
Under the hood of Message Broker on
z/OS (WLM, SMF and More)

David Gorman
(gormand@uk.ibm.com)

IBM

10th August 2011
Session Number (09437)

Agenda

• Message Broker Overview.
• What is Message Broker

• Components of Message Broker

• Message Flows

• Patterns

• Message Broker Toolkit

• Message Broker Explorer

• Message Broker on z/OS.

• Value of Message Broker on z/OS.

What is WebSphere Message Broker?

• Message Broker enables “universal connectivity” by integrating protocols,

message formats and mediation patterns

• Emphasis on application re-use

• Fits naturally with WebSphere MQ

• Robust, scalable architecture

• Optimized for high throughput

• Flexible broker topologies

• Three programming constructs are used:

• Message Flows

• Nodes

• Message Models

• Universal Connectivity
• Simplify application connectivity to provide a flexible and dynamic infrastructure

• Routes and transforms messages FROM anywhere, TO anywhere
• Supports a wide range of transports, protocols & systems

• MQ, JMS 1.1, HTTP(S), SOAP, REST, File (incl. FTP & FTE), Database, TCP/IP, MQTT…
• CICS, IMS, SAP, SEBL, PeopleSoft, JDEdwards, SCA, CORBA, email…

• Supports a broad range of data formats
• Binary (C/COBOL), XML, CSV, Industry (SWIFT, EDI, HL7…), IDOCs, User Defined

• Message Processors
• Route, Filter, Transform, Enrich, Monitor, Distribute, Decompose, Sequence, Correlate, Detect

• Simple programming
• Patterns based for top-down, parameterized connectivity of common use cases

• e.g. Web Service façades, Message oriented processing, Queue to File…
• Construction based for bottom-up assembly of bespoke connectivity logic

• Message Flows to describe application connectivity comprising…
• Message Nodes which encapsulate required integration logic which operate on…
• Message Tree which describes the data in a format independent manner
• Transformation options include Graphical mapping, PHP, Java, ESQL, XSL and WTX

• Operational Management and Performance
• Extensive Administration and Systems Management facilities for developed solutions
• Wide range of operating system and hardware platforms supported, including virtual & WCA Hypervisor
• Offers performance of traditional transaction processing environments
• Deployment options include Trial, Remote Deployment, GetStarted, Enterprise

Notes: What is WebSphere Message Broker?

Broker
Execution

Group

Execution
Group

Components of Message Broker

• Broker

• Standalone runtime environment that

runs message flows

• Execution groups for isolation and

scalability

• Flows contain connectivity and

transformation logic

• Many different platforms

• Builds on an MQ queue manager

• Developer

• Development and Test Environment
called Message Broker toolkit

• Built on Rational Application
Developer

• Administrator

• Advanced Administration Tool called
Message Broker Explorer

• Built on MQ Explorer

• Java CMP API for scripting

• Commands

Developer

Administrator

Output targetTransform

Input source Output target

Output target
(Failure)

Message Flows

• Reusable

• Scalable

• Transactional

• Message flows provide the processing sequence required to connect applications together.

• A message flow contains the set of operations required to take a message from an originating application and deliver copies of it, some

possibly transformed, to any number of connected applications for processing.

• As a message passes through a message flow, it is transformed and routed according to the nodes it encounters, and the processing

decisions made within those nodes. Later we'll see how the nodes can modify the values within, or transform the structure of, a message to

provide the data transformations necessary to drive backend server applications.

• For a given application scenario, the message flow describes all possible outcomes when processing a message. For example, if the message

has a high monetary value, a copy of it might have to be routed to an audit application. Or if the message is not well-formed (may be it's not

encrypted in the right format), it might be routed to a security application to raise an alert.

• Equally important is the visualization of the application integration within then organization. Very often, for any particular application scenario,

the application connectivity requirements (*business*!) is held within the heads of domain experts. Being able to view the integration structure

brings benefits in scenario understanding, reuse potential, and application architecture/standards conformance.

• After a message has been processed by a message flow, the flow does not maintain any state. It is possible to maintain such state in an

external database, or within the message by using an extensible header such as the MQRFH2.

• Message flows are transactional.

• Message flows provide vital processing and data manipulation and are therefore fully transactional. A message flow either completes all

or none of its processing successfully.

• However, if required, individual nodes can elect to perform operations outside of the message flow transaction. (e.g. audit)

• Message flows are multithreaded.

• A given message passing through a series of nodes will execute on a single thread. To allow increased message throughput, message

flows can be defined with many additional threads assigned to them. Peak workloads use additional threads, which are pooled during

inactivity. We'll see more implementation details later. This means application scaling can be an operational rather than design time

decision.

• Message flow nesting and chaining allow construction of enhanced capabilities.

• Sophisticated flows can be rapidly constructed by linking individual flows together as well as nesting flows within each other.

