

IMS 12 TM Enhancements & IMS 12 Enhancements and the Repository

Suzie Wendler, Diane Goff, Angie Greenhaw IBM

Wednesday, August 10, 2011 Share Session 9400

Agenda

- IMS TM Enhancements Suzie Wendler (wendler@us.ibm.com)
- IMS System Enhancements Diane Goff (dgoff@us.ibm.com)
- The Repository Angie Greenhaw (greenhaw@us.ibm.com)

IMS TM Enhancements

- APPC and OTMA Shared Queues Enhancement
 - Removes the dependency on RRS for Synclevels None|Confirm
- OTMA Enhancements
- WMQ Message Expiry Support
- IMS Connect Enhancements
- IMS-IMS Connectivity
 - OTMA Support for Asynchronous IMS-IMS Communications
 - MSC TCP/IP Support

APPC and OTMA SQ Enhancement

- New capability that removes the dependency on RRS in a Shared Queues environment for
 - APPC synchronous conversations and OTMA CM1 (send-then-commit) Applies only to synclevel=None | Confirm
 - Synclevel=Syncpoint still requires RRS
 - Communications use XCF services
 - New options for the existing AOS= parameter in DFSDCxxx
- Benefit
 - Using XCF rather than RRS allows IMS to be the syncpoint manager
 - Enhances the performance of the commit processing by eliminating
 - RRS logging overhead
 - Potential RRS commit processing bottleneck
 - Overhead associated with communicating with an external syncpoint manager

OTMA ACEE Reduction for Multiple OTMA Clients

- New capability that creates, shares and caches a single ACEE associated with a RACF userid
 - Shared across multiple OTMA member clients (TMEMBER)
- AND... a new maximum ACEE aging value during client-bid
 - 999999 seconds (11.5 days)
 - Previously 68 years
 - Range: 300 seconds to 999999 seconds
 - If OTMA receives a value less than 300, the value is reset to 0 and OTMA will not refresh ACEEs
- A cached ACEE has an aging value based on the OTMA member client with the lowest value

Benefits of OTMA ACEE Enhancements

- Cached ACEEs
 - Reduce the system storage requirements while providing better security and performance
 - Only one copy of the ACEE instead of multiple per OTMA client
 - Reduced storage usage
 - Reduced security exposure
 - Improved performance
 - Provide consistency
 - Same security result regardless of which OTMA client is used
- Lower maximum ACEE aging value
 - Triggers faster ACEE cache refresh
 - Reduces security exposure, e.g., userid is revoked or access permissions are changed

OTMA Performance

- Reduced path length for OTMA transaction processing
 - Simplification in logic when validating a TPIPE name
 - Only when a new tpipe name is received on a message
 - Instead of when each message is received
 - APARs PM20292 (V10) / PM20293 (V11)
 - Shipped with the ICAL enhancements
- Benefit
 - Improved OTMA performance

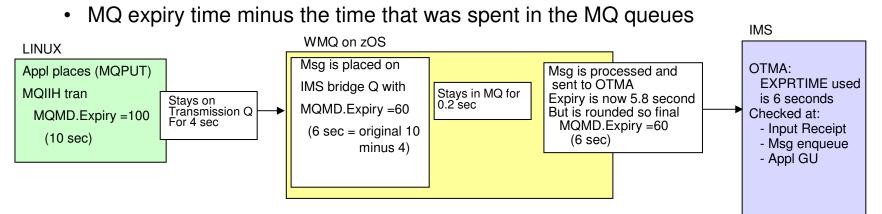
V11 Transacton Expiration SPE

- IMS Transaction Expiration SPE
 - APARs PM05984 (IMS10) / PM05985 (V11)
 - Sends DFS3688I message instead of DFS555I or DFS2224I message for transaction expiration during application GU phase

DFS3688I Transaction *aaaaaaaa* expired: EXPRTIME=*nnnnn*, ELAPSE=*sssss Tmember xxxxx Tpipe xxxx*

