_region_request_cputimeused_dump_action`

Could we put some of this stuff in the classification XML?
YES!

But before we get started.. here's a simple XML file, just the HTTP section:

```xml
<InboundClassification type="http" schema_version="1.0" default_transaction_class="M">
  <http_classification_info transaction_class="M">
    <http_classification_info transaction_class="Q" uri="/gcs/admin"/>
    <http_classification_info transaction_class="R" uri="/gcs/admin/1*"/>
  </http_classification_info>
</InboundClassification>
```

Adding more tags is going to make this hard(er) to read, especially on a chart

SO......

Examples from here on are NOT COMPLETE and WILL NOT PARSE
One more thing.... attribute inheritance

Suppose we have this XML fragment:

```
<InboundClassification type="http">
  <http_classification_info>
    <http_classification_info uri="/gcs/admin" />
    <http_classification_info uri="/gcs/admin/1*" />
  </http_classification_info>
</InboundClassification>
```

The outer 'http_classification_info' does NOT specify any classification values Host/Port/URI

So it matches ALL HTTP requests

The inner rules match a specific URI or one with a wildcard
Now what if we add some dispatch timeout tags?

```xml
<InboundClassification type="http" . . .>
    <http_classification_info dispatch_timeout="300" . . .>
        <http_classification_info uri="/gcs/admin" dispatch_timeout="500".
        <http_classification_info uri="/gcs/admin/1*" . . ./>
    </http_classification_info>
</http_classification_info>
</InboundClassification>
```

A request which matches /gcs/admin will get a timeout of 500 seconds

All other HTTP requests get 300 seconds.

Got it?
Now...finally.. we will go through the new tags in the XML file

There are three questions for each tag:

1) What is the tag value?

2) How does the tag interact with existing environment variables?

3) Are there Modify commands that interact with these variables?
Dispatch Timeout

1) What is the tag value?

 dispatch_timeout

2) How does the tag interact with existing environment variables?

 The environment variables are used as default values if no value is found in the XML file. Variables affected are:

 control_region_wlm_dispatch_timeout
 protocol_http_timeout_output
 protocol_https_timeout_output
 protocol_sip_timeout_output
 protocol_sips_timeout_output
 control_region_mdb_request_timeout

3) Are there Modify commands that interact with these variables?

 No.
Timeout on the queue

1) What is the tag value?

 queue_timeout_percent

2) How does the tag interact with existing environment variables?

 The environment variables are used as default values if no value is found in the XML file. Variables affected are:

 control_region_iioop_queue_timeout_percent
 protocol_http_queue_timeout_percent
 protocol_https_queue_timeout_percent
 protocol_sip_queue_timeout_percent
 protocol_sips_queue_timeout_timeout_percent
 control_region_mdb_queue_timeout_timeout_percent

3) Are there Modify commands that interact with these variables?

 No.
Timeout dump action

1) What is the tag value?

 stalled_thread_dump_action

2) How does the tag interact with existing environment variables?

 The environment variables are used as default values if no value is found in the XML file. Variables affected are:

 server_region_iiop_stalled_thread_dump_action
 server_region_http_stalled_thread_dump_action
 server_region_https_stalled_thread_dump_action
 server_region_sip_stalled_thread_dump_action
 server_region_sips_stalled_thread_dump_action
 server_region_mdb_stalled_thread_dump_action

3) Are there Modify commands that interact with these variables?

 No.
CPU Timeout and CPU Timeout Dump Action

1) What is the tag value?

 - cputimeused_limit
 - cputimeused_dump_action

2) How does the tag interact with existing environment variables?

 The environment variables are used as default values if no value is found in the XML file. Variables affected are:

 - server_region_request_cputimeused_limit
 - server_region_cputimeused_dump_action

3) Are there Modify commands that interact with these variables?

 No.
IIOP Outbound Request Timeout

1) What is the tag value?

 request_timeout

2) How does the tag interact with existing environment variables?

 Actually its a Java property in this case. The property is used as default values if no value is found in the XML file. The property is:

 com.ibm.CORBA.RequestTimeout

3) Are there Modify commands that interact with these variables?

 No.
Timeout Output Recovery (SESSION or SERVANT)

1) What is the tag value?

 timeout_recovery

 Only applies to HTTP/HTTPS/SIP/SIPS sections

2) How does the tag interact with existing environment variables?