• References:

• Message Flow overview at http://publib.boulder.ibm.com/infocenter/wmbhelp/v7r0m0/topic/com.ibm.etools.mft.doc/ac00310_.htm

Notes : Message Flows

Notes : Nodes

• The building blocks of message flows

• Each node type performs a different

(input, output or processing) action

• Many different node types

• Grouped into logical categories in

the message flow editor

Notes : Built-in Nodes for Routing,
Transformation and Event processing

Notes : Built-in Nodes for Transport

Notes : Built-in Nodes for External
Resources

Patterns

Application Development
Message Flow Editor

Administration
Message Broker Explorer

Agenda

• Message Broker Overview

• Message Broker on z/OS.
• V7 Highlights

• Install and Customization

• Starting the broker

• Displaying broker output

• Database Connectivity

• Transaction Model

• Value of Message Broker on z/OS.

V7 Highlights

• Simplification

• Broker system database removal

• Only MQ and Java pre-reqs

• Removal of the Configuration Manager and UserNameServer

components

• Enhancements

• 64bit, Broker is now a true 64bit application

• Execution Group specific profiles

• WLM, Assign service classifications to individual address

spaces.

• IBM Sterling ConnectDirect nodes (IC75621)

Installation and Customization

SMP/E

/usr/lpp/mqsi/V7R0M0

...

bin classes lib

Tape

Installation

extattr +a bipimain

1. Install Path

per install

4. Copy procedures from SBIPPROC

Prepare component

<hlq>.QMZABRK

3. Create component PDS(E)

per component

7. Create component

//DD

2. Authorization

extattr +l *.lib *.lil

BIPCRBK, (QMZABRK)…

5. Copy sample profiles SBIPSAMP

BIPBPROF (submit BIPGEN)

6. Tailor BIPEDIT

BIPCRBK

Submit jobs

z/OS

SBIPPROC
SBIPSAMP

8. Start component

/S QMZABRK

• Install Message Broker via SMP/e.
• Allocate Broker PDS(E)

• Copy required component procedures from SBIPPROC

• Rename component as required e.g. QMZAxxxx

• Customize component dataset
• Copy profiles from SBIPSAMP

• BIPBPROF - Broker profile

• Other parameter files
• BIPEDIT – JCL edit file

• Tailor BIPEDIT JCL edit procedure
• Assign settings for registry, MQ, Java etc

• Target appropriate profile with BIPEDIT
• Use BIPGEN to create ENVFILE

• Target appropriate jobs with BIPEDIT
• BIPCRBK– Create Broker

• Optionally modify options according to authority
• Default is all resources

• -1 only create the registry in USS. (USS Administrator).
• -2 only do the MQ creation pass (MQ Administrator).

• Create component
• Submit BIPCRBK to create component

• Target component JCL with BIPEDIT and rename
• e.g. BIPBRKP

• Start component
• e.g. /S QMZABRK

• Component verification automatically runs as the first step

Notes : Installation and Customization

JCL

Broker

Started

Task JCL

Generate

environment
file

Customization

JOB

ODBC

configuration
JOB to create

a broker

Broker profile

A full set of JCL exists for all Message Broker commands.

Notes : JCL

• All JCL for a specific broker is copied to the broker’s

component dataset.

• The JCL is customized using BIPEDIT for a specific

broker.

• JCL exists to run all broker commands, such as
mqsicreatebroker and mqsilist etc…

Execution Group Specific Profiles

• There is a base profile for each broker. This is used

by default for all broker address spaces.

• Execution Group specific profiles can also be

specified.

• Change BIPGEN to create additional EG specific

profiles

Broker default
profile

EG specific

profile

Jobs to create

ENVFILEs

Notes : Execution Group Specific Profiles

• By default Execution Groups run with the normal broker profile.

• However, each Execution Group address space can run with a
customised profile.

• The Execution Group specific profile is created by customizing a new
BIPEPROF member in the broker’s component dataset, modifying and
submitting BIPGEN.

• This produces an ENVFILE specific to the EG, and can include
anything that can be specified as an environment variable.

• Displaying the broker in SDSF tells you which EG address spaces are
running with specific profiles or the broker default profile.

• The Message Broker infocentre explains how to configure this.

Starting the broker

LE
process

Broker

Message Flow Engine(s)

Controller Administrative

Agent

Filter Node

Input
Node

Output
Node

Filter
Node

Neon
Rules

Warehousing Node

z/OS

Control
Process

WebSphere
MQ

IMSUser

Process

USSInfra-
structure

main

bipservice

bipbroker

wmqi

command

Execution
group n

Infra-
structure

main

DataFlow

Engine

Threads

CICS
Region

DB2 RRSOMVS

/s nnBRK

biphttp

 listener

Execution
group 1

Infra-
structure

main

DataFlow

Engine

Threads

Message Broker Address Spaces

Notes : Control Address Space

• First address space started per broker.
• Contains the bipservice process. This includes the console listener for

commands such as /F (modify) and /P (stop).
• Contains the bipbroker (AdminAgent) process. This starts and

monitors DataFlowEngine (Execution Groups) processes. Also
includes the Deployment Manager which handles requests from the
Message Broker toolkit, Message Broker Explorer and CMP API.