- Enhancement only affects OTMA messages
 - Expired non-OTMA messages already receive DFS3688I
 - PK86426/UK47070 (V11) non-OTMA transaction expiration is V11 only DFS3688I Transaction aaaaaaaa expired: EXPRTIME=nnnnn, ELAPSE=sssss

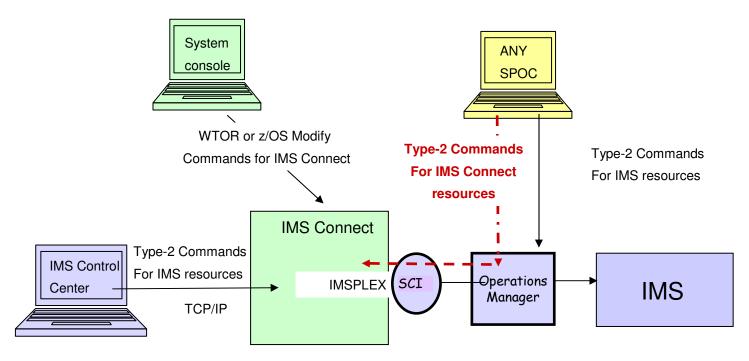
MQ Message Expiration


- Extension of the WebSphere MQ (WMQ) Message Expiry facility to include the IMS transaction expiration function (WMQ 7.01)
 - A new service parameter
 - CSQ6SYSP SERVICE = 000000001 or also specified through the SET SYSTEM SERVICE(000000001) command
 - Used in conjunction with other queue manager service parameters
 - e.g. if queue manager already uses service parm 0040 then setting the new service would result in 0040000001
 - Provides toleration of an OTMA NACK_FOR_TRANS_EXPIRED response from IMS through the OTMA support
 - Leverages WMQ expiry processing as if the message had expired prior to sending the message to OTMA

MQ Message Expiration ...

- User-Specified Expiry time (message-level)
 - A value is passed to IMS if an MQ message expiry time (MQMD.Expiry) exists for the message AND the service parameter is set
 - Value is in 10ths of a second
 - The residual expiry time for the message is built into the OTMA interface

From the remote application perspective (business as usual):


- The MQPUT application will be unaware of an expiry unless it specifies a Report option which can

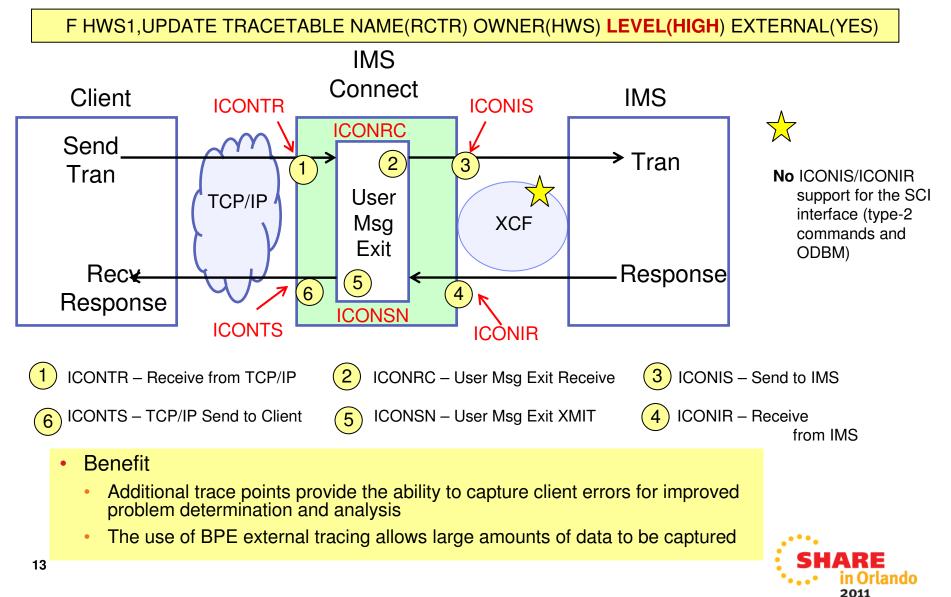
- > include the generation of an expiry report which will be sent to the specified reply-to queue,
- > passing the remaining expiry interval from a request message to a response message,
- > or just discarding the expired message.

