
Performing DRD Functions Within an IMS Transaction

John Ganci
Texas Instruments

Thursday, August 11, 2011
Session 9402



Presentation Outline

• Prologue

• Single Point of Control Overview

• Dynamic Resource Definition Overview

• Type-2 Commands Used for DRD

• The Common Service Layer Application Programming Interface

• Implementing Type-2 Commands Within a Transaction

• Sample Transaction Invocations

• Sources of Documentation

• Summary



Prologue

• Texas Instruments allows application developers to request IMS sysgen changes
• Requests are entered using an IMS transaction

• Add, change, and delete programs, transactions, and databases

• Sysgens were originally done once per week

• Real-time IMS resource definitions were mandated

• A user modification was written for IMS 1.3 to manage IMS resource definitions in real time
• Real-time definition (RTD) is the TI name of the provided functionality

• Accessed via a user transaction (IRSREQ) and a “system programmer” transaction (RTDTRAN)

• Add, change, delete; PDIR, DDIR, SMB

• IRSREQ message switches to RTDTRAN

• System programmers can run RTDTRAN directly

• IMS V10 introduced Dynamic Resource Definition (DRD)
• New type-2 IMS commands CREATE, UPDATE, DELETE

• Use SPOC via TSO or batch; no transaction interface provided

• Provides a CSL API to perform IMS commands from a program

• Challenge
• Use the CSL API to replace all the user modified code

• Leave IRSREQ unchanged



Single Point of Control (SPOC) Overview

• Common Service Layer (CSL)

• CSL components; each is a separate address space

• Operations Manager (OM)
• Command entry

• Resource Manager (RM)
• Manage global and IMSplex-wide resources

• Structured Call Interface (SCI)
• Communication between address spaces

• SPOC

• Interfaces between a user and the OM

• Batch, TSO, REXX

• Only the TSO interface is discussed here

• Session 9811 “Using IMS Dynamic Resource Definition (DRD)” 
is a hands-on lab where you can practice using the DRD type-2 
commands



SPOC Overview

• TSO access is via ISPF

• Requires IMS datasets

• SDFSCLST, SDFSDATA, SDFSEXEC, SDFSMLIB, SDFSPLIB, 

SDFSSLIB, and SDFSTLIB

• Invoke from ISPF Option 6

• ex 'your.names.SDFSEXEC(DFSSPSRT)' 'HLQ(your.hlq) 

ALTRESL(''your.ims.reslib'')'

• Note the double single quotes

• Easier way

• Create your own CLIST/REXX EXEC that has all the above data

• Invoke it: ex 'daccjjg.clist(spoc)'

• First-time setup required

• Next few slides show what to do



SPOC Overview

• User CLIST DACCJJG.CLIST(SPOC)

• EXEC 'AACC.IMSADMIN.R11.SDFSEXEC(DFSSPSRT)'

'HLQ(AACC.IMSADMIN.R11) ALTRESL(''SYS1.IMSVS.RESLIB'')'



SPOC Overview

• First time only: Options; Preferences …



SPOC Overview

• First time only: set default IMSplex



SPOC Overview

• Display information about a database …



SPOC Overview

• Output; then display information about a program …



SPOC Overview

• Output; then display information about a transaction …



SPOC Overview

• Output; then display some invalid output …



SPOC Overview

• Output 

• Next two slides show more details about the error



SPOC Overview

• Display command entry and log …



SPOC Overview

• Note the return and reason codes; two sets of them

• First set is the OM return code and reason code

• Second set is the QUERY return code and reason code



DRD Overview

• Enabled via IMS PROCLIB member DFSCGxxx

• MODBLKS=DYN

• Implemented using type-2 commands

• Eliminates the need for a MODBLKS sysgen

• MODBLKS “enhanced” by Resource Definition Data Sets

• Data is exported/imported to/from the RDDS

• Exports: sysgen resources and dynamic create/update resources

• Imports: done at cold start or via the IMPORT command

• Analogous to a checkpoint dataset for the type-2 commands

• Eventually could remove MODBLKS; just use RDDS

• We’ve done this

• There are utilities that manage the RDDS

• See the IMS V11 System Utilities manual



Type-2 Commands Used for DRD

• Quick look at the format of type-2 commands and output

• Understand how to construct commands and interpret output

• Output is in XML

• The IMS V11 Commands manuals document

• Command syntax

• Command output

• Return codes, reason codes, and completion codes

• The XML output is also documented in the IMS V11 System 

Programming APIs manual

• See Chapter 9



Type-2 Commands Used for DRD

• Documented in IMS V11 Commands, Volumes 1, 2

• CREATE, DELETE, UPDATE

• DB, PGM, TRAN

• Also DBDESC, PGMDESC, RTC, RTCDESC, and TRANDESC

• Not discussed here

• QUERY

• Although not needed for DRD, useful for our implementation

• Syntax: <cmd> <type> NAME(<resource>) [<attributes>]