• Contains the biphttplistener process which handles broker wide HTTP
connections.

• Includes:

• Log of messages from bipservice, bipbroker and
biphttplistener

• STDERR and STDOUT

• Copy of ENVFILE and BIPDSNAO

Notes : DataFlowEngine Address Space

• Each Execution Group runs in its own address space.

• One or many flows can be deployed to a single Execution Group.

• Provides workload isolation and WLM configuration options.

• Each DataFlowEngine address space can run with a unique set of
environment variables (for example JVM options).

• Each address space includes:

• A log of all messages from the DataFlowEngine process

• STDERR, STDOUT

• Copy of the ENVFILE (environment file)

• Copy of the DSNAOINI (ODBC configuration file)

Displaying a broker in SDSF

Broker JOBNAME.

All address spaces
associated with a

single broker have

the same name!

Execution Groups,

identified by name!

(last 8 chars of EG
name)

EGENV identifies this
address space as

running with an EG

specific profile!

EGNOENV identifies

this address space as

running with just the

broker wide profile!

StepName same as
JOBNAME and ProcStep

BROKER, identifies this as

the control address space.

Displaying broker at the process level

• Displaying a broker in SDSF.PS or in USS shows the different
processes running inside the individual address spaces.

• On z/OS, a special process called bipimain is started first in all
address spaces. This performs authorised functions.

• Bipservice is started in the Control address space. It contains the
console listener, and starts bipbroker.

• Bipbroker (also known as the AdminAgent) starts and monitors the
DataFlowEngine processes and the biphttplistener process. It is the
AdminAgent which the MB toolkit, MB Explorer, commands and CMP
API applications connect to.

• The biphttplistener process is the broker wide HTTP listener.

• The DataFlowEngine process is the Execution Group in which the
Message Flows run.

Notes : Displaying broker at the process level

Broker JOB output

Broker BIP messages

`

STDERR/STDOUT from

broker processes

Output from verification

STEP (control address

space only)

ODBC configuration

Environment file for this

address space

• A broker JOB includes any BIP product messages and

anything written to STDOUT and STDERR by the

processes contained within the address space.

• The ENVFILE and DSNAOINI (BIPDSNAO in the

component’s dataset) are also copied for a complete
record.

Notes : Broker JOB output

Broker Verification

• When a broker starts, the control address runs a verification STEP
checking the broker configuration and environment.

• When a broker is first started, a verification program runs

in the control address space.

• This checks that broker has the correct level of Java

defined, that it can access the necessary files, and that

bipimain is APF authorised, among many other checks.

• If a problem is found, the error is reported in the JOBLOG

and the broker is not started.

Notes : Broker Verification

Console commands
LongShort

Report resource statsRR

Change resource statsCR

Report flow monitoringRM

Change flow monitoringCM

Reload securityRC

Report flow user exitsRX

Change flow user exitsCX

DeployDP

Report flow statsRS

Change flow statsCS

Change brokerCB

ReloadRE

ListL

Report traceRT

Change traceCT

Stop componentPC

Start componentSC
Broker

ControlService

Data Flow Engine(s)

z/OS console

Console

Listener

Console

Parser

Command

Library

command

response

start/stop

start/

stop

Admin
Agent

Modify a broker

Stop a broker

Start a broker

/F <Broker>,cmd

/P <Broker>

/S <Broker>

• A number of Message Broker commands can be entered

directly from the console.

• The commands are listed on the previous slide.

• Administrative changes can also be made using JCL, the

MB Explorer or the CMP API.

Notes : Console commands

Console command output

List commands

Output from list commands

• Console command output is written to the control address

space .

Notes : Console command output

Database Connectivity on z/OS

Prepare ?

global

cache

local

cache

hit
short prepare

full prepare

G lobal

Dynamic

Statement

C aching

Prepare a statement

SQLPrepare()

Execute a statement

SQLExecute()

Commit or rollback

SQLEndTran()

Free statement

SQLAllocHandle()

...process results...

hit
prepare
avoidance

L ocal

Dynamic

Statement

C aching

Broker DB2
ODBC

DB2
SolidDB
MS SQL
Oracle
Sybase
Informix

JDBC

• Easy access to user

databases

• Access DB2 via

ODBC

• full statement

caching and

prepare avoidance

is used to give

high performance

access.

• Access DB2 and

other Databases via

JDBC

• What is Open Database Connectivity (ODBC)?

• You may well be used to using Structured Query Language (SQL) to write programs that access and update data in a database.

• SQL does not have a call level interface, rather it is a declarative language which is translated by means of a product specific
preprocessor which changes the SQL statements into product specific calls to a database plan. This plan is a representation of
the access your program requires to the database.