New Type-2 Commands for IMS Connect

- New Type-2 commands for IMS Connect resources
 - QUERY IMSCON
 - UPDATE IMSCON

XML Converter Refresh

New Command to refresh an XML converter file that is already in use


UPDATE IMSCON TYPE(CONVERTER)... xx,REFRESH CONVERTER NAME(*cvtrname*) F hws,UPDATE CONVERTER NAME(*cvtrname*) OPTION(REFRESH)

- Supported by all command interfaces: Type-2, WTOR, z/OS Modify
- Converter files continue to be:
 - Generated using RDz
 - Loaded by IMS Connect from STEPLIB/JOBLIB/LNKLST
- Benefit
 - More timely ability to change and implement converter files
 - Without requiring an IMS Connect restart

New IMS Connect Recorder Trace Points

IMS Connect – RACF Userid Caching

- Existing IMS Connect security with RACF=Y
 - Limited caching of RACF Utoken
 - Consecutive requests on a persistent socket with the same Userid/Password/Group
- IMS 12 enhancement with RACF=Y
 - Common cache for userids across ALL sessions and ALL ports
 - HWSCFG HWS statement: UIDCACHE={N|Y}, UIDAGE=aging_value

xx,VIEWHWS			
	HWSC0001I	HWS ID=HWS1 RACF=Y PSWDMC=R	
	HWSC0001I	UIDCACHE=Y UIDAGE=300	
	HWSC0001I	MAXSOC=2000 TIMEOUT=6000	
	HWSC0001I	NUMSOC=6 WARNSOC=80% WARNI	NC=5%
	HWSC0001I	RRS=Y STATUS=ACTIVE	
	HWSC0001I	VERSION=V12 IP-ADDRESS=009.030.2	18.050
	HWSC0001I	SUPER MEMBER NAME= CM0 ACK	TOQ=
	HWSC0001I	ADAPTER=Y	

CM0 ACK NoWait for RYO Clients

- Existing protocol for Roll Your Own (RYO) clients requires
 - CM0 Send-Receive interactions to receive a timeout notification after ACK/NAK
 - Receive and timeout flow adds unnecessary overhead to the client application
- New option of NoWait on ACK or NAK
 - Indicates the remote client will not issue subsequent receive

Previous CM0 send-receive flow

Send request Receive response Send ACK Receive T/O New CM0 send-receive flow Send request Receive response Send ACK NoWait

(no need to issue receive for final timeout)

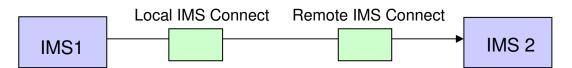
- Benefit
 - Greater efficiency and simplified interaction
 - Eliminates need for extra send after an ACK/NAK

Partial Read Status

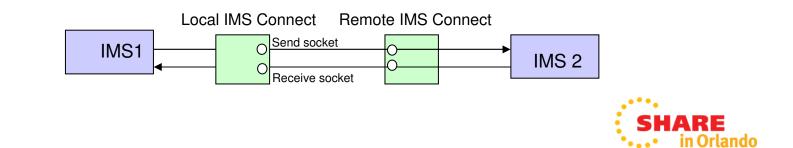
- New **READ** client status
 - The message has been received by IMS Connect but is not yet considered a complete input message
 - Should be transient but can be an indicator of a problem
 - Affects VIEWPORT, VIEWHWS, QUERY MEMBER, QUERY PORT, QUERY IMSCON command output
- Benefit
 - Facilitates the detection of a remote application programming error
 - Invalid length specification of an input message

IMS Connect User Exit Load Modules

- IMS Connect ships load modules for User Exits
 - HWSUNITO, HWSJAVAO, HWSSMPLO, HWSSMPL1
 - Previously, working samples were provided but always had to be assembled and bound
 - Even if no changes were made to the provided source samples
- Benefit
 - Eases installation and maintenance processing if the user exits are to be used unchanged