 The environment variables are used as default values if no value is found in the XML file. Variables affected are:

 protocol_http_timeout_output_recovery
 protocol_https_timeout_output_recovery
 protocol_sip_timeout_output_recovery
 protocol_sips_timeout_output_recovery

3) Are there Modify commands that interact with these variables?

 No.
SMF Recording

1) What is the tag value?

 SMF_request_activity_enabled
 SMF_request_activity_CPU_detail
 SMF_request_activity_timestamps
 SMF_request_activity_security

2) How does the tag interact with existing environment variables?

 The environment variables are used as default values if no value is found in the XML file. Variables affected are:

 server_SMF_request_activity_enabled
 server_SMF_request_activity_CPU_detail
 server_SMF_request_activity_timestamps
 server_SMF_request_activity_security

3) Are there Modify commands that interact with these variables?

 YES!
The existing commands:

MODIFY server,SMF,REQUEST,ON | OFF
MODIFY server,SMF,REQUEST,CPU,ON | OFF
MODIFY server,SMF,REQUEST,TIMESTAMPS,ON | OFF
MODIFY server,SMF,REQUEST,SECURITY,ON | OFF

These now tell the server to IGNORE the XML contents and turn the indicated SMF recording ON or OFF

When you want to go back to honoring the XML contents
Use the new RESET option

MODIFY server,SMF,REQUEST,RESET
MODIFY server,SMF,REQUEST,CPU,RESET
MODIFY server,SMF,REQUEST,TIMESTAMPS,RESET
MODIFY server,SMF,REQUEST,SECURITY,RESET

Remember that MODIFY server,DISPLAY,SMF will show the current settings
Dispatch Progress Monitor (DPM)

1) What is the tag value?

 dpm_interval
 dpm_dump_action

2) How does the tag interact with existing environment variables?

 The DPM Interval is only set via Modify. If no value for the dump action is found in the XML, the default will be taken from this environment variable:

 server_region_dpm_dump_action

3) Are there Modify commands that interact with these variables?

 YES!

 And MODIFY server,DISPLAY,DPM will show the current settings
DPM Modify Command Options

MODIFY server,DPM,CLEAR_ALL

Override XML, DPM Action=None, All DPM Intervals to zero

MODIFY server,DPM,RESET

Honor the XML content

MODIFY server,DMP,DUMP_ACTION=NONE (or other values)

Ignore DPM dump actions in the XML

MODIFY server,DPM,DUMP_ACTION=RESET

Honor DPM dump actions in the XML

MODIFY server,DPM,HTTP=500 (or other protocol, other values)

Ignore DPM intervals in the XML for HTTP and use 500 instead

MODIFY server,DPM,HTTP=RESET

Honor HTTP DPM intervals in the XML

MODIFY server,DPM,INTERVAL=0 (or other values)

Ignore DPM intervals in the XML and set all intervals to zero

MODIFY server,DPM,INTERVAL=RESET

Honor all DPM intervals in the XML
All New Function: Message Tagging!

```xml
<InboundClassification type="http">
    <http_classification_info uri="/gcs/*" message_tag="GCS"/>
</InboundClassification>
```

The tag 'GCS' will show up in messages, traces, and printlns issued by a thread dispatching any request that matches /gcs/*

For example:
Trace: 2011/03/21 22:15:48.298 02 t=6BEE88 c=0.6 key=S2
`tag=GCS` (0401D00A)

BossLog: { 0233} 2011/03/24 14:05:52.951 03 SYSTEM=SY1 CELL=WAS00 NODE=NDN1
CLUSTER=BBOC001 SERVER=BBOS001 PID=0X010063 TID=0X3156630000000043 t=6C6938
c=UNK ./bbgrjtr.cpp+717 `tag=GCS` ...
`BBOO0220E: SECJ6237E: Authorization failed. The SAF user MSTONE1 does not have READ access to any of the following SAF profiles in the EJBRULE class: [All#Role].`
com.ibm.ws.security.zOS.authz.SAFAuthorizationTableImpl

To stop tagging of WTOs, set `ras_tag_wto_messages=0`
In case message tagging breaks automation
Another New Function: Classification Only Trace!