• You're probably also aware that even though SQL is standard, the process of translating and binding SQL is not! ODBC is
designed to address this problem. It is important to WebSphere brokers, because uniform data source access on any platform
accessible to supports Compute, Filter and Database nodes for routing, warehousing and data enrichment without product specific
SQL preprocessing.

• Benefits of using ODBC.

• ODBC SQL is not precompiled or bound; it uses standard functions to execute SQL statements and related services at run time.

• ODBC enables you to write portable applications that are independent of any particular database product translation or binding
scheme. This independence means applications do not have to be recompiled or rebound to access different data sources, but
rather just connect to the appropriate data source at run time.

• One of the disadvantages of ODBC is that plans have to be generated at runtime, and are invalidated after commit processing. As
the majority of cost is associated with the plan, ODBC is as expensive as dynamic SQL. We'll see how this cost can be alleviated.

• ODBC transaction processing model.

• A program using OBDC, and your deployed dataflow is just that (!), takes the SQL statement (issued by the filter, compute,
database nodes) and prepares it using the SQLPrepare call. This is exactly analogous to the binding process that static SQL has -
it's just that the plan is built at run time. (Configure ODBC tracing in the BIPDSNAO file to observe application behaviour!)

• The prepared statement is then executed as part of a transactional unit of work, and the results processed. The statement can be
re-executed before the transaction is committed and this greatly improves performance. However, once the transaction has been
committed, along as you're using local and dynamic statement caching, this prepare is only performed once.

• If you're using DB2, use GDSC (ZPARM CACHEDYN=YES) to improve the performance of ODBC type applications by caching
prepared statements in using a skeleton statement kept beyond transaction commit. The broker uses Local Statement Caching for
prepare avoidance, significantly improving database performance, bringing it close to static SQL.

• Check SOE for DB2 APARs required for 64bit ODBC driver!

Notes : Database Connectivity

Displaying broker threads in DB2

DB2 subsystem

Broker connection information

• By displaying active threads in the DB2 subsystem, we

can see that the broker has a connection.

• This shows RRS as the transaction coordinator, it also

shows the USERID and PLAN.

Notes : Displaying broker threads in DB2

Transaction Model

The z/OS

broker has a

global

transaction

model exactly

as you’d

expect. It is

possible for

nodes to elect

to commit

outside this

transaction.

RRS is used

for context

management

& commitment

control

between the

flows resource

managers, but

only when

required.

Message flow

coordinatedTransaction=Yes or No

Native Context

Transaction
DataUpdate

node
MQOutput

node
MQInput

node

transactionMode=

Yes (or Automatic)
transactionMode=

 Automatic

transactionMode=

Yes (or Automatic)

DataInsert
node

transactionMode

 =Commit

non-transactional

Private Context

Resource Recovery Services

RRS

Resource Manager

WMQ

Resource Manager

DB2

begin global

transaction

ATRBEG

commit global

transaction

SRRCMIT

*

commit node

transaction

SqlTransact

private

context

SqlExecute

* *

*

COMMIT

global UOW

local UOW

Transaction Manager

WMQ

commit global

transaction

MQCMIT

• Transactional message flows are important

• A message flow which transforms and routes data often has a need to be transactional. That is, the message flow must complete either *all
or none* of its processing. Remember, from an end-to-end application perspective, the message flow is *part* of the application.

• Transactional data flows and data nodes.

• A message flow can be identified as transactional using the Coordinated Transaction checkbox on a broker assigned message flow. The
intention behind this attribute is that all node operations within the message flow can be coordinated under the same, global, transaction.
On z/OS, this option is always used for message flows, whether selected or not.

• A node performs its operations within the envelope of this message flow global transaction, and can elect to be within the global transaction
or not. A Transaction Mode checkbox enables this for WMQ and database nodes. Note the visibility (ACID) implications!

• Resource Recovery Services (RRS) is *NOT* always the transaction coordinator.

• As message flows run in essentially a batch type address spaces, RRS is the global transaction coordinator, if required.

• Execution groups are linked with an MQ RRS stub, so WMQ registers an interest with RRS for commitment control.

• Specifying the keywords CONNECTTYPE=2, AUTOCOMMIT=0, MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF in the initialization

file BIPDSNAO enables global transaction processing.

• RRS Context

• RRS Context is a concept that enables a program to have different roles. It's like one person having many ways of behaving which don't
interact with each other. It means that applications can simultaneously be different things to different systems.

• Broker flows have two contexts. A *native* context is used whenever it wants to perform the role of including node operations under the
global transaction. A *private* one has the effect of excluding database node operations from a global transaction.

• Plug-in nodes are always within the global transaction. A message flow is always in *native* context for these nodes.

• WebSphere MQ

• *Transaction Mode* within a message queuing node governs whether MQPUT and MQGET operations are explicitly performed either
inside or outside syncpoint on a per call basis. These nodes therefore always use the native, and never the private, RRS context.

