
WebSphere MQ Publish/Subscribe
[z/OS & Distributed]

Morag Hughson (hughson@uk.ibm.com)

Session # 9419

N

O

T

E

S

WebSphere MQ Publish/Subscribe

In WebSphere MQ V7 Publish/Subscribe becomes an in-built part of the MQ API
(Application Programming Interface) and the administration model of WebSphere
MQ.
WebSphere MQ V7 extends the MQ API (Application Programming Interface) to
allow application programmers to use the publish/subscribe application model
with ease. New verbs and changes to existing verbs are introduced in this
presentation.
WebSphere MQ V7 also extend the administrative interfaces (MQSC and PCF) to
allow administrators to manage Publish/Subscribe applications.
We will cover the following main areas:-

– Topic tree administration control

– No code change Publish/Subscribe

– Application Monitoring

There are a number of fully working samples provided for your reference
throughout this presentation. These are very similar to the samples shipped with
WebSphere MQ V7 but have been cropped a little to squeeze them onto 2 pages
in each case.

What is Publish/Subscribe ?

providers of information
need have no knowledge
of consumers

consumers of information
need have no knowledge
of providers

new providers/consumers can be added without disruption

Publish/Subscribe is a term used to define an
application model in which the provider of some
information is decoupled from the consumers of

that information.

Providers of information are called
publishers

Consumers of information are called
subscribers

N

O

T

E

S

What is Publish/Subscribe? - Notes

Publish/subscribe systems have become very popular in recent years as a way of
distributing data messages from publishing computers to subscribing computers.
Such systems are especially useful where data supplied by a publisher is
constantly changing and a large number of subscribers needs to be quickly
updated with the latest data. Perhaps the best example of where this is useful is
in the distribution of stock market data.
In such systems, publisher applications of data messages do not need to know
the identity or location of the subscriber applications which will receive the
messages. Similarly, the subscribing applications do not need to know the identity
or location of the publishing application providing their information. In this sense
the providers and consumers are said to be loosely-coupled.

The classic example

A "feed" provides a continuous flow of
information which is pushed to interested
parties

Traders consume this information and use it
as a basis for the buying and selling stock

Traders

Stock
Feed

N

O

T

E

S

The classic example - Notes

Perhaps the most-commonly quoted example of a Publish/Subscribe system is one which
provides stock-market information. Here a "feed" provides (publishes) a continuous flow of
information containing the latest stock prices. The latest stock prices are required by traders
who need this information in order to conduct trades. Traders register their interest in
(subscribe to) particular stock prices and receive updates as prices change. Traders can be
added/removed without disruption to the providers of the information who have no
knowledge of who is receiving their information.
The terms "push" and "pull" are also becoming increasingly popular when describing the
flow of information between applications. If we concentrate on this example, traders receive
new information from the stock-feed as soon as a stock price changes. In this sense the
information can be thought of as being pushed directly to them. This pushing of information
from provider to consumer is one of the major differentiators between publish/subscribe and
more conventional systems. Our stock market example could have equally been designed in
such a way that updated stock prices only flowed to the traders when they specifically
requested, or pulled them from a central repository (server) of all stock prices. In such a
system, the emphasis would instead be on the traders, to request a refresh of their stock
prices on a continual basis.
In fact WebSphere MQ supports both modes of operation.

Loose-coupling with Publish/Subscribe

Few-to-many: Research, news tickers

Many-to-many: Prices and Quotes

Many-to-few: Orders

Topic

Topic

Topic

N

O

T

E

S

Loose-coupling with Publish/Subscribe - Notes

In the WebSphere MQ Publish/Subscribe model the only thing which connects
publishing and subscribing applications is the topic or subject which the publisher
associates with his information. Publishers and subscribers need only agree on
the topic to become connected to one another. Each different piece of information
has its own topic associated with it. Subscribers nominate which types of
information they want to receive by subscribing to specific topics.
Publishers of information are unaware of subscribers to the extent that they may
publish information even if there are no subscribing applications requiring it.
Publishing and subscribing are completely dynamic processes. New subscribers
and new publishers can be added to the system without disruption.
With respect to a given topic, or piece of information, all possible combinations of
publishers/subscribers are possible, that is:

– information about each topic may be provided by a single or multiple publishing applications

– the information may be received and processed by one or more subscribing applications

The number of publishers and subscribers connected by a single topic depends
upon the type of information which is flowing between them. As we will see later,
WebSphere MQ supports both state and event based information, or topics.

Publications and subscriptions

Subscribers make subscriptions with the queue manager to register their interest in
information relating to specific topics.

They use the MQSUB verb

Publishers provide information about specific topics by sending publications to the
queue manager

They use the MQPUT verb

The queue manager forwards each publication it receives to all subscribers with a
subscription which matches the associated topic

N

O

T

E

S

Publications and subscriptions - Notes

Just to recap, applications which provide information are called publishers.
Applications which consume information are called subscribers.
A subscriber specifies the topic it is interested in receiving information about by
specifying it on the MQSUB verb. A subscriber may make multiple subscriptions
to the queue manager.
A publisher publishes its information by putting a message to a topic.
It is the job of the queue manager, or queue manager network if multiple queue
managers have been connected together, to ensure that all subscribing
applications with matching subscriptions to the topic being published on receive
the publisher's message, known as a publication.
There is a separate presentation about publish/subscribe in a multiple queue
manager scenario.

Types of publications

Events
Continuing succession of logically independent messages, for example:

trades

customer buying an airline ticket
Subscribers receive as available

State
Information that is being regularly updated or replaced, for example:

stock prices

furnace temperatures
Queue managers can retain copy of last publication
Subscribers may receive immediately or check at their own initiative

N

O

T

E

S

Types of publications - Notes

When a publish/subscribe system is being designed it is important to decide whether the
information being published on each topic is either state or event related.
Event publications are usually independent from one another. They usually indicate that
some further action or processing is needed. A subscriber missing an event may be
disastrous and generally subscriptions to event publications all need to be in place before
any events are published. There may be more than one publisher of event publications for a
given topic.
Examples of this type of information are:

– a stock trade

– a customer buying an airline ticket

State publications usually contain information that is being updated at regular intervals. If a
subscriber misses a state publication then generally it isn't a problem since an updated view
of the state will about to be published again. The queue manager may also be instructed to
retain the last copy of a state publication. This can be sent to new subscribers to that state
topic rather than letting them wait for the information to be published again. Usually there is
only a single publisher per state topic.
Examples of this type of information are:

– a stock price

– the temperature of a furnace

Publish/Subscribe in WebSphere MQ

MQSUB
‘Price/Fruit/+’
MQGET

MQOPEN
‘Price/Fruit/Apples’

MQPUT

Create TOPIC
objects

Configure attributes

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(FRUIT.ANCHOR)
TOPICSTR(‘Price/Fruit’)

Topic Status +
Subscription Status

Display Connections
and handles

Topic Tree

N

O

T

E

S

Publish/Subscribe in WebSphere MQ - Notes

The queue manager holds a view of all the topic strings you are using in a
hierarchical construct known as the topic tree (see next page). This topic tree is
the central control point for all publish/subscribe. As a user you will interact with
the topic tree in several different ways.
You can configure the behaviour of the topic tree by defining topic objects and
changing attributes on them. Of course you only need to do this if you want to
change the default behaviour. You may not need any topic objects – we will at this
in more detail later.
You can programmatically interface with the topic tree as a subscriber using
MQSUB and as a publisher using MQOPEN and MQPUT.
You can monitor the use of your topic tree by such applications using the Topic
status command, the Subscription status command and the commands to display
connections and their handles.

Topic strings and topic tree

Price/Fruit/Apples

Price/Fruit/Oranges

Price/Vegetables/Potatoes

Price/Vegetables/Onions

Price

Fruit

Apples Oranges

Vegetables

Potatoes Onions

N

O

T

E

S

Topic strings and topic tree - Notes

Topic strings can be any characters you choose. You can, and should, add
structure to you topic strings using the ‘/’ character. This produces a topic tree
with a hierarchical structure, as the example on this foil shows. Although this
hierarchical topic tree was created by the use of the topic strings shown, we
generally picture it as a tree such as this.
There are some special characters, apart from the ‘/’ character that you should
avoid in your topic strings. These are ‘#’, ‘+’, ‘*’ and ‘?’. We will look at these in
more detail later when we discuss wildcards.