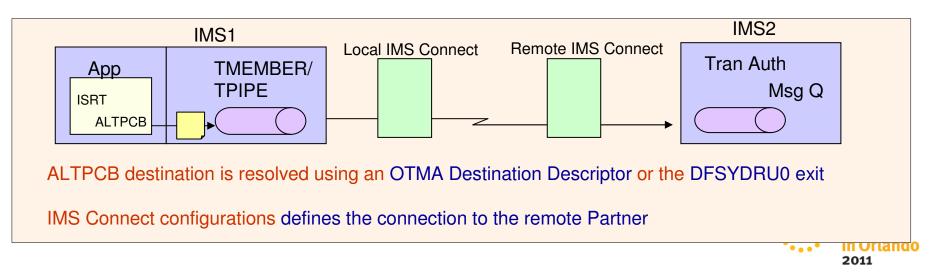


IMS to IMS TCP/IP Connectivity



2011

- Enhancements to leverage TCP/IP networks for communications between IMS systems for:
 - OTMA Support for Asynchronous IMS-IMS Communications
 - Uses one-way message communications (ALTPCB)


- TCP/IP-Type Physical Links (MSC)
 - Request and response message communications
 - IMS Connect processes both the request and response messages as one-way asynchronous messages

Asynchronous IMS-IMS TCP/IP Support ...

- OTMA
 - Sends OTMA remote ALTPCB messages to IMS Connect using new destination information
 - OTMA destination descriptors or DFSYDRU0 exit Routine
- IMS Connect
 - Receives OTMA ALTPCB messages from a local IMS and sends them to the remote IMS Connect for processing in the remote IMS
 - Enhanced IMS Connect configuration specifications

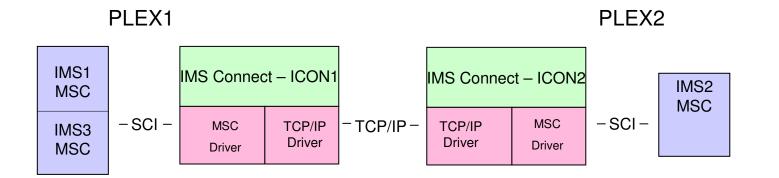
Usage and Benefits

- Usage
 - IMS applications: ISRT ALTPCB
 - IMS environment: destination descriptor or a DFSYDRU0 exit routine
 - IMS Connect: configuration specifications
- Benefits
 - Supports TCPIP communications to invoke transactions between IMS systems without having to create or maintain a separate gateway solution
 - IMS-provided and supported solution

MSC TCP/IP

- Support for MSC communications across a TCP/IP network
 - MSC TCP/IP leverages IMS Connect and the Common Service Layer
 - A new physical link MSPLINK TYPE=TCPIP
 - Provides a mechanism to
 - Take advantage of TCP/IP networks
 - Complement or backup existing SNA/VTAM links
 - Take advantage of potentially higher bandwidths
 - Supports operational compatibility with other link types (CTC, MTM, VTAM)
 - Starting, stopping, updating, displaying, and assigning resources
 - Only between IMS 12 systems

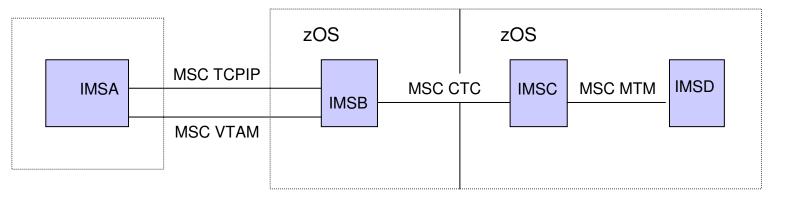
MSC TCP/IP



- MSC TCP/IP leverages IMS Connect and the Common Service Layer
 - IMS Connect sends/receives messages via the TCP/IP network
 - IMS Connect manages the TCP/IP communications
 - IMS MSC manages the message processing
 - CSL provides the Structured Call Interface (SCI) for communications
 between IMS components including IMS Connect
 - Each IMS and its local MSC-routing IMS Connect system must be part of the same IMSplex
 - IMSPLEX= plexname parameter in the Common Layer Section of the DFSDFxxx of IMS proclib
 - The Operations Manager (OM) is not required but recommended
 - For type-2 command support