• Database

• For database nodes, *Transaction Mode* determines under which RRS context the transaction will be performed. If the node is within the
global transaction, then the native context is used. For a Transaction Mode of *commit*, the private context, so that DB2 and RRS see the
operation from a logically different party. These nodes commit (using SQLTransact) their operations as the node is exited.

• Commitment Control

• The global transaction is begun implicitly when a resource manager communicates with RRS. The overall message transaction is
committed (or backed out!) control returns to the input node. At COMMIT time, WMQ will pass control to RRS only if required.

• RRS will call all registered resource managers (WMQ, DB2) in a two phase commit protocol to ensure a global transaction. Recall that
nodes which elected for a Transaction Mode of commit had resources updated (and externally visible!) close to their point of issuing. If
RRS is not required WMQ will perform the commitment control and delete any RRS interests.

Notes : Transaction Model

Agenda

• Message Broker Overview

• Message Broker on z/OS.

• Value of Message Broker on z/OS.
• High Availability

• WLM

• Accounting and Chargeback

• Reduced TCO

• z/OS specific nodes

High Availability

• Parallel SYSPLEX
• Message flows deployed to brokers on z/OS can benefit from using

resource managers such as WebSphere MQ (Shared Queues) and DB2
(Data Sharing Group) which are Parallel SYSPLEX aware.

• Automatic Restart Manager (ARM)
• ARM is a z/OS subsystem which ensures appropriately registered

applications and subsystems can be restarted after a failure.

• Applications and subsystems can either be restarted on the image on
which they failed, or in the case of image failure, on another available
image in the SYSPLEX.

• WebSphere MQ Clustering

• For z/OS users not using Parallel SYSPLEX, MQ clustering provides an
excellent way to exploit high availability for new messages in the event of
failure.

• Although MQ clustering is a “shared nothing solution”, in many scenarios it
can be good enough to enable the availability of new work, especially when
combined with ARM.

Notes : High Availabilty

• Parallel SYSPLEX.

• Message flows deployed to brokers on z/OS can benefit from using resource managers such as WebSphere MQ and DB2 which are
Parallel SYSPLEX aware.

• Objects including WebSphere MQ queues and DB2 databases are available as a shared resource within a SYSPLEX, making them
simultaneously available to all applications within the SYSPLEX. As long as one z/OS image is available these resources are available
for use.

• What’s really powerful though, is the fact that this is a truly shared resource, and in the event of failure, the remaining images will make
the failed work available immediately, without the need for restart. This is high availability in its highest sense.

• For example, a message flow deployed to brokers in a WebSphere MQ Queue Sharing Group transforming XML messages from a
shared input queue, may perform that processing anywhere in the SYSPLEX.

• As long as one queue manager in the group remains available, messages can continue to be transformed.

• What differentiates this from an availability perspective over “shared nothing” type solutions is that after a failure, rolled back messages
are made available immediately within the SYSPLEX such that they can be processed by other flow instances servicing the shared input
queue.

• Similar capabilities exist for DB2 resources when using DB2 Data Sharing Groups.

• Automatic Restart Manager (ARM).

• ARM is a z/OS subsystem which ensures appropriately registered applications and subsystems can be restarted after a failure.

• Applications and subsystems can either be restarted on the image on which they failed, or in the case of image failure, on another
available image in the SYSPLEX.

• Message Broker is fully ARM enabled.

• It is simple for an operator to assign an ARM classification and name to the broker. When the broker started or stopped, it will perform
the necessary registration with ARM, enabling it to be restarted as defined in the ARM policy by the z/OS systems programmer.

• WebSphere MQ Clustering

• For z/OS users not using Parallel SYSPLEX, MQ clustering provides an excellent way to exploit high availability for new messages in
the event of failure.

• In this mode of operation, brokers in a domain have a partitioned copy of the input queue, and clustering ensures that in the event of a
failure, new messages are sent only to queues which are still available.

• Although MQ clustering is a “shared nothing solution”, in many scenarios it can be good enough to enable the availability of new work,
especially when combined with ARM.

Restart Management using ARM

Restart is

defined by the

Systems

Administrator

to organize

applications

into

dependent

groups for

recovery after

failure.

Failures can

include

application

failure or

system failure

and restart

can be

performed in

place or on an

adjacent

Sysplex

image.

SYS1

Applications

BROKER

QMGR

DB2

SYS2

Applications

BROKER

QMGR

DB2

dependency

restart policy

element

group

• What is Automatic Restart Manager (ARM)?

• ARM is part of z/OS XCF and is used to restart failed address spaces after their failure or the failure of an image upon which they were

executing. Subsequently, they can be either restarted on the same image, or another, if this has failed.

• ARM therefore improves the availability of specific batch jobs or started tasks.

• The design of MB restart is to make only the Control Process address space ARM restartable. The hierarchical relationship between the

Control Process address space and in turn, its relationship to the Execution Groups means that this is sufficient.