Publishing Application

MQOPEN a topic

MQOD describes a topic to publish to
ObjectType

MQOT_Q for point-to-point

MQOT_TOPIC for publish
ObjectString/ObjectName

MQPUT a message

OpnOpts = MQOO_OUTPUT
| MQOO_FAIL_IF_QUIESCING;

MQOPEN(hConn,
&ObjDesc,
OpnOpts,
&hObj,
&CompCode,
&Reason);

MQPUT (hConn,
hObj,
&MsgDesc,
&pmo,
strlen(pBuffer),
pBuffer,
&CompCode,
&Reason);

MQOD ObjDesc = {MQOD_DEFAULT};

ObjDesc.ObjectType = MQOT_TOPIC;
ObjDesc.Version = MQOD_VERSION_4;
ObjDesc.ObjectString.VSPtr = “Price/Fruit/Apples”;
ObjDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

N

O

T

E

S

Publishing Application - Notes

An application that needs to publish a message about a specific topic can do so by opening
that topic and putting a message to it. There is very little difference between an application
that opens a queue then puts a message to it, and one that opens a topic to put a message
to it, so the application code should look very familiar to you.
This similarity in the programming model also allows us to turn a point-to-point application
into a publish/subscribe application without making any code changes at all. We will look at
this in the administration presentation.
Since the object opened for output (MQOO_OUTPUT) is a topic and not a queue, the queue
manager knows to publish the message to all interested parties rather than placing it on a
specific queue.
Let’s look at the MQOD (Object Descriptor) in more detail. You will be familiar with fields
such as the ObjectType and ObjectName that you use today when opening a queue. There
are some differences to the way you use these fields if you are opening a topic rather than a
queue.
As you might guess, the ObjectType where you would place the value MQOT_Q when
opening a queue, will instead have the value MQOT_TOPIC when you are opening a topic
in order to publish a message.
We said earlier that if you wish to use publish/subscribe with WebSphere MQ V7 you do not
require any topic objects to be defined. You can in fact go right ahead and use a topic string
directly in your application. You do this by placing your topic string in the ObjectString field.
We have not mentioned any specific put-message options here. We will look at some
specific publishing ones later, but almost all those that you know for point-to-point
application programming are still applicable.

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <cmqc.h> /* includes for MQI */
 void errorMessage(char* msgStr, MQLONG CC, MQLONG RC)
 {
 printf("%s\nCompletion Code: %d\nReason Code : %d\n",
 msgStr, CC, RC);
 }
 void usageError()
 {
 printf("==\n");
 printf("Parameters for Publisher Program\n");
 printf(" Topic String\n");
 printf(" Queue Manager Name (optional)\n");
 printf("==\n");
 }
 int main(int argc, char **argv)
 {
 FILE * fp = stdin; /* Declare file for sample input */
 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
 MQHCONN hConn = MQHC_UNUSABLE_HCONN; /* connection handle */
 MQHOBJ hObj = MQHO_UNUSABLE_HOBJ; /* object handle */
 MQLONG CompCode, Reason; /* completion and reason code */
 MQLONG OpenOpts; /* MQOPEN options */
 MQLONG messlen; /* message length */
 char buffer[100]; /* message buffer */
 char QMName[50] = {0}; /* queue manager name */

 if (argc < 2)
 {
 usageError();
 return 99;
 }
 if (argc > 2) strcpy(QMName, argv[2]);
 /**/
 /* Connect to queue manager */
 /**/
 MQCONN(QMName, /* queue manager */
 &hConn, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /**/
 /* If connect failed, display error message and exit */
 /**/
 if (CompCode == MQCC_FAILED)
 {
 errorMessage("MQCONN", CompCode, Reason);
 goto MOD_EXIT;
 }

 /**/
 /* Open the target topic for output */
 /**/
 od.ObjectType = MQOT_TOPIC;
 od.Version = MQOD_VERSION_4;
 od.ObjectString.VSPtr = argv[1];
 od.ObjectString.VSLength = MQVS_NULL_TERMINATED;
 OpenOpts = MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING;

 MQOPEN(hConn, /* connection handle */
 &od, /* object descriptor for topic */
 OpenOpts, /* open options */
 &hObj, /* object handle */
 &CompCode, /* MQOPEN completion code */
 &Reason); /* reason code */
 /**/
 /* If open failed, display error message and exit */
 /**/
 if (CompCode == MQCC_FAILED)
 {
 errorMessage("MQOPEN of a topic", CompCode, Reason);
 goto MOD_EXIT;

 }

 /**/
 /* Read lines from the file and publish them on the topic */
 /* Loop until null line or end of file, or there is a failure */
 /**/
 memcpy(md.Format, MQFMT_STRING, MQ_FORMAT_LENGTH);
 pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_NO_SYNCPOINT;

 printf("Enter message text to publish to '%s'\n", argv[1]);
 while (CompCode != MQCC_FAILED)
 {
 if (fgets(buffer, sizeof(buffer), fp) != NULL)
 {
 messlen = (MQLONG)strlen(buffer); /* length without null */
 if (buffer[messlen-1] == '\n') /* last char is a new-line */
 {
 buffer[messlen-1] = '\0'; /* replace new-line with null */
 --messlen; /* reduce buffer length */
 }
 }
 else messlen = 0; /* treat EOF same as null line */

 /**/
 /* Publish each buffer to the topic */
 /**/
 if (messlen > 0)
 {
 MQPUT(hConn, /* connection handle */
 hObj, /* object handle */
 &md, /* message descriptor */
 &pmo, /* default options (datagram) */
 messlen, /* message length */
 buffer, /* message buffer */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /**/
 /* report any failures */
 /**/
 if (CompCode == MQCC_FAILED)
 {
 errorMessage("MQPUT to topic", CompCode, Reason);
 goto MOD_EXIT;
 }
 }
 else break;
 }
MOD_EXIT:
 /**/
 /* Close the target topic (if it was opened) */
 /**/
 if (hObj != MQHO_UNUSABLE_HOBJ)
 {
 MQCLOSE(hConn, /* connection handle */
 &hObj, /* object handle */
 MQCO_NONE,
 &CompCode, /* completion code */
 &Reason); /* reason code */
 if (CompCode == MQCC_FAILED)
 errorMessage("MQCLOSE of topic", CompCode, Reason);
 }

 /**/
 /* Disconnect from Queue Manager */
 /**/
 if (hConn != MQHC_UNUSABLE_HCONN)
 {
 MQDISC(&hConn, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 if (CompCode == MQCC_FAILED)
 errorMessage("MQDISC", CompCode, Reason);
 }
 return(0);
 }

Topic Objects

Not necessary for Publish/Subscribe

Provide an administrative control point for your topic tree
Configuration attributes (including cluster control)
Security profiles
Topic tree isolation

MY.TOPIC.OBJECT

N

O

T

E

S

Topic Objects - Notes

Topic objects are a new construct in WebSphere MQ V7. They can be used to
control the behaviour of your topic tree.
You do not need to define any topic objects in order to use Publish/Subscribe with
WebSphere MQ V7, however you may want to define some if you need to
configure the topic tree to use non-default attributes; if you want to apply different
security profiles to parts of your topic tree; or if you want to isolate you
applications from administrative changes to the topic tree – rather like you do
when you use remote queue and alias queue definitions.
We will look at how applications might use topic objects instead of (or as well as)
topic strings and also how you define these objects and what some of their
attributes mean.

Topic tree isolation

Apples Oranges

strncpy(ObjDesc.ObjectName,
“FRUIT.ANCHOR”,
MQ_TOPIC_NAME_LENGTH);

ObjDesc.ObjectString.VSPtr = “Apples”;
ObjDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

FRUIT.
ANCHOR

Fruit

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(FRUIT.ANCHOR)
TOPICSTR(‘Price/Fruit’)

DEFINE TOPIC(FRUIT.ANCHOR)
TOPICSTR(‘Market Stalls/Hursley/Discount/Price/Fruit’)

N

O

T

E

S

Topic tree isolation - Notes

When developing a Publish/subscribe application you may not yet have fully
designed your topic string hierarchy structure. You may know that your application
needs to deal with the price of fruit (as in our example) and that your topic strings
will all end with ‘...Fruit/Apples’ or ‘...Fruit/Oranges’ but you do not yet know
whether the full topic string will simply be ‘Price/Fruit/...’ or ‘Market
Stalls/Hursley/Discount/Price/Fruit...’ so you wish to avoid hard-coding into your
application a topic string that may change.
You can isolate your application from changes such as this, by providing an
anchor point in the topic tree as a topic object and the portion of the topic string
that your application is designing to be appended to the end.
This isolates you application development from changes in the design of the full
topic tree structure.
We do this by putting the anchor point topic object name in the
MQOD.ObjectName and putting the portion of the topic string that goes on the
end in the MQOD.ObjectString field. By doing this the queue manager will look up
the topic object to find the associated topic string and then concatenate the two
parts together to form your full topic string.