• DELETE DB NAME(DI21PART)

• UPDATE TRAN NAME(PART) SET(CLASS(1))

• QUERY TRAN NAME(PART) SHOW(CLASS,MAXRGN)

• Command invocation

• Output is in XML

• May have a return code and reason code

• May have a completion code

• Examples are shown following the CSL API macro slides



Common Service Layer Application Programming Interface

• Documented in IMS V11 System Programming APIs

• Chapter 3. Writing a CSL client

• Chapter 4. CSL automated operator program requests

• Chapter 6. Writing a CSL OM client

• Chapter 8. Writing a CSL SCI client

• Chapter 9. CSL Operations Manager XML output

• Describes assembler macros used to perform the client functions

• Documents the SCI, OM, and RM return and reason codes

• Describes output returned for each request

• Output is in XML



CSL API

• We wrote a CSL SCI client that issues AOP requests

• Called by RTDTRAN

• More about our client appears in later slides

• Protocol requires that the client

• SCI: Connect to SCI

• Issue a command registration request to register as an AOP

• Issue a ready request

• OM: Issue the command and receive command output

• User: Process command output

• SCI: Release command output buffer

• SCI: Disconnect from SCI

• Quiesce

• Deregister

• All of the above except the User bullet are done using CSL macros



CSL API – the macros

• CSLSCREG

• Register to SCI (connect with SCI)

• CSLSCRDY

• Ready the member (IMSplex member) to SCI

• CSLSCBFR

• Release storage allocated by SCI

• CSLSCQSC

• Quiesce the member to SCI

• CSLSCDRG

• Deregister the member from SCI (terminate the SCI connection)

• There are other SCI macros; we did not need them

• CSLOMCMD

• Requests that an IMS command be issued (type-1 or type-2)



CSL API – the macros

• Each macro invocation returns

• A return code and a reason code

• Each macro has a DSECT request that generates equates 

needed by the macro invocation

• System Programming APIs documents the values

• Return code high order byte indicates the component that set 

the return code and reason code

• X'00' IMS set the return and reason code

• X'01' SCI set the return and reason code

• X'02' OM set the return and reason code

• X'03' RM set the return and reason code

• Examples shown later



CSL API – the macros

• The DSECTs



CSL API – the macros

• DFSCMDRR

• While not needed, the DFSCMDRR macro in SDFSMAC contains 

equates for the return codes, reason codes, and completion codes 

for all IMS commands that are routed from OM



CSL API – the macros: CSLSCREG

• Excerpt from System Programming APIs manual

Type we used

Needed for

all subsequent

calls

Return and

reason codes



CSL API - register

• CSLSCREG invocation



CSL API - ready

• CSLSCRDY invocation; note the SCITOKEN value on line 835



CSL API – issue command

• CSLOMCMD invocation; note output values on lines 1098-99



CSL API – release buffer

• CSLSCBFR invocation; release buffer



CSL API - quiesce

• CSLSCQSC invocation



CSL API - deregister

• CSLSCDRG invocation



CSL API – CSLOMCMD sample output 1

• Actual buffer from successful create database



CSL API – CSLOMCMD sample output 1 (edited)

• Edited printable part of the returned buffer

OM

rc,rsn

Completion

code



CSL API – CSLOMCMD sample output 2 (edited)

• Unsuccessful delete database; edited returned buffer

Completion

code

Command

rc,rsn

OM

rc,rsn



CSL API - summary

• Token returned by register request

• All subsequent invocations use the token

• All invocations receive a return code and reason code

• All macros, return and reason codes are documented in the 

System Programming APIs manual

• All XML output is documented in

• Command Reference manuals

• System Programming APIs manual

• Command security is required for non-authorized programs

• Unless CSL OM runs with no security

• Need something like DFSCCMD0 command authorization checking



Implementation – describe environment

• TI’s Real-Time Definition manages IMS … with IMS!

• Extension of using “/” commands

• Implementation is via a transaction

• IMS V9 RTD transaction ran as a normal transaction

• GU

• Process input

• Determine request (Add, Change, Delete; SMB, PDIR, DDIR)

• Process the request

• Some parts inline

• Some parts in Control Region

• Some parts in another TI specific address space

• Insert output (to user transaction or input lterm)

• IMS V10 goal

• Replace “Process the request” (user modifications galore)

• Replace with CSL API calls that issue type-2 commands



Implementation – describe environment …

• CSL API is easy to use but is complex

• We decided to isolate all CSL API calls in a separate module

• Transaction calls the separate module

• Analogous to an ASMTDLI call

• Transaction knows nothing about the CSL API

• Well, almost nothing

• There are new concepts the transaction needs to know

• The type-2 commands

• XML



Implementation – describe environment …

• The CSL API module

• Provides an interface between the transaction and OM

• Receives as input a type-2 command

• Does all OM interaction using CSL macros

• Initialize CSL OM (Register, Ready)

• Issue the command

• Copy returned output from CSL buffer to an obtained user buffer

• Release CSL output buffer

• Terminate CSL OM (Quiesce, Deregister)

• Copy CSL return, reason codes, error message(s) to user area

• Application does not know about CSL or OM

• Maybe a little: return and reason codes

• Must “learn” a new language: XML



Implementation – describe environment (Ends)

• Summary of IMS V10 (and beyond) transaction processing

• GU

• Decode input; determine function

• Construct appropriate type-2 command

• Call the “CSL API interface” with the request

• Process the returned buffer and return code data

• Release the returned buffer

• Insert response to transaction or lterm

• The response to the IRSREQ transaction is unchanged!