MSC TCP/IP

- IMS to IMS Connect functionality
 - Isolates TCP/IP from the IMS Control Region
 - Uses the existing IMS Connect TCP/IP support
 - Provides a new MSC driver as well as TCP/IP driver for MSC
 - Supports communication with IMS via the Structured Call Interface (SCI)



MSC TCP/IP - Benefits

- Benefits
 - Takes advantage of TCP/IP networks for MSC
 - · Can potentially provide for a higher MSC bandwidth
 - Supports different configurations
 - Coexistence with or backup of VTAM/SNA links
 - Increases availability
 - Logical links can be moved between VTAM and TCPIP
 - Flexibility

TM Summary

- IMS 12 continues to enhance:
 - APPC
 - OTMA
 - IMS Connect
- And introduces new ways to support
 - IMS-IMS Communications

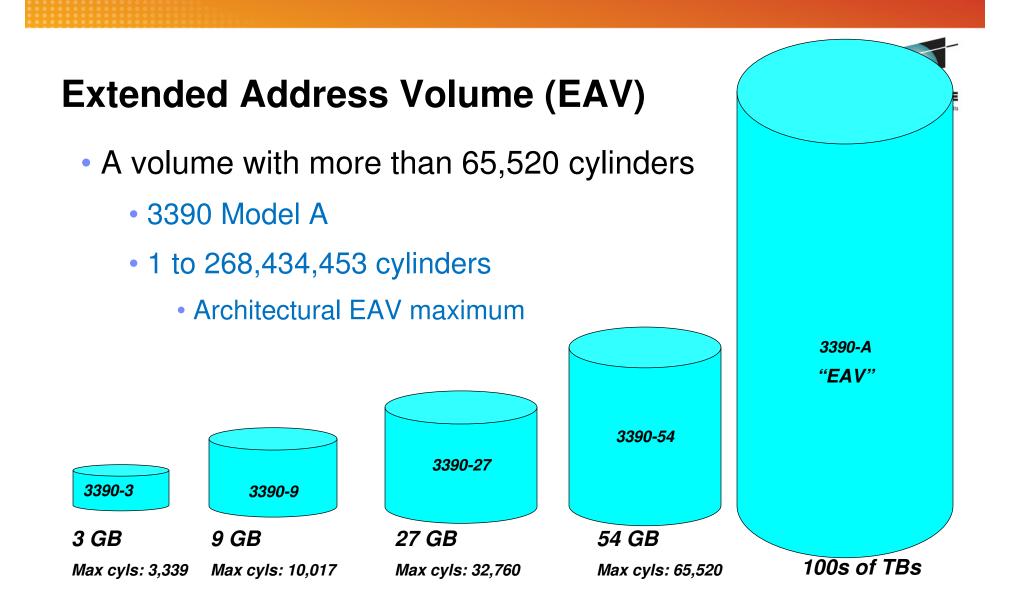
IMS 12 System Enhancements

IMS 12 System Enhancements

- Dynamic resource definition (DRD) enhancements
- Extended address volume (EAV) enhancement
- IMS logger enhancements
- System pools storage enhancement
- Command enhancements
- Syntax checker enhancements
- CQS traceability enhancements

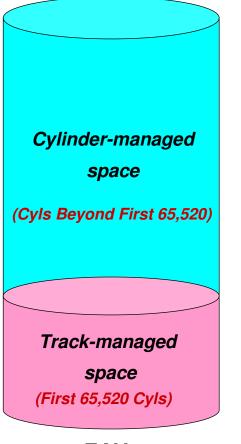
Dynamic Resource Definition (DRD) Enhancements