Classification XML like this:

```xml
<InboundClassification type="http"...
  <http_classification_info uri="/gcs/admin/" classification_only_trace="1"/>
</InboundClassification>
```

Then turn on some tracing (e.g. WebContainer)

WebContainer tracing is captured

ONLY from threads dispatching a request that matches a URI of /gcs/admin

MODIFY server,TRACERECORD,OFF - turns all tracing off
MODIFY server,TRACERECORD,ON - ignores the XML, trace on?
MODIFY server,TRACERECORD,RESET - honor the XML

MODIFY server,DISPLAY,TRACERECORD - shows current setting
Dynamic Updates to the XML

Re-read the current XML file
 MODIFY server,RECLASSIFY

Read a new XML file
 MODIFY server,RECLASSIFY,FILE=/some/path/and/file.xml

Display the file last read and when
 MODIFY server,DISPLAY,WORK,CLINFO

BBOJ0129I: The /tmp/wlm4.class.xml workload classification file was loaded at 2009/07/14 19:33:35.297 (GMT).
Other Hidden Gems (Service Stream)
Shared Library Region

The Shared Library Region can improve performance.

But in a 31 bit JVM it can be hard to use it and have room for the JVM Heap.
Shared Library Region

• WP101320 describes how to use BPXK_DISABLE_SHLIB in OA33516 to turn off the shared library region in the current process
• Frees up below-the-bar storage for the JVM Heap
• Leaves it enabled for other processes that have the room
• To tell if it was set, you needed to look at a dump
• WAS V6.1 (PM36368) and WAS V7 (PM32677) help
BBOO00341I VARIOUS RESOURCE MONITORING DATA: (64):(67108864):():():():()
• Shows the shared library region size for this process
'Error' logstream browser options

'Error' messages that are not WTOs are written to SYSOUT
Or to the 'Error' log Logstream

Viewed with the BBORBLOG utility

PK91010 adds **outdsn** and **reclen** to control output dataset name and record length
Other Hidden Gems (Version 8)
Routing for Modify Javacore etc.

Modify JAVACORE, HEAPDUMP, TDUMP
Dumps all regions (mostly)

Until V8!

Specify target ASID:

For example:

Modify server, JAVACORE, ASIDX=5E
Modify server, HEAPDUMP, ASIDX=54
Modify server, TDUMP, ASIDX=3F
Configure WLM AE_SPREADADMIN

• Configure wlm_ae_spreadmin=0 or 1
 • Sets AE_SPREADADMIN(NO|YES) on IWM4SLI API call

Spread 'Yes' balances equally

Spread 'No' WLM decides
Displaying 'Paused' state

Modify PAUSELISTENERS closes ports etc.
But how do you know?
In Version 8!

Modify server,DISPLAY,SERVERS output updated:

<table>
<thead>
<tr>
<th>BBO00182I</th>
<th>SERVER</th>
<th>ASID</th>
<th>SYSTEM</th>
<th>LEVEL</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBO00183I</td>
<td>WAS00</td>
<td>6Fx</td>
<td>SY1</td>
<td>8.0.0.0 (ff1106.32)</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>BBO00183I</td>
<td>BBON001</td>
<td>58x</td>
<td>SY1</td>
<td>8.0.0.0 (ff1106.32)</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>BBO00183I</td>
<td>BBOS001</td>
<td>5Bx</td>
<td>SY1</td>
<td>8.0.0.0 (ff1106.32)</td>
<td>PAUSED/STOPPING</td>
</tr>
<tr>
<td>BBO00183I</td>
<td>BBODMGR</td>
<td>57x</td>
<td>SY1</td>
<td>8.0.0.0 (ff1106.32)</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>
Delay Monitoring Misc. States

WLM Monitors 'Performance Blocks' inside WAS

WLM/RMF define delay reasons (ACTIV_APPL)

Plus miscellaneous fields MISC1 - MISC15

WLM API IWM5MGDD allows WAS to 'explain' MISC fields

Reasons like 'RRS' will show up in RMF
Message routing

- Messages are written as:
 - WTOs to the console
 - WTOs to the log
 - Writes to SYSOUT or Logstream
- The destination for a message is determined by the code that issues it

- New environment variables override the code
- Force messages (by ID) to a chosen target
- Or 'NONE' to suppress entirely
- Update dynamically with MODIFY
- Use DISPLAY to see current configuration
• Some requests establish an affinity to a servant region

• Later requests use that affinity and must run in the same servant
 • HttpSession and Stateful Session Beans are examples

• The SMF 120.9 record already indicates if a request ran in a particular servant because of an affinity

• In Version 8 we added an affinity token to the SMF record

• Find the request that created the affinity and all the later requests that used it
Timeouts and Affinity Routing

The timeout_delay defers the abend of a servant with a timed out request to let other work in the servant complete.