Subscribing Application

MQSUB verb

Subscription Descriptor (MQSD) describes
the topic

MQSD.ObjectString
MQSD.ObjectName

Consume publications from the returned hObj
when MQSO_MANAGED used

MQSUB (hConn,
&SubDesc,
&hObj,
&hSub,
&CompCode,
&Reason);

MQGET (hConn,
hObj,
&MsgDesc,
&gmo,
strlen(pBuffer),
pBuffer,
&DataLength,
&CompCode,
&Reason);

MQSD SubDesc = {MQSD_DEFAULT};
SubDesc.ObjectString.VSPtr = “Price/Fruit/Apples”;
SubDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;
SubDesc.Options = MQSO_CREATE

| MQSO_MANAGED
| MQSO_FAIL_IF_QUIESCING;

N

O

T

E

S

Subscribing Application - Notes

An application that wants to register an interest in information about a certain
topic needs to ‘subscribe’ to that topic. This can be done using the MQ API verb
MQSUB. MQSUB can be thought of rather like MQOPEN. It details the resource
you wish to use, and it is the point where security checks are done.
The main structure that you need to be familiar with when using MQSUB is the
MQSD (subscription descriptor). This structure is where you define the topic you
are interested in; the options to used when making a subscription; and any other
interesting changes to the way the subscription is made.
When specifying the topic string you wish to subscribe for, you have the same
mechanisms available to you that we already discussed on the foil about a
publishing application. You can provide the whole topic string, or an anchoring
topic object which defines a certain point in the topic tree and then the remaining
part of the topic string to be appended to that which the topic object represents.
Once you have successfully done an MQSUB, you can start to consume
publication messages that are now being sent to you.

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <cmqc.h> /* includes for MQI */
 void errorMessage(char* msgStr, MQLONG CC, MQLONG RC)
 {
 printf("%s\nCompletion Code: %d\nReason Code : %d\n",
 msgStr, CC, RC);
 }
 void usageError()
 {
 printf("==\n");
 printf("Parameters for Subscriber Program\n");
 printf(" Topic String\n");
 printf(" Subscription Name\n");
 printf(" Queue Manager Name (optional)\n");
 printf("==\n");
 }
 int main(int argc, char **argv)
 {
 MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 MQHCONN hConn = MQHC_UNUSABLE_HCONN; /* connection handle */
 MQHOBJ hObj = MQHO_UNUSABLE_HOBJ; /* object handle */
 MQHOBJ hSub = MQHO_UNUSABLE_HOBJ; /* subscription handle */
 MQLONG CompCode, Reason; /* completion and reason code */
 MQBYTE buffer[101] = {0}; /* message buffer */
 MQLONG buflen, messlen; /* lengths */
 char QMName[50] = {0}; /* queue manager name */

 if (argc < 3)
 {
 usageError();
 return 99;
 }
 if (argc > 3) strcpy(QMName, argv[3]);
 /**/
 /* Connect to queue manager */
 /**/
 MQCONN(QMName, /* queue manager */
 &hConn, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /**/
 /* If connect failed, display error message and exit */
 /**/
 if (CompCode == MQCC_FAILED)
 {
 errorMessage("MQCONN", CompCode, Reason);
 goto MOD_EXIT;
 }
 /**/
 /* Subscribe using a managed destination queue */
 /**/
 sd.ObjectString.VSPtr = argv[1];
 sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
 sd.SubName.VSPtr = argv[2];
 sd.SubName.VSLength = MQVS_NULL_TERMINATED;
 sd.Options = MQSO_CREATE
 | MQSO_DURABLE /* Need a SubName with this */
 | MQSO_FAIL_IF_QUIESCING
 | MQSO_MANAGED;
 MQSUB(hConn, /* connection handle */
 &sd, /* object descriptor for queue */
 &hObj, /* object handle (output) */
 &hSub, /* object handle (output) */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /**/
 /* If subscribe failed, display error message and exit */
 /**/
 if (CompCode == MQCC_FAILED)
 {
 errorMessage("MQSUB to a topic", CompCode, Reason);

 goto MOD_EXIT;
 }

 /**/
 /* Get messages from the destination queue */
 /* Loop until there is a failure */
 /**/
 gmo.Options = MQGMO_WAIT /* wait for new messages */
 | MQGMO_NO_SYNCPOINT /* no transaction */
 | MQGMO_CONVERT; /* convert if necessary */
 gmo.WaitInterval = 30000; /* 30 second limit for waiting */

 printf("Publications from topic '%s'\n", argv[1]);
 while (CompCode != MQCC_FAILED)
 {
 buflen = sizeof(buffer) - 1; /* buffer size available for GET */
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 MQGET(hConn, /* connection handle */
 hObj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 buflen, /* buffer length */
 buffer, /* message buffer */
 &messlen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /**/
 /* report any failures or display the message received */
 /**/
 if (Reason == MQRC_NO_MSG_AVAILABLE) printf("No more messages\n");
 else if (CompCode == MQCC_FAILED)
 {
 errorMessage("MQGET", CompCode, Reason);
 goto MOD_EXIT;
 }
 else printf("message <%s>\n", buffer);
 }
MOD_EXIT:
 /**/
 /* Close the subscription handle and managed destination handle */
 /**/
 if (hSub != MQHO_UNUSABLE_HOBJ)
 {
 MQCLOSE(hConn, /* connection handle */
 &hSub, /* object handle */
 MQCO_REMOVE_SUB, /* close options */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 if (CompCode == MQCC_FAILED)
 errorMessage("MQCLOSE of subscription", CompCode, Reason);
 }
 if (hObj != MQHO_UNUSABLE_HOBJ)
 {
 MQCLOSE(hConn, /* connection handle */
 &hObj, /* object handle */
 MQCO_NONE, /* close options */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 if (CompCode == MQCC_FAILED)
 errorMessage("MQCLOSE of destination", CompCode, Reason);
 }
 /**/
 /* Disconnect from Queue manager */
 /**/
 if (hConn != MQHC_UNUSABLE_HCONN)
 {
 MQDISC(&hConn, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 if (CompCode == MQCC_FAILED)
 errorMessage("MQDISC", CompCode, Reason);
 }
 return(0);
 }

Subscription operation options

Operation – choose at least one of
MQSO_CREATE
MQSO_RESUME
MQSO_ALTER

Combining them
MQSO_CREATE + MQSO_RESUME

Avoids MQRC_SUB_ALREADY_EXISTS

MQSO_CREATE + MQSO_ALTER

N

O

T

E

S

Subscription operation options - Notes

We’ve already seen examples of MQSO_CREATE. There are two other options,
MQSO_RESUME and MQSO_ALTER. You must choose at least one of these.
MQSO_RESUME can be used to get hold of a previously made subscription – a
durable one – to obtain both the handle to the subscription for later closure, and
the handle to the managed destination if that mode of operation was chosen.
MQSO_ALTER also gives you back the handle to a previously made subscription,
but at the same time alters various properties on the MQSD to new values that
you provide.
These uses are probably fairly obvious, but additionally, you can combine these
options. If you use MQSO_CREATE + MQSO_RESUME, this will create a
subscription if it doesn’t exist and resume it if it does, thus avoiding the need to
code your application to check for MQRC_SUB_ALREADY_EXISTS if it’s not the
first time your application has run. You can similarly combine MQSO_CREATE +
MQSO_ALTER.

Other attributes of a subscription

SubDesc.ObjectString.VSPtr = “Price/Fruit/+”;
SubDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;
SubDesc.SubName.VSPtr = “Selling Fruit”;
SubDesc.SubName.VSLength = MQVS_NULL_TERMINATED;
SubDesc.SubExpiry = 3000;
SubDesc.Options = MQSO_CREATE

| MQSO_DURABLE
| MQSO_MANAGED
| MQSO_WILDCARD_TOPIC
| MQSO_FAIL_IF_QUIESCING;

Durable

Whether a subscription

lives beyond the

application connection

Sub Destination

Where messages are
stored – provided hObj

by app or returned
from queue manager

Wildcard Scheme

MB V6 style - # and +

MQ V6 style - * and ?