• Elements and Restart Groups.

• An address space that is using ARM services is referred to as an "element." The systems programmer, rather than the broker, defines a

restart group as a set of named elements that have affinities and must be restarted together in the event of a system failure. The restart

group also governs the restart sequence of elements, so that subsystem dependencies can be modelled and enforced in terms of subsystem

restart.

• An element is comprised of an 8 character type and a 16 character name. For MB, ARM usage is indicated and configured in the broker’s

profile BIPBPROF. For example USE_ARM=YES, ARM_ELEMENTNAME='MQ03BRK' and ARM_ELEMENTTYPE='SYSWMQI'.

• How to Use and Configure.

• The ARM couple data set is the repository of the ARM policies of an installation and also of the specifics of elements with ARM status. This

data set is separate from other couple data sets (e.g., those of workload manager), may have an alternate data set, and must be connected

to all systems where registration and restart might occur. The ARM policy is a set of instructions from an installation about how and where

(and whether) restarts are to be done. The main purpose of a policy is to define the elements comprised by a group, with particulars about

dependencies in the group, overriding sources of restart techniques and parameters, selection criteria in cross-system restarts, and pacing of

restarts.

• When you configure a broker to use ARM, you'll probably want to make it dependent on many prerequisite address spaces. These include

WMQ and DB2, as their operation is vital to the broker.

• In a similar way, you might like to have ARM policies for important, restartable applications that use the broker.

• Reference.

• For more information on ARM, consult Sysplex Services Guide GC28-1771.

Notes : Restart Management using ARM

Workload Management

• Workload Scaling
• z/OS SYSPLEX brings a huge amount of potential processing capacity to

the message broker with up to 96 z196 processors.

• Message flows have a built-in multiprocessing capability. Each instance of
a message flow can execute on a separate thread (z/OS TCB) allowing the
broker to easily exploit multiple CPUs

• Workload Isolation
• Simply assign separate Execution Group address spaces to different types

of work.

• z/OS Individual Execution Group Workload Management
• Execution groups automatically assigned to JOBACCT token

• Use WLM Classification panels to map JOBACCT to Service and Report
classes

Notes : Workload Management

• Goal Oriented Resource Allocation (WLM).
• When a message broker execution group address space starts, it is assigned a JOBACCT token. This can then be

classified in Workload Manager (WLM) to service and report classes. This enables systems programmers to assign
different goals (typically response time) to this service class through WLM configuration choices

• The ability to assign WLM service classes to message processing workload has two significant benefits
• As work passes through subsystems which are WLM enabled, the service class can be maintained. Resources such as CPU and

IO “follow” users’ work requests to make sure these requests meet, if possible, the goals set by WLM
• WLM classification means that in the event of resource constraint (at peak time for example), high priority workloads can receive

appropriate resource to ensure that critical workloads are completed at the expense of less important work

• Workload Scaling.
• z/OS SYSPLEX brings a huge amount of potential processing capacity to the message broker.
• Not only are z196 processors extremely powerful on their own, but 96 can be configured in different LPARs across the

SYSPLEX configuration.
• The message broker is designed to exploit all of these capabilities without users having to explicitly design their message

flows differently .
• Message flows have a built-in multiprocessing capability.

• Each instance of a message flow can execute on a separate thread (z/OS TCB) allowing the broker to easily exploit
multiple CPUs.

• Workload Scaling - continued.
• If a flow is not able to process enough messages due to CPU constraint, it is a simple step to assign more instances to the

message flow to dynamically increase the number of eligible CPUs for processing. This does not involve flow design or
outage .

• And as we’ve seen, it’s simple to scale message flows across the SYSPLEX by deploying to multiple brokers within the
SYSPLEX broker domain. Again, this reconfiguration process is dynamic and does not require restart .

• Workload Isolation
• From a storage isolation perspective, broker execution groups are completely separated, storage in one address space is

not visible to another execution group. Moreover, if the event of a failure, an execution group is restarted without affecting
any execution groups owned by the broker; failures are isolated to execution groups.

Reporting & Chargeback

• System Management Facilities (SMF)

• Message Broker allows operational staff to control the gathering of
SMF data on a per message flow basis. The message flow
developer does not need to instrument their design in any way.

• Enables efficient and effective tuning of message flows.

• Allows infrastructure departments to charge users according to their
utilization of broker facilities.

• Coordinated Reporting

• SMF also allows subsystems to report performance and accounting
information at the same time for a given processing interval.

• Makes it possible to correlate statistics between Message Broker,
MQ and DB2 subsystems and artefacts.

SYS

PLEX

ENF37

SMF
Type 117

subtype 1,2

SMF output

Broker
Execution

Group

Execution
Group

archive

snapshot

�Destinations and Collection Scope

�This foil identies the main areas for consideration when examining accounting and statistics data

�When is the data produced?

�In what format is the data (UserTrace / XML / SMF)?

�How is the data accessed?