Work with affinity to that servant waits in the queue until the servant is abended.

In **Version 8** we changed the behavior so work with affinity to a dying servant is rejected. This frees up the client thread (maybe in IHS) to try again and run in another servant after the bad one dies.
Native DLLs optimized for z196

../*/AppServer/lib

/s390-common
/s390-31
/s390-64
/s390x9-64

/s390-common

Native modules required for any bitmode and hardware

/s390-31

Native modules required for 31 bit

/s390-64

Native modules required for 64 bit and any pre-z196 hardware

/s390x9-64

Native modules required for 64 bit optimized for z196
Thread Hang Recovery – improved diagnostics

Timeout processing in Version 7

1) Dispatch begins
2) Dispatch timer expires
3) WAS issues message BBOJ0113I
4) Try to interrupt the request
5) Repeat until we give up
6) Collect configured documentation (e.g. callstack)
7) Notify the controller
8) Controller begins process of abending the servant
9) Controller issues message BBOO0327I
Thread Hang Recovery – improved diagnostics

Timeout processing in Version 8

1) Dispatch begins
2) Dispatch timer expires
3) WAS issues message BBOJ0113I
4) WAS issues message BBOJ0123I
5) If configured, gather pre-interrupt documentation
6) If configured issue message BBOJ0122I with ODI info
7) Try to interrupt the request
8) Repeat until we give up
9) Issue message BBOJ0124I to indicate we gave up
10) Collect configured documentation (e.g. callstack)
11) Notify the controller
12) Controller begins process of abending the servant
13) Controller issues message BBOO0327I
What are all these new messages?

BBOJ0113I: The Interruptible Thread Infrastructure is attempting to advance work running under request ffff18b2

BBOJ0123I: The Interruptible Thread Infrastructure is attempting to advance work running under request ffff18b2,

BBOJ0122I: The Interruptible Thread Infrastructure about to drive a ODI to advance work running under request ffff18b2, ODI details: Monitor ACTIVE

BBOJ0124I: The Interruptible Thread Infrastructure timed out a request and it has become unresponsive, request ffff18b2, request details: ThreadDetails: ASID = 0129, TCB = 0X006C62D8, Request = ffff18b2, Is JVM Blocked = false, Tried to interrupt = true, Given up = true, Internal Work Thread = false, Hung Reason = Dispatch Timer Popped, SR Dispatch Time = 2011/02/25 20:36:56.474373, CTL Receive Time = 2011/02/25 20:36:56.352540, CTL Queued to WLM Time = 2011/02/25 20:36:56.471058, Request Timeout limit = 63, Elapsed Execution Time = 65, CPU Time Used Limit = 3500000, Outbound Request Timeout Limit = 30, ODI Details = [JVM INTERRUPTIBLE THREAD, Monitor ACTIVE]
What are all these new messages?

BBOJ0117I: JAVA THREAD STACK TRACEBACK FOR THREAD WebSphere WLM Dispatch Thread t=006c62d8:
Hung Thread Recovery--pre-interrupt
Traceback for thread WebSphere WLM Dispatch Thread t=006c62d8:
com.ibm.ejs.ras.CB390TraceEventListener.writeTrace(Native Method)
com.ibm.ejs.ras.CB390TraceEventListener.processEvent(CB390TraceEventListener.java:390)

BBOJ0117I: JAVA THREAD STACK TRACEBACK FOR THREAD WebSphere WLM Dispatch Thread t=006c62d8:
Thread Hang Recovery--thread could not be encouraged to complete
Traceback for thread WebSphere WLM Dispatch Thread t=006c62d8:
com.ibm.ejs.ras.CB390TraceEventListener.writeTrace(Native Method)
com.ibm.ejs.ras.CB390TraceEventListener.processEvent(CB390TraceEventListener.java:390)