ExpiryAutomatically remove

subscriptions after

certain period of time

60¢

80¢

50¢

N

O

T

E

S

Durability of Subscriptions - Notes

By default, subscriptions are made non-durably. This means that when the
application disconnects from the queue manager, the subscription is removed and
no more publications are sent to that subscription.
You can also make a subscription durable. This means that the subscription
continues to exist even while the application is disconnected form the queue
manager; publications that satisfy the subscription continue to be delivered to the
subscription’s destination and are stored there until the subscribing application
reconnects and picks them up.
Whether you use a durable subscription or a non-durable subscription depends
on the requirements of your application.

N

O

T

E

S

API for durable subscriptions - Notes

To make a durable subscription you must use the MQSO_DURABLE option on
MQSUB.
In order for a subscription to be durable you must also provide it with a
subscription name. This is used if you need to refer to the subscription later – for
example when you use the MQSO_RESUME option on MQSUB to reacquire a
handle to the subscription.
If you want to remove a durable subscription you do so by explicitly closing the
handle to the subscription using the MQCO_REMOVE_SUB option on
MQCLOSE.

N

O

T

E

S

Subscription Destinations - Notes

So far we have seen examples of MQSUB using the option MQSO_MANAGED.
This is the option to use when the application wishes the queue manager to look
after the storage of publication messages. On return from the MQSUB call your
application is given two handles, an hSub and an hObj. hSub is the handle to the
subscription which, as we have just seen, can be used to MQCLOSE the
subscription when you are finished with it. The hObj is the handle which you can
consume publications from, i.e. using MQGET.
You can also request that the queue manager place the messages on a specific
queue instead. To do this, you provide the MQSUB call with an hObj on input, so
you must first MQOPEN the queue you wish to use, provide the resultant handle
to the MQSUB and then you can consume from that queue.

N

O

T

E

S

Wildcards - Notes

So far we have only seen examples of using MQSUB to subscribe to an explicit
topic string.
If you design you topic string well, your applications can make use of wildcarded
subscriptions and thus not need any redesign work as new topic strings are
created that did not previously exist in the topic tree.

There are two different wildcard schemes supported in WebSphere MQ V7.
A character based wildcard scheme which copies the way the queued
publish/subscribe interface that existed in WebSphere MQ V6 operated. This uses
‘*’ to replace many characters and ‘?’ to replace one character.
A topic element based wildcard scheme which copies the way WebSphere
Message Broker operated. This uses ‘#’ to replace many elements (an element is
considered to be the text between ‘/’ characters) and ‘+’ to replace a single
element.
You can choose to use either scheme in your subscriptions using the options
MQSO_WILDCARD_CHAR or MQSO_WILDCARD_TOPIC. The default is
MQSO_WILDCARD_TOPIC.

N

O

T

E

S

Subscription expiration - Notes

We have already seen two different ways in which subscriptions can be removed
from the queue manager:-

– Connection loss for non-durable subscriptions

– Administrative DELETE SUB command (see later)

– MQCLOSE with MQCO_REMOVE_SUB

There is one other way that a subscription can be removed and this is expiry.
When a subscription is made you can set the desired expiry of the subscription
and after that interval has passed the subscription will be removed from the queue
manager.

FRUIT

Topic Security

Authority check on topic objects
“Walk up the tree”
May be more than one check

Authority check on destination queue
When not using MQSO_MANAGED
Check is for PUT to that queue

Price

Fruit

Apples Oranges

SYSTEM.BASE.TOPIC

MQSUB
‘Price/Fruit/Apples’
Using Q1
MQGET (Q1)

Q1

N

O

T

E

S

Topic Security

When MQOPENing a topic (MQOT_TOPIC) for MQOO_OUTPUT – that is, in
order to publish, or when making an MQSUB call to subscribe to a topic, a
security check is done to see if your user ID has authority to use that topic.
In our example we have called MQSUB at the point in the topic tree,
“Price/Fruit/Apples”. There is no topic object at this point in the topic tree, so to
find the profile we need to check authorities against we walk up the topic tree to
find a node which does have a topic object. The next point is “Price/Fruit”. This
does have a topic object, FRUIT, so we will check that this user ID has subscribe
authority on the profile for the FRUIT topic. If that user ID does have authority, our
search stops there. If it does not, we carry on searching up the topic tree and will
check the SYSTEM.BASE.TOPIC to see if this user ID has subscribe authority
there.
An additional authorisation check is done for an MQSUB call when the application
wishes to use a specific destination queue (i.e. is not using the
MQSO_MANAGED option). In this case we also check that this user ID has
authority to PUT to that destination queue.

Security on MQSUB call

Alternate user ID
MQSO_ALTERNATE_USER_

AUTHORITY

User IDs sharing subs
MQSO_FIXED_USERID
MQSO_ANY_USERID

Set Identity context
Owning user ID
MQSD.PubAccountingToken
MQSD.PubApplIdentityData

Message descriptor (MQMD)

Identity
Context

Identity Context
UserIdentifier
AccountingToken
ApplIdentityData

Origin
Context

Origin Context
PutApplType
PutApplName
PutDate
PutTime
ApplOriginData

Starting MQSC for queue manager TEST1.

DISPLAY SBSTATUS(*) ALL
1 : DISPLAY SBSTATUS(*) ALL

AMQ8099: WebSphere MQ subscription status inquired.
SUB(Selling Apples)
SUBID(414D5120544553543120202020202020F28FBD4720002204)
SUBUSER(hughson) RESMDATE(2008-02-21)
RESMTIME(14:55:47) LMSGDATE(2008-02-21)
LMSGTIME(14:56:01)
ACTCONN(414D5143544553543120202020202020F28FBD4720002201)
DURABLE(NO) NUMMSGS(1)
SUBTYPE(API)

N

O

T

E

S

Security on MQSUB call - Notes

An MQSUB call will only be successful if you have authority to the part of the topic tree you
are trying to use, and if you are providing the hObj to the queue manager, have access to
PUT messages to the queue. This is covered in more detail in another presentation on MQ
Security. However, there are several options and fields in the MQSUB API call which are
also relevant to security that we shall coverhere.
In the same way that you can with MQOPEN, you can use an Alternate user ID on MQSUB.
You provide the user ID in the MQSD.AlternateUserId field (and on Windows you may also
use the MQSD.AlternateSecurityId field). As with MQOPEN you must have authority to user
alternate user IDs to be allowed to do this. The option
MQSO_ALTERNATE_USER_AUTHORITY indicates you want to do this.
When you make a subscription you can choose whether you are willing to share it with
another user. Only one user can have a handle to a subscription at a time, but if you use the
option MQSO_FIXED_USERID, no other user ID can resume the subscription when you are
not using it. The opposite is to say MQSO_ANY_USERID. The default is
MQSO_FIXED_USERID. You can see who the owner of a subscription is using MQSC
display commands, or equivalent.
When making a subscription you can choose to set your identity context fields for
publications that are sent to you. The option MQSO_SET_IDENTITY_CONTEXT indicates
you want to do this and then the MQSD. PubAccountingToken and
MQSD.PubApplIdentityData fields become input fields. The other identity context field is
your user ID (which may be an alternate one from above). As with MQOPEN you must have
appropriate authority to be able to set your identity context.

Base topic Object

Price

Fruit

Apples Oranges

Vegetables

Potatoes Onions

SYSTEM.BASE.TOPIC

N

O

T

E

S

Base topic object

By default there exists a base topic object, the SYSTEM.BASE.TOPIC that
contains all the settings for topic object behaviour. If you define no other topic
objects in your system, the behaviour will be taken from this topic object. If you
want your whole topic tree to behave in the same way and have no need for any
other topics, you can alter this object to have the behaviour you require.
If you delete this object, the queue manager will act as if the
SYSTEM.BASE.TOPIC was defined with the default attributes that come out of
the box. If you need to change that behaviour, you will first need to re-define this
object again.

FRUIT

Defining a topic object

Price

Fruit

Apples Oranges

SYSTEM.BASE.TOPIC

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(FRUIT)
TOPICSTR(‘Price/Fruit’) DURSUB(NO)

DISPLAY TOPIC(FRUIT)
AMQ8633: Display topic details.