- New UPDATE option for IMPORT command
 - Previously, IMPORT could only be used for adding runtime resource definitions/descriptors that did not exist in the target IMS system
 - New IMPORT .. OPTION(UPDATE) allows existing runtime resource definitions/descriptors in the the target IMS to be changed
 - Command fails if changed definition is in use
- DRD usage of the IMS repository function
 - Previously, stored resource definitions/descriptors were kept in resource definition data sets (RDDSs)
 - New IMS repository function provides an additional method for storing stored resource definitions/descriptors
 - IMS repository will be described later in this session
- Benefits
 - Improved manageability for DRD



Extended Address Volume (EAV) Enhancement

- IMS 12 allows certain non-VSAM IMS data sets to use EAV volumes
 - Data sets can reside in Extended Address Space (EAS) on EAV volumes
 - z/OS addressable disk storage increased beyond 65K cylinders
 - New architecture will support 100's of Terabytes on single volume
 - Storage is addressed using new 28-bit cylinder/track address
 - Requires z/OS 1.12
- IMS 11 provided support for IMS VSAM data sets to use EAV volumes



Maximum Sizes

EAV Key Design Points

EAV

- EAV maintains 3390 track format
 - Track-managed space:
 - Area on EAV within the first 65,520 cyls
 - Space allocated in track or cyl increments
 - Storage for "small" data sets
 - Cylinder-managed space:
 - Area on EAV located above first 65,520 cyls
 - Space is allocated in multicylinder units
 - Storage for "large" data sets
 - New DSCB format types identify EAS data sets
 - New formats (Format 8 and 9) in VTOC
 - Data set resides in cylinder-managed space

Non-VSAM IMS Data Sets Supported

- Overflow Sequential Access Method (OSAM) data sets
 - OSAM database data sets
 - Restart data set (RDS)
 - Message queue blocks data set
 - Long and short message data set
- IMS Online Log Data Sets (OLDS)
- IMS Write Ahead Data Sets (WADS)
- IMS SPOOL data sets
- BPE External Trace Data Sets

Extended Address Volume (EAV) Enhancement for non-VSAM data sets

- Prerequisites
 - Software requirements
 - z/OS 1.12
 - Hardware requirements
 - DS8000, DS8700
 - 3390 Model A
- Benefits
 - Supports the placement of more data sets on a single volume
 - Allow users to manage fewer numbers of larger volumes
 - Less need for multi-volume OSAM

IMS Logger Enhancements ...

- Extended Format Support for OLDS and SLDS (optional)
- Option for log buffers above the 2-gigabyte boundary ("bar") in virtual
- WADS management changed to be more efficient

IMS Logger Enhancements ...

- New optional capability for OLDS and SLDS
 - IMS 12 allows OLDS and SLDS to be defined as extended format data sets
 - Use of extended format data sets allows striping
 - Striping allows multiple concurrent I/Os for sequential processing
 - Data set is spread across multiple volumes
 - Increased logging rates
- Option for log buffers above the 2-gigabyte boundary ("bar") in virtual
 - Frees substantial amount of ECSA
 - OLDS must be in extended format with BLKSIZE 4K multiple
 - BUFSTOR=64 on OLDSDEF statement in DFSVSMxx

IMS Logger Enhancements

- WADS management changed to be more efficient
 - Track groups no longer used
 - WADS written in wrap around fashion
 - WADS should be sized to provide enough space for any OLDS buffers not yet written at any time plus one track
 - WADS should be kept in cache in storage subsystem
- Benefits
 - Increased logging bandwidth / improved logging performance
 - ECSA constraint relief
 - Simplified WADS management for improved performance

System Pools Storage Enhancement

- Storage for selected database pools is obtained in 31-bit virtual storage, backed by 64-bit real storage
 - DBWP Database work pool
 - DLDP DMB pool
 - DLMP CSA PSB pool
 - DPSB DLI PSB pool
 - PSBW PSB work pool
- Benefits
 - Reduction in 31-bit fixed real frames for fixed pools
 - Some users will now be able to fix these pools
 - Previously, they were constrained by 31-bit real storage