�What is the granularity and scope of the information that can be seen?

�Accounting and Statistics Timers

�Information is gathered at regular intervals according to timers. There are two classes of timers, internal and external.

�Archive and Snapshot timers are internal timers set by broker parameters which govern when these data are written to their destinations.

�An external timer is available on z/OS, namely ENF37. This can be used to to drive SMF, UserTrace and PubSub intervals. ENF is also important to

allow consolidated reporting of SMF information across major subsystems, e.g. you might coordinate queue manager and broker activity to best

understand how to tune your queue manager for particular flows.

�A Variety of Output Destinations and Formats

�It's possible to gather this information in different formats according to technology used to access it.

�z/OS SMF: For z/OS, this option generates SMF type 117 records having subtypes 1 and 2 depending on the granularity of information requested by

the user for a particular flow.

�Publish Subscribe.

�UserTrace.

�You may request different output destinations for Snapshot and Archive Stats by Message Flow.

�Options for Reporting Scope and Granularity

�z/OS SMF can be collected for any broker within a SYSPLEX. It can be integrated with all other SMF enabled z/OS products and subsystems -

literally hundreds!

�UserTrace is collected for the broker. If several brokers are operating on a single machine, then several datasets may be accessed with ease. This

data is human readable and relatively useful if you're prototyping.

�PubSub can be collected for any broker throughout the domain. This is incredibly powerful; it means you can sit anywhere in a domain and request

information about particular nodes in a flow on a particular execution group on a broker on a differnt machine! OR you could put in wild card

subscriptions to gather information from several different sources! XML is very structured, which makes it ideal for multi platform reporting.

�Moreover, the fact that each report has the details of the broker and execution group in it measn that you can aggregate information as well.

Notes : SMF Output

BipSmf.h

�

Type 117

SubType 1

Threads?

Message flow

Flows/Threads

Message flow data

Thread Data

Terminal data

SubType 2

Terminals>0

Message flow

Message flow data

Nodes

Terminal data

Node data

Terminal data

SubType 2

Terminals==0

Message flow

Message flow data

Nodes

...

Node data

Node data

Node data

...

...

Thread Data

Including Nodes

only

Including

Nodes+Terminals1 1 N

z/OS SMF Record Structure

Notes : z/OS SMF Record Structure

�SMF 117 records describe the A&S information

�The subtype of SMF 117 records written depends on the data currently being collected.

�A type1 record is produced when a flow is only collecting message flow data or Threads data. A single

type1 record is produced with all threads included.

�Type2 records are produced when a flow is collecting nodes data. When *only* nodes data is collected, a

single type 2 record is written to SMF, whereas when nodes *and* terminals are being collected, multiple

type 2 records are written to SMF.

�A BipSMF.h describes the SMF records

�You can use the sample formatter and the BipSMF.h header file to produce your own reports.

�The broker userid must be permitted to the BPX.SMF facility class profile to write SMF records.

Accounting Origin

<WMQIStatisticsAccounting RecordType="Archive"

<MessageFlow BrokerLabel="TestBroker3" BrokerUUI

ExecutionGroupName="default" Execu

MessageFlowName="ParentFlow" Start

AccountingOrigin="Dept A"/>

...

Dept A

Dept B

De
pt
 C

SET Environment.Broker.Accounting.Origin =

InputRoot.XML.DepartmentName; -- Dept A,B,C

...

(A
no
ny
mo
us
)

�AccoutingOrigin Allows you to Classify Reports

�In a consolidated flow, i.e. one being used by several different users or classes of users, it's important to be able to identify the costs associated with a

particular user or class of user. From Version 5, you can request Accounting and Statistics reports to be generated to identify the originator of the

input messages.

�This allows brokers to have a minimum number of flows for accounting purposes and still chargeback, benefitting from economy of scale, and

administrative burden reduction.

�The foil shows messages originating from three different departments - A, B and C. These messages are all processed by the same message flow,

but the gathered reports identify the cost breakdown by originating department.

�If you examine the report snippet, you can see that the AccountingOrigin tag identifies the report as belonging to "Dept. A".

�The Accounting origin is set inside the flow when it has determined the origin of the message. Any technique can be used to do determine this; for
example a flow might use a field in the MQMD, or a field in the body of the message. The AccountingOrigin is completely virtual, for example it might

periods of the day to allow you to profile usage with time! (You could also use archive statistics for this.)

�Messages are Classified by the Flow

�As a message passes through a message flow, if the flow at some points decides that the message needs to be classified, it may do so.

�It sets the Environment.Broker.Accounting.Origin tree element to identify the origin. When the message has been finished with, the data

related to its processing is collected separately to messages with different AccountingOrigin.

�Classification is usually done using User defined ESQL in a Compute node (or using a plug-in node, since the Environment tree is available to all

nodes) which sets a field thus:

�SET Environment.Broker.Accounting.Origin = '...'