TOPIC(FRUIT) TYPE(LOCAL)
TOPICSTR(Price/Fruit) DESCR()
CLUSTER() DURSUB(NO)
PUB(ASPARENT) SUB(ASPARENT)
DEFPSIST(ASPARENT) DEFPRTY(ASPARENT)
DEFPRESP(ASPARENT) ALTDATE(2008-02-26)
ALTTIME(15.05.22) PMSGDLV(ASPARENT)
NPMSGDLV(ASPARENT) PUBSCOPE(ASPARENT)
SUBSCOPE(ASPARENT) PROXYSUB(FIRSTUSE)
WILDCARD(PASSTHRU) MDURMDL()
MNDURMDL()

DEFINE TOPIC

ALTER TOPIC

DELETE TOPIC

DISPLAY TOPIC

N

O

T

E

S

Defining a topic object - Notes

Let’s say you need to disallow to creation of durable subscriptions for one half of
the topic tree. We can create one TOPIC object at the highest point where we
need this behaviour to start, and that behaviour will be inherited by the nodes in
the topic tree below that point without the need for any further TOPIC object
definitions.
As you might expect, this new object type has DEFINE, ALTER, DELETE and
DISPLAY commands. One thing to note about ALTER is that the TOPICSTR
parameter of a TOPIC object cannot be altered. Think of this attribute as the other
name of the TOPIC object – you cannot alter the name of an object, you must
delete and redefine an object to do that.
Looking at the DISPLAY output from the object we just defined, we can see that
many of the attributes that we didn’t specify have the value ASPARENT (or for the
character strings – have blanks, which means the same thing as the ASPARENT
value). ASPARENT means that the value for this attribute is taken from the next
TOPIC object found by walking up the topic tree. If the next TOPIC object found
also says ASPARENT for the value that is being resolved we carry on up the tree
– eventually we may get to the very top and thus use the values in the
SYSTEM.BASE.TOPIC.

DEFINE TOPIC
 +-TYPE(LOCAL)-+
>>--DEFINE TOPIC(topic-name)–-----+-------------+------- TOPICSTR(string)----->

 +-CMDSCOPE(‘ ‘)-------+ (2) +-QSGDISP(QMGR)--+ (2)
>---+---------------------+-------+----------------+-------------------------->
 | (1) | | (1) |
 +-CMDSCOPE(qmgr-name)-+ +-QSGDISP(COPY)--+
 | (1) | | (1) |
 +-CMDSCOPE(*)---------+ +-QSGDISP(GROUP)-+

>--+------------------+--+-----------------+---------------------------------><
 +-| define attrs |-+ +-| topic attrs |-+

Define attrs:
 +-NOREPLACE-+
|--+------------------+--+-----------+-------------------------|
 +-LIKE(topic-name)-+ +-REPLACE---+

Topic attrs:
 +-CLUSTER(‘ ‘)----------+ +-DEFPRTY(ASPARENT)-+ +DEFPSIST(ASPARENT)--+
|--+-----------------------+--+-------------------+---+--------------------+-->
 +-CLUSTER(cluster-name)-+ +-DEFPRTY(integer)--+ +DEFPSIST(-+-NO--+-)-+
 +-YES-+

 +-DEFPRESP(ASPARENT)----+ +-DESCR(‘ ‘)----+ +-DURSUB(ASPARENT)--+
>--+-----------------------+---+---------------+--+-------------------+------->
 +-DEFPRESP(-+-SYNC--+-)-+ +-DESCR(string)-+ +-DURSUB(-+-YES-+-)-+
 +-ASYNC-+ +-NO--+
 +-NONE--+

 +-MDURMDL(‘ ‘)----+ +-MNDURMDL(‘ ‘)----+
>--+-----------------+--+------------------+---------------------------------->
 +-MDURMDL(q-name)-+ +-MNDURMDL(q-name)-+

 +-NPMSGDLV(ASPARENT)-------+ +-PMSGDLV(ASPARENT)-------+
>--+--------------------------+---+-------------------------+----------------->
 +-NPMSGDLV(-+-ALL------+-)-+ +-PMSGDLV(-+-ALL------+-)-+
 +-ALLDUR---+ +-ALLDUR---+
 +-ALLAVAIL-+ +-ALLAVAIL-+

 +-PROXYSUB(FIRSTUSE)-+ +-PUB(ASPARENT)-------+ +-PUBSCOPE(ASPARENT)---+
>--+--------------------+--+---------------------+--+----------------------+-->
 +-PROXYSUB(FORCE)----+ +-PUB(-+-ENABLED--+-)-+ +-PUBSCOPE(-+-QMGR-+-)-+
 +-DISABLED-+ +-ALL--+

 +-SUB(ASPARENT)-------+ +-SUBSCOPE(ASPARENT)---+ +-WILDCARD(PASSTHRU)-+
>--+---------------------+--+----------------------+--+--------------------+---|
 +-SUB(-+-ENABLED--+-)-+ +-SUBSCOPE(-+-QMGR-+-)-+ +-WILDCARD(BLOCK)----+
 +-DISABLED-+ +-ALL--+

Notes:
1. Valid only on z/OS when the queue manager is a member of a queue-sharing group.
2. Valid only on z/OS.

FRUIT

Resolving ASPARENT

Price

Fruit

Apples Oranges

Starting MQSC for queue manager TEST1.

DIS TPSTATUS(‘Price/Fruit’)
AMQ8754: Display topic status details.

TOPICSTR(Price/Fruit) ADMIN(FRUIT)
MDURMDL(SYSTEM.DURABLE.MODEL.QUEUE)
MNDURMDL(SYSTEM.NDURABLE.MODEL.QUEUE)
DEFPSIST(NO) DEFPRTY(0)
DEFPRESP(SYNC) DURSUB(NO)
PUB(ENABLED) SUB(ENABLED)
PMSGDLV(ALLDUR) NPMSGDLV(ALLAVAIL)
RETAINED(NO) PUBCOUNT(0)
SUBCOUNT(0) PUBSCOPE(ALL)
SUBSCOPE(ALL)

DISPLAY TPSTATUS

N

O

T

E

S

Resolving ASPARENT - Notes

In order to see what the real values being used for the attributes that have the
value ASPARENT, you can use the DISPLAY TPSTATUS command.
This command takes a topic string, not a topic object as its input. This means you
can find the actual values that are going to be used at any point in the topic tree –
not just at those points which have defined TOPIC objects.

DISPLAY TPSTATUS
>>--DISPLAY TPSTATUS(topic-string)–--+--------------------------+--+-----+---->
 +-WHERE(-FilterCondition-)-+ +-ALL-+

 +-CMDSCOPE(‘ ‘)-------+ (2) +-TYPE(TOPIC)-+
>---+---------------------+-------+-------------+----------------------------->
 | (1) | +-TYPE(SUB)---+
 +-CMDSCOPE(qmgr-name)-+ +-TYPE(PUB)---+
 | (1) |
 +-CMDSCOPE(*)---------+

>--+------------------+--+----------------+--+----------------+--------------><
 +-| topic status |-+ +-| sub status |-+ +-| pub status |-+

Topic status:
|--+------------------+---|
 | +-,------------+ |
 | V | |
 +---+-ADMIN----+-+-+
 +-DEFPRESP-+
 +-DEFPRTY--+
 +-DEFPSIST-+
 +-DURSUB---+
 +-MDURMDL--+
 +-MNDURMDL-+
 +-NPMSGDLV-+
 +-PMSGDLV--+
 +-PUB------+
 +-PUBCOUNT-+
 +-PUBSCOPE-+
 +-RETAINED-+
 +-SUB------+
 +-SUBCOUNT-+
 +-SUBSCOPE-+

Sub status:
|--+------------------+---|
 | +-,------------+ |
 | V | |
 +---+-ACTCONN--+-+-+
 +-DURABLE--+
 +-LMSGDATE-+
 +-LMSGTIME-+
 +-NUMMSGS--+
 +-RESMDATE-+
 +-RESMTIME-+
 +-SUBID----+
 +-SUBTYPE--+
 +-SUBUSER--+

Pub status:
|--+------------------+---|
 | +-,------------+ |
 | V | |
 +---+-ACTCONN--+-+-+
 +-LPUBDATE-+
 +-LPUBTIME-+
 +-NUMPUBS--+

Notes:
1. Valid only on z/OS when the queue manager is a member of a queue-sharing group.
2. Valid only on z/OS.