• We will see examples of the lterm responses real soon



Sample transaction interactions

• First compare IMS V9 screens to IMS V10/V11 screens

• IMS V9

• Formatted screens

• But uses a local modification!

• IMS V10/V11

• Unformatted screens



Sample transaction interactions: IMS V9 vs V11

• Initial screen; displayed by entering RTDTRAN



Sample transaction interactions: IMS V9 vs V11

• “Create transaction” input screen



Sample transaction interactions: query database

• RTDTRAN QUERY DB; fill in database name; Enter



Sample transaction interactions: query program

• RTDTRAN QUERY PGM; fill in program name; Enter



Sample transaction interactions: query transaction

• RTDTRAN QUERY TRAN; fill in transaction name; Enter



Sample interactions: successful create database

• RTDTRAN CREATE DB; fill in fields; Enter



Sample interactions: checkpoint and export

• Take checkpoint; note z/OS console messages



Sample interactions: verify create database

• Issue another query database to verify create

• Note resident values



Sample interactions: unsuccessful delete #1

• RTDTRAN DELETE DB; fill in name; Enter



Sample interactions: unsuccessful delete #1

• The DELETE DB failed

• The CSLOMCMD invocation has a return code and reason code

• The DELETE DB invocation has a return code and reason code

• It also has a completion code

• CSLOMCMD

• System Programming APIs documents values

• Return/reason code X'0200000C/00003008'

• Return code high byte X'02' means OM set the values

• DELETE DB

• Command Reference Volume 1 documents values

• Return/reason code X'0000000C/00003004'

• Completion code X'E1'



Sample interactions: unsuccessful delete #2

• RTDTRAN DELETE PGM; fill in name; Enter



Sample interactions: unsuccessful delete #2

• Returned buffer (hard to read!)



Sample interactions: unsuccessful delete #2

• Edited printable part of the returned buffer



Sample interactions: successful create program

• RTDTRAN CREATE PGM; fill in data; Enter



Sample interactions: successful create transaction

• RTDTRAN CREATE TRAN; fill in data; Enter



Sample interactions: WARNING about MSC
See PK89475: update SIDR without setting REMOTE(Y)

• RTDTRAN UPDATE TRAN; fill one data value; Enter



Sample interactions: RTDTRAN vs SPOC

• RTDTRAN update on left; SPOC update on right



Sample transaction interactions: summary

• All RTDTRAN interactions are similar

• Enter rtdtran <function> <resource>

• Fill in values in the “fields”
• The “fields” are not really fields since the screen is unformatted

• Not all values have to be filled in

• Transaction does some editing of the input
• May abort the request early and show the error

• If no early error, constructs the type-2 command and calls RCSLOM

• Extracts data from values returned by RCSLOM (data and output buffer)

• Screen response echoes input
• Shows the built command for CREATE, DELETE, UPDATE

• Shows the CSL register, ready, and command return/reason codes

• Shows the command completion code(s)

• Shows additional data if an error occurs

• Output to IRSREQ is completely different (but unchanged from IMS V9!)
• It is the IRSREQ input buffer, with an added IRSREQ return code



Sources of Documentation

• IMS V11 Command Reference, Volume 1

• CREATE, DELETE commands

• IMS V11 Command Reference, Volume 2

• QUERY, UPDATE commands

• IMS V11 Operations and Automation

• SPOC introduction

• IMS V11 System Definition

• System definition macros for IMS resources

• IMS V11 System Programming APIs

• Chapters 3, 4, 6: Writing CSL client, AOP requests, CSL OM client

• Chapter 8: Writing CSL SCI client

• Chapter 9: OM XML output

• IMS V11 System Utilities

• Chapters 26, 42-46: Batch SPOC, RDDS utilities



Summary

• IMS V10 added Dynamic Resource Definition

• New type-2 commands to manage resources

• Requires Common Service Layer

• At least SCI and OM

• Type-2 commands entered from non-IMS environment

• TSO SPOC

• Batch

• IBM provides an API to access the CSL via a program

• Very well documented

• TI rewrote it Real-Time Definition transaction to use DRD

• Used the CSL API; isolated the CSL code in a separate module
• Some error checking done by TI code, some by IMS code

• Other programs also use the RCSLOM module

• Command security is still an issue

• Now you, too, can manage IMS resources using IMS!