�When the message has been processed by the flow the information identifying the origin is stored with all the other information for this origin and

separate to information from other origins. Different origins can therefore be collected and reported separately.

�AccountingOrigin needs to be Enabled

�This function is enabled using a new option on the mqsichangeflowstats command (see later). It is not always enabled because there is extra

processing associated with this processing and although not excessive, it would have an impact on performance.

�You should be aware that enabling this function could generate a large volume of reports, that's because you will get a different report for each

AccountingOrigin identified by your flow in a given time period.

�If the function is enabled, and Environment.Broker.Accounting.Origin is not populated then the Statistics and Accounting data collected

while processing that input message will be accumulated to the default Accounting Origin.

�The default value for the AccountingOrigin is "Anonymous".

�If the Accounting Origin function is disabled then the default action is to accumulate all Accounting and Statistics data tothis default Origin.

Notes : Accounting Origin

Reduced Cost of Ownership

• zSeries Application Assist Processor (zAAP)
Exploitation

• Machine instructions generated by the Java Virtual Machine

can be offloaded to dedicated processors called zAAPs .

• Message Broker has several features which directly exploit

zAAP technology, such as the Java Compute node, XLST

node and JMS nodes .

• Message transformations using the above nodes can offload

the processing to zAAP’s.

• Getting Started Sub-Capacity Pricing (GSSP)

• Continuous performance improvements

Notes : Reduced Cost of Ownership

• zAAP Exploitation.

• Machine instructions generated by the Java Virtual Machine can
be offloaded to dedicated processors called zAAPs.

• zAAP costs significantly less than regular central processor

• zAAP capacity is not included in MSU capacity

• Java based applications can be off-loaded without increase in
software costs.

• Message Broker has several features which directly exploit
zAAP technology, for example the Java Compute node, XLST
node and JMS nodes.

• It should be noted, however, parsing operations are still
performed by non Java components and these are not eligible
for offload.

z/OS Specific Nodes

• QSAM Nodes (IA11)

• These are similar in concept and usage to the VSAM nodes, but
oriented around sequential files, rather than record oriented files.

• FileDelete

• FileRead

• FileRename

• FileWrite

• VSAM Nodes (IA13)

• A suite of nodes allowing users to perform record oriented
processing on VSAM files.

• VSAMDelete

• VSAMInput

• VSAMRead

• VSAMUpdate

• VSAMWrite

Notes : z/OS Specific Nodes

• VSAM Nodes

• The broker can process VSAM records in the same way as it
processes messages from or to other data sources.

• A suite of 5 nodes allowing users to perform record oriented
processing on VSAM files: Input, Read, Write, Update and Delete
operations.

• Users can combine these nodes for VSAM access with other nodes
to integrate VSAM processing into message flows, or use VSAM
files to drive message flow processing

• QSAM Nodes

• These are similar in concept and usage to the VSAM nodes, but
oriented around sequential files, rather than record oriented files.

Summary

• Runtime Environment for Brokering

• Functionally Complete and Consistent

• z/OS and z/Series Exploitation

• Extensive Collateral Technology

• Significant Version 7 Improvements

• Advanced and Mature Platform

MQ Q-Box - Open

Microphone to ask the

experts questions

Free MQ! - MQ

Clients and what you

can do with them

06:00

Keeping your MQ

service up and running -

Queue Manager

clustering

For your eyes only -

WebSphere MQ

Advanced Message

Security

All About WebSphere

MQ File Transfer

Edition

Message Broker

administration for

dummies

04:30

Message Broker

Patterns - Generate

applications in an instant

Under the hood of

Message Broker on

z/OS - WLM, SMF

and more

The MQ API for

dummies - the basics

Keeping your eye

on it all - Queue

Manager

Monitoring &

Auditing

03:00

Getting your MQ JMS

applications running,

with or without WAS

The Dark Side of

Monitoring MQ - SMF

115 and 116 record

reading and

interpretation

WebSphere Message

Broker 101: The

Swiss army knife for

application integration

Diagnosing

problems for MQ
01:30

Using the WMQ V7

Verbs in CICS Programs

The doctor is in.

Hands-on lab and lots

of help with the MQ

family

MQ Freebies! Top

5 SupportPacs
12:15

What's new for the MQ

Family and Message

Broker

Diagnosing problems for

Message Broker

The Do’s and Don’ts

of Message Broker

Performance

MQ Publish/Subscribe11:00

MQ Project Planning

Session

So, what else can I do? -

MQ API beyond the

basics

The Do’s and Don’ts

of Queue Manager

Performance

WebSphere MQ 101:

Introduction to the

world's leading

messaging provider

09:30

Lyn's Story Time -

Avoiding the MQ

Problems Others have

Hit

Batch, local, remote,

and traditional MVS - file

processing in Message

Broker

More than a

buzzword: Extending

the reach of your MQ

messaging with Web

2.0

08:00

FridayThursdayWednesdayTuesdayMonday

The rest of the week ……