FRUIT

Administration for Publishers

Price

Fruit

Apples Oranges

Starting MQSC for queue manager TEST1.

DIS TPSTATUS('Price/Fruit/+') TYPE(PUB) all
AMQ8754: Display topic status details.

TOPICSTR(Price/Fruit/Oranges) LPUBDATE(2008-02-26)
LPUBTIME(16:50:44)
ACTCONN(414D5143544553543120202020202020832AC44720005E02)
NUMPUBS(3)

AMQ8754: Display topic status details.
TOPICSTR(Price/Fruit/Apples) LPUBDATE(2008-02-26)
LPUBTIME(16:50:37)
ACTCONN(414D5143544553543120202020202020832AC44720007601)
NUMPUBS(1)

TOPIC attributes

DEFPRTY
DEFPSIST
DEFPRESP
PUB
PUBSCOPE
PMSGDLV
NPMSGDLV

MQOPEN
‘Price/Fruit/Apples’

MQPUT

MQOPEN
‘Price/Fruit/Oranges’

MQPUT
MQPUT
MQPUT

Connection ID links to
DISPLAY CONN

N

O

T

E

S

Administration for Publishers - Notes

There are a few attributes on the topic object that are relevant to publishers. We will look at
those here along with the topic status display that shows information about publishers.
There are various options on MQPUT that can be left to resolve from the object that was
opened. Priority, Persistence and Asynchronous Put Response (new in V7 – discussed in
another presentation). Using MQPRI_PRIORITY_AS_TOPIC_DEF,
MQPER_PERSISTENCE_AS_TOPIC_DEF and MQPMO_RESPONSE_AS_TOPIC_DEF
(all of which constants have the same numeric value as their equivalent AS_Q_DEF
constants) means that that the actual value is resolved from the topic object.
The TOPIC attribute PUB determines whether publishing is allowed at this point in the topic
tree. If set to DISABLED, an MQPUT call will fail with MQRC_PUT_INHIBITED.
PUBSCOPE will be discussed later when we cover “Distributed Publish/Subscribe”.
PMSGDLV and NPMSGDLV will be covered later when we talk about configuring behaviour
for publication failures.
As already discussed, with the resolution of ASPARENT values, the object that finally
resolved the value may be further up the topic tree than the point at which you are
publishing.
Using DISPLAY TPSTATUS TYPE(PUB) you can see the details of the current publishers
on this topic string. One of the attributes returned is the Active Connection ID (ACTCONN)
which links to DISPLAY CONN which shows you the details about that specific application.

Monitoring your Application subscriptions

FRUIT

Price

Fruit

Apples Oranges

DIS TPSTATUS('Price/Fruit/+') TYPE(SUB) ALL
AMQ8754: Display topic status details.

TOPICSTR(Price/Fruit/Oranges)
SUBID(414D5120544553543120202020202020832AC44720013D07)
SUBUSER(hughson) RESMDATE(2008-02-26)
RESMTIME(18:53:35) LMSGDATE(2008-02-26)
LMSGTIME(18:53:41) DURABLE(NO)
ACTCONN(414D5143544553543120202020202020832AC44720013D05)
NUMMSGS(2) SUBTYPE(API)

AMQ8754: Display topic status details.
TOPICSTR(Price/Fruit/Apples)
SUBID(414D5120544553543120202020202020832AC44720013D07)
SUBUSER(hughson) RESMDATE(2008-02-26)
RESMTIME(18:53:35) LMSGDATE(2008-02-26)
LMSGTIME(18:53:41) DURABLE(NO)
ACTCONN(414D5143544553543120202020202020832AC44720013D05)
NUMMSGS(2) SUBTYPE(API)

MQSUB
‘Price/Fruit/+’
MQGET

Connection ID links to
DISPLAY CONN

Subscription ID links to
DISPLAY SBSTATUS
and
DISPLAY SUB

TOPIC attributes

DURSUB
SUB
SUBSCOPE
PROXYSUB
WILDCARD

N

O

T

E

S

Monitoring your Application subscriptions - Notes

There are a few attributes on the topic object that are relevant to subscribers. We
will look at those here along with the topic status display that shows information
about subscribers.
The TOPIC attribute DURSUB determines whether the creation of durable
subscriptions is allowed at this point in the topic tree. If set to NO, and MQSUB
using MQSO_DURABLE will fail with MQRC_DURABILITY_NOT_ALLOWED.
The attribute SUB determines whether subscribing is allowed at this point in the
topic tree at all. If set to DISABLED, an MQSUB call will fail with
MQRC_SUB_INHIBITED. SUBSCOPE and PROXYSUB will be discussed later
when we cover “Distributed Publish/Subscribe”. WILDCARD is a special attribute
to block the propagation of subscriptions to very generic wildcarded subscriptions,
such as MQSUB(‘#’) where you don’t really want portions of your topic tree
exposed to such subscribers. It doesn’t have an ASPARENT value as it only
applies at that specific point in the topic tree.
As already discussed, with the resolution of ASPARENT values, the object that
finally resolved the value may be further up the topic tree than the point at which
you are publishing.

Subscriptions – two perspectives

FRUIT

Price

Fruit

Apples Oranges

DIS TPSTATUS('Price/Fruit/+') TYPE(SUB) ALL
AMQ8754: Display topic status details.

TOPICSTR(Price/Fruit/Oranges)
SUBID(414D5120544553543120202020202020832AC44720013D07)
SUBUSER(hughson) DURABLE(NO)
ACTCONN(414D5143544553543120202020202020832AC44720013D05)
NUMMSGS(2) SUBTYPE(API)

DIS SBSTATUS SUBID(414D5120544553543120202020202020832AC44720
AMQ8099: WebSphere MQ subscription status inquired.

SUB(Fruit Prices)
SUBID(414D5120544553543120202020202020832AC44720013D07)
SUBUSER(hughson)
ACTCONN(414D5143544553543120202020202020832AC44720013D05)
DURABLE(NO) NUMMSGS(5)
SUBTYPE(API)

MQSUB
‘Price/Fruit/+’
MQGET

N

O

T

E

S

Subscriptions – two perspectives - Notes

Using DISPLAY TPSTATUS TYPE(SUB) you can see the details of the current
publishers on this topic string. One of the attributes returned is the Active
Connection ID (ACTCONN) which links to DISPLAY CONN which shows you the
details about that specific application. You’ll note that our single subscription to
‘Price/Fruit/+’ has shown up subscribers on two topic strings. This is because this
display is shown from the perspective of the topic string. The Subscription ID
(SUBID) links to DISPLAY SBSTATUS where we will see a single subscription
with that ID since the perspective of that display is the subscription.

DISPLAY SBSTATUS

>>--DISPLAY SBSTATUS-+-(generic-name)-+--+--------------------------+--+-----+->
 +-SUBID(string)--+ +-WHERE(-FilterCondition-)-+ +-ALL-+

 +-DURABLE(---ALL---)-+ +-SUBTYPE(---USER----)-+
>---+--------------------+----+----------------------+------------------------->
 +-DURABLE(-+-NO--+-)-+ +-SUBTYPE(-+-PROXY-+-)-+
 +-YES-+ +-ADMIN-+
 +-API---+
 +-ALL---+

 +-CMDSCOPE(‘ ‘)-------+ (2)
>---+---------------------+-------+------------------+------------------------><
 | (1) | +-| status attrs |-+
 +-CMDSCOPE(qmgr-name)-+
 | (1) |
 +-CMDSCOPE(*)---------+

Status attributes:
 +-,------------+
 V |
|----+------------+---|
 +-ACTCONN--+
 +-DURABLE--+
 +-LMSGDATE-+
 +-LMSGTIME-+
 +-NUMMSGS--+
 +-SUBTYPE--+
 +-RESMDATE-+
 +-RESMTIME-+

Notes:
1. Valid only on z/OS when the queue manager is a member of a queue-sharing group.
2. Valid only on z/OS.

Configuring managed destinations

FRUIT

Price

Fruit

Apples Oranges

Durable Model
DEFTYPE(PERMDYN)

Non-durable Model
DEFTYPE(TEMPDYN)

MQSUB
‘Price/Fruit/+’
MQSO_MANAGED
MQSO_DURABLE
MQGET

TOPIC attributes

MDURMDL(SYSTEM.DURABLE.MODEL.QUEUE)
MNDURMDL(SYSTEM.NDURABLE.MODEL.QUEUE)

SYSTEM.BASE.TOPIC

SYSTEM.MANAGED.DURABLE.47C42A83095D0220

Starting MQSC for queue manager TEST1.

DIS SUB(*)
AMQ8096: WebSphere MQ subscription inquired.

SUBID(414D5120544553543120202020202020832AC44720028105)
SUB(Fruit Prices) TOPICSTR(Price/Fruit/+)
DEST(SYSTEM.MANAGED.DURABLE.47C42A8304810220)
DESTQMGR(TEST1)
DESTCLAS(MANAGED) DURABLE(YES)
SUBTYPE(API)

N

O

T

E

S

Configuring managed destinations - Notes

If your applications are using managed destinations for delivery of their publications, the
queue that publications reside upon is not something the application has to worry about, but
an administrator may wish to configure things about this queue. Managed destinations are
dynamic queues and are created based on the model queue defined at the specific point in
the topic tree. The SYSTEM.BASE.TOPIC defines the two model queues (one for durable
subscriptions and one for non-durable subscriptions) as
SYSTEM.DURABLE.MODEL.QUEUE and SYSTEM.NDURABLE.MODEL.QUEUE. These
names are provided in the MDURMDL and MNDURMDL keywords on the TOPIC object
definition.
If you don’t define any TOPIC objects with model queues in these attributes then all TOPIC
objects will inherit these attributes from the SYSTEM.BASE.TOPIC. If you want to over-ride
these models at different points in the tree, there is one thing to remember. The model for
the durable subscriber (MDURMDL) must be Permanent Dynamic. The model for the non-
durable subscriber should be Temporary Dynamic.
The dynamic queues created for subscribers using MQSO_MANAGED or
DESTCLAS(MANAGED) will have a stem of SYSTEM.MANAGED.DURABLE or
SYSTEM.MANAGED.NDURABLE depending on the durability of the subscription using it.
You can see the queue name being used in DISPLAY SUB and DISPLAY CONN. We will
look at the changes in DISPLAY CONN in detail a little later.

Creating administrative subscriptions

FRUIT

Price

Fruit

Apples Oranges

Starting MQSC for queue manager TEST1.

DEFINE SUB(APPLES.TO.Q1)
TOPICSTR(‘Price/Fruit/Apples’)
DEST(Q1)

MQGET
(Q1)

DEFINE SUB

ALTER SUB

DELETE SUB

DISPLAY SUB

N

O

T

E

S

Creating administrative subscriptions - Notes

You don’t have to create subscriptions by coding applications to use MQSUB, you
can create them administratively. This means that you can take an application
that is coded simply to MQGET from a specific queue and have it consume
publications by creating an administrative subscription that sends publications to
the queue it is getting from.
There are DEFINE, ALTER, DELETE and DISPLAY commands for SUB.
DELETE SUB may be useful in tidying up durable subscriptions that applications
have made and forgotten about – i.e. not called MQCLOSE for them when they
were finished with them.
One thing to note about subscriptions is the SUBTYPE field. If the subscription
was created from an application issued MQSUB it will be SUBTYPE(API) but if it
were created through an administrative command it will be SUBTYPE(ADMIN).

We will look at DISPLAY SUB a little later.

DEFINE SUB
 +-DESTCLAS(PROVIDED)-+
>>--DEFINE SUB(sub-name)–-DEST(q-name)--+--------------------+---------------->
 +-DESTCLAS(MANAGED)--+

 +-CMDSCOPE(‘ ‘)-------+ (2)
>---+---------------------+----+---------------------+--+------------------+-->
 | (1) | +-DESTCORL(correl-id)-+ +-DESTQMGR(string)-+
 +-CMDSCOPE(qmgr-name)-+
 | (1) |
 +-CMDSCOPE(*)---------+

 +-EXPIRY(UNLIMITED)-+ +-PSPROP(---NONE------)-+
|--+-------------------+--+-----------------------+---+-----------------+----->
 +-EXPIRY(integer)---+ +-PSPROP(-+-COMPAT--+-)-+ +-PUBACCT(string)-+
 +-MSGPROP-+
 +-RFH2----+

 +-PUBAPPID(‘ ‘)----+ +-PUBPRTY(---ASPUB-----)-+ +-REQONLY(NO)--+
>--+------------------+---+------------------------+--+--------------+-------->
 +-PUBAPPID(string)-+ +-PUBPRTY(-+-ASQDEF--+-)-+ +-REQONLY(YES)-+
 +-integer-+

 +-SELECTOR(‘ ‘)----+ +-SUBLEVEL(1)-------+ +-SUBSCOPE(ALL)--+
>--+------------------+--+-------------------+--+----------------+------------>
 +-SELECTOR(string)-+ +-SUBLEVEL(integer)-+ +-SUBSCOPE(QMGR)-+

 (3) (3)
>--+------------------+--+------------------+--------------------------------->
 +-TOPICOBJ(string)-+ +-TOPICSTR(string)-+

 +-VARUSER(ANY)---+ +-WSCHEMA(TOPIC)-+
>--+------------------+--+----------------+--+----------------+---------------|
 +-USERDATA(string)-+ +-VARUSER(FIXED)-+ +-WSCHEMA(CHAR)--+

Notes:
1. Valid only on z/OS when the queue manager is a member of a queue-sharing group.
2. Valid only on z/OS.
3. At least one of TOPICSTR and TOPICOBJ must be present on DEFINE SUB.

Alias Queues

APPLES

Price

Fruit

Apples Oranges

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(APPLES)
TOPICSTR(‘Price/Fruit/Apples’)

DEFINE QALIAS(PRICES)
TARGTYPE(TOPIC)
TARGET(APPLES)

MQPUT
(PRICES)

PRICES

N

O

T

E

S

Alias Queues - Notes

In the same way that you can make a point-to-point consumer into a consumer of
publications simply by means of an administrative command, you can also make
a point-to-point producer of messages into a publisher of messages, again by
means of an administrative command.
Changing the queue that the putting application uses into an alias queue which
points to a topic, turns that application into a publishing application.
Creating an administrative subscription (as we have just seen) and requesting
that publication are sent to the original getting application’s queue joins the two
original application up again, but now via publish/subscribe.
One thing to note, this will only work if the point-to-point producer and point-to-
point consumer were not previously using exactly the same physical queue. If
they were you might first want to convert the putter to use an alias queue
targeting the getters queue, and then from there convert to publish/subscribe.
Now that you are using publish/subscribe, other interested parties can also
subscribe to this topic without conflict on the getting queue or complicated logic in
the putting application.

DISPLAY CONN additions

Starting MQSC for queue manager TEST1.

DIS CONN(832AC44720031B01) TYPE(ALL)
AMQ8276: Display Connection details.

CONN(832AC44720031B01)
EXTCONN(414D5143544553543120202020202020)
APPLTAG(D:\q.exe) APPLTYPE(USER)
ASTATE(NONE) CONNOPTS(MQCNO_SHARED_BINDING)
USERID(hughson)

OBJNAME() OBJTYPE(TOPIC)
OPENOPTS(MQOO_OUTPUT,MQOO_FAIL_IF_QUIESCING)
HSTATE(INACTIVE) READA(NO)
TOPICSTR(Price/Fruit/Apples)

Starting MQSC for queue manager TEST1.

DIS CONN(832AC44720032101) TYPE(HANDLE)
AMQ8276: Display Connection details.

CONN(832AC44720032101)

OBJNAME() OBJTYPE(TOPIC)
DEST(SYSTEM.MANAGED.DURABLE.47C42A8305820320)
DESTQMGR(TEST1) SUBNAME(Fruit Prices)
SUBID(414D5120544553543120202020202020832AC44720032103)
TOPICSTR(Price/Fruit/+)

OBJNAME(SYSTEM.MANAGED.DURABLE.47C42A8305820320)
OBJTYPE(QUEUE)
OPENOPTS(MQOO_INPUT_EXCLUSIVE,MQOO_BROWSE,MQOO_INQUIRE)
HSTATE(ACTIVE) READA(NO)

N

O

T

E

S

DISPLAY CONN additions - Notes

DISPLAY CONN provides information about the applications connected to the
queue manager and the handles that they have open.
When an application opens a topic to publish messages to it, you will see this
open object handle in DISPLAY CONN.
When an application subscribes to a topic to receive publications, it is returned a
handle to the subscription which you will see in DISPLAY CONN. If the
subscription was made using the option MQSO_MANAGED, the handle to the
subscription destination queue that has been created by the queue manager for
this subscribing application can also be seen in DISPLAY CONN.
This foils shows some examples of these displays.

QM3

QM2

QM1

MQSUB
‘Price/Fruit/+’

MQGET

Publish/Subscribe Topologies

Local Queuing -> Distributed Queuing

Publish/Subscribe -> Distributed Publish/Subscribe

Application API calls remain the same

Administration changes have the effect

MQOPEN
‘Price/Fruit/Apples’

MQPUT

MQSUB
‘Price/Fruit/+’

MQGET

N

O

T

E

S

Publish/Subscribe Topologies - Notes

In this presentation we have concentrated on the publish/subscribe API and
Administration within a single queue manager. Of course, just as queuing can be
on a single queue manager or can be moving messages between multiple queue
managers – known as distributed queuing – so can publish/subscribe. We call this
distributed publish/subscribe.
This is the concept (and the features to implement it) that an application may be
publishing to a topic on QM1 and other applications may be subscribing on that
topic on others queue managers, here QM2 and QM3, and the publication
message needs to flow to those other queue managers to satisfy those
subscribers.
The application code stays the same, you sill call MQSUB or MQOPEN and
MQPUT, the difference, as with distributed queuing is in the administrative set-up
of your queue managers.
We are going to look at the different ways you can set up your queue managers to
publish messages to another queue manager.

Pub/Sub Clusters

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(APPLES)
TOPICSTR(‘Price/Fruit/Apples’)
CLUSTER(DEMO)

DISPLAY SUB(*) SUBTYPE(PROXY) ALL
1 : DISPLAY SUB(*) SUBTYPE(PROXY) ALL

AMQ8096: WebSphere MQ subscription inquired.
SUBID(414D5120514D312020202020202020204F57864820000F02)
SUB(SYSTEM.PROXY.QM2 DEMO Price/Fruit/Apples)
TOPICSTR(Price/Fruit/Apples) TOPICOBJ()
DEST(SYSTEM.INTER.QMGR.PUBS) DESTQMGR(QM2)
DESTCLAS(PROVIDED) DURABLE(YES)
SUBSCOPE(ALL) SUBTYPE(PROXY)

’

MQPUT

’

MQSUB ’

MQSUB

TOPIC attributes

CLUSTER
SUBSCOPE
PUBSCOPE
PROXYSUB

N

O

T

E

S

Pub/Sub Clusters - Notes

A pub/sub cluster is a cluster of queue managers, with the usual CLUSRCVR and CLUSSDR definitions,
but that also contains a TOPIC object that has been defined in the cluster.
With a cluster you have “any-to-any” connectivity. There are direct links between all queue managers in
the cluster. This provides good availability for the delivery of messages, if one route is unavailable, there
may well be another route to deliver the messages to the target subscription.
With a TOPIC object defined in the cluster, an application connected to one queue manager in the cluster
can subscribe to that topic or any node in the topic tree below that topic and receive publications on that
topic from other queue managers in the cluster.
This is achieved by the creation of proxy subscriptions on the queue managers in the cluster, so that
when a publication to the topic in question happens on their queue manager, they know to forward it to
the appropriate other members of the cluster.
You can view these proxy subscriptions through the same commands we saw earlier. By default proxy
subscriptions are not shown to you because the default value for SUBTYPE is USER. If you use
SUBTYPE(ALL) or SUBTYPE(PROXY) you will see these subscriptions.
There are a few attributes that are specifically related to Distributed Publish/Subscribe. PUBSCOPE and
SUBSCOPE determine whether this queue manager propagates publications to queue managers in the
topology (pub/sub cluster or hierarchy) or restricts the scope to just its local queue manager. You can do
the equivalent job programmatically using MQPMO_SCOPE_QMGR / MQSO_SCOPE_QMGR.
PROXYSUB is an attribute that controls when proxy subscriptions are made. By default it has value
FIRSTUSE and thus proxy subscriptions are only created when a user subscription is made to the topic.
Alternatively you can have the value FORCE which means proxy subscriptions are made even when no
local user subscriptions exist.

Hierarchies

’

MQSUB

’

MQPUT

Starting MQSC for queue manager TEST1.

ALTER QMGR PARENT(TEST2) PSMODE(ENABLED)

DISPLAY PUBSUB ALL
5 : DISPLAY PUBSUB ALL

AMQ8723: Display pub/sub status details.
QMNAME(TEST1) TYPE(LOCAL)
STATUS(ACTIVE)

AMQ8723: Display pub/sub status details.
QMNAME(TEST2) TYPE(PARENT)
STATUS(ACTIVE)

QMGR attributes

PARENT
PSMODE

DISPLAY PUBSUB

TOPIC attributes

SUBSCOPE
PUBSCOPE
PROXYSUB

N

O

T

E

S

Hierarchies - Notes

A hierarchy is a parent/child related set of queue managers. It has less availability
than a pub/sub cluster as the availability of an intermediate queue manager has
an impact on the connectivity of other queue managers and thus the delivery of
publications to satisfy subscribers.
It is however a solution that scales well due to the fact that there are less
connections overall without the all-to-all connectivity that the pub/sub cluster
provides.
In order to set up a hierarchy you nominate your parent queue manager using
ALTER QMGR PARENT(queue-manager-name). You don’t need to nominate
children, this can be worked out from the fact that they have nominated you as
their parent. You can display details about your parent and children queue
managers using the DISPLAY PUBSUB command.
The same topic attributes we looked at on the pub/sub cluster page also apply to
hierarchies.

Comparison
Publish/Subscribe Cluster vs Hierarchies

Similar to WebSphere Message Broker
Collectives

Scalability limited to cluster sizes that can
cope with the all-to-all cluster connectivity

Availability – Direct links between queue
managers

Flexible, low cost administration
Cluster Auto-definition

Control flow of
pubs and
subs by
topic
def

Similar to WebSphere MQ V6 hierarchies
Interoperable with them

Very scalable

Lack of availability if intermediate queue manager
or connections to it fail

Highly available hub and spokes

Inflexible
Channels must exist
Transmit queues of same
name as remote queue
manager

Control flow of pubs
and subs by existence
of control queues

N

O

T

E

S

Comparison - Notes

Pub/sub clusters and hierarchies provide different benefits. You should choose
the appropriate topology that gives you the benefits you need.
Pub/sub clusters are very similar to the Message Broker collectives topology in
that you have any-to-any connectivity, a fully-connected set. In fact the queue
managers are connected together with all-to-all connectivity which means that all
the queue managers in the cluster will have channels running to all the other
queue managers in the cluster. This may limit the scalability of this solution, with
the number of channels being the gating factor. It is however a very available
solution since to one queue manager is a bottle-neck or single point of failure for
the cluster. It also provides the same benefits of clustering that you get for queued
clusters, that of reduces administration definitions.
Hierarchies are very similar to, and interoperable with, WebSphere MQ V6
Queued Pub/Sub hierarchies. They have interconnection only between parent
and child queue managers and so the loss of one queue manager, or connectivity
to it, can cause a break in the link for other queue managers. Less availability
therefore, but more scalable as less channels are needed for each queue
manager. It is less flexible and definitions (channels and transmit queues) need to
be set up manually.

Summary - WebSphere MQ Publish/Subscribe

Application Programming

Publishing
MQPUT to topic

Object Descriptor (MQOD) extended for
use with topics

New MQPMO option

Subscribing
MQSUB

Subscription Descriptor (MQSD) contains
fields and options to control behaviour

Consume publications

Use MQGET

Or Asynchronous Consume

Administration

Topic tree administration control
TOPIC objects

Also the security control point

No code change Publish/Subscribe
QALIAS pointing at TOPIC
Admin SUB commands

Application Monitoring
DISPLAY CONN updated
New Topic Status and Subscription Status
commands

Topologies
Pub/Sub Clusters
Hierarchies

N

O

T

E

S

Summary - Notes

We have introduced you to the new API verbs, structures and options that allow
you to do Publish and Subscribe from the MQ API.

– Publishers can MQPUT to a topic

– Subscribers can MQSUB to request publications and then MQGET them. We also have MQSUBRQ
to request publications only when we need them.

We have also covered the ways you can configure your topic tree and monitor
you applications’ use of the topic tree.