Command Enhancements

- Enhancements to existing commands and new commands
 - CQS trace command enhancements
 - DBRC command enhancements
 - Dynamic database buffer pool command enhancements
 - Dynamic resource definition (DRD) command enhancements
 - Fast Path secondary index command enhancements
 - HALDB command enhancements
 - IMS Connect command enhancements
 - MSC command enhancements
 - IMS repository function command enhancements
 - OTMA command enhancements

Command Enhancements

- Enhancements are focused on type-2 commands for the Operations Manager (OM) environment
- Benefits
 - Support of new IMS 12 functions
 - Improved manageability

Syntax Checker Enhancements

- Syntax Checker supports PROCLIB members for IMS 12 / IMS 11 / IMS 10
 - IMS 9 PROCLIB members are not supported
- All previously supported members are supported
 - Newly added parameters of these members are supported
- Support added for Repository Server configuration member
- Support added to view/save parameters of members in a custom order
 - · Formerly, only alphabetical order was used
- Benefits
 - Support of new IMS 12 PROCLIB members
 - Improved usability with custom order of parameters

CQS Traceability Enhancements

- Existing CQS structure trace table (STR) can quickly fill, wrap around, and lose critical trace entries
- Two new BPE trace tables are available to track CQS structure events
 - One for overflow events (OFLW), one for structure events (SEVT)
 - Retain critical trace data for longer periods of time
- Benefits
 - Improves CQS serviceability

IMS 12 System Enhancements

- Dynamic resource definition (DRD) enhancements
- Extended address volume (EAV) enhancement
- IMS logger enhancements
- System pools storage enhancement
- Command enhancements
- Syntax checker enhancements
- CQS traceability enhancements

The Repository

IMS Repository Agenda

- Overview of the IMS repository function
- IMS repository function components
 - Repository Server (RS) address space
 - Repository data sets
 - Repository catalog data sets
 - CSL requirements and RM usage
- IMS repository setup
 - Repository Server setup
 - Creating/enabling an IMSRSC repository for DRD
- IMS repository commands and usage
- Migration to DRD with the repository

IMS Repository Function Overview

- A 'repository' is a generalized data storage facility that can be used to store various types of information
- The IMS repository function is a centralized method for storing and retrieving resource definitions in an IMSplex
 - Enables <u>multiple IMS systems</u> in a multiple-IMS IMSplex to manage, store, share, and retrieve resource definitions
 - Enables a <u>single IMS system</u> in a single-IMS IMSplex to manage, store, share, and retrieve resource definitions
- Focus is on improving the systems management and resource management aspects of handling IMS resource definitions
 - Across multiple IMSs or for a single standalone IMS
 - For test systems, for production systems

IMS Repository Function Usage

- In IMS 12, the resource and descriptor definitions for Dynamic Resource Definition (DRD) can be stored in an IMS repository
 - Contains resource definitions for programs/transactions/databases/FP routing codes & descriptors
 - Called the IMSRSC (IMS resource) definition repository
 - Provides an alternative to using RDDSs (resource definition data sets) for DRD
 - Replaces one or more sets of RDDSs in an IMSplex with a single repository
 - Eliminates the need to manually coordinate and manage separate RDDSs per IMS across a multiple-IMS IMSplex
 - Provides an alternative to using MODBLKS with SYSGEN and online change
 - Considered a strategic alternative to the RDDS
- IMS 12 can retrieve the stored resource definitions from the IMSRSC repository to dynamically generate runtime resources for DRD

IMS 12 Support for the DRD Function ...

- DRD users in IMS 10 and IMS 11 moving to IMS 12
 - Can use existing RDDSs from IMS 10 or IMS 11 for stored resource definitions in IMS 12
 - Can use existing RDDSs from IMS 10 and IMS 11 for stored resource definitions at initial migration to IMS 12, then can migrate to the new IMSRSC repository
 - Can use the new IMSRSC repository to store definitions in IMS 12

IMS 12 Support for the DRD Function

- Users in IMS 10 and IMS 11 without DRD
 - Can use the new IMSRSC repository for stored resource definitions in IMS 12
 - Can create new RDDSs for stored resource definitions in IMS 12
- Both RDDSs (system and non-system) and the IMSRSC repository can exist together during migration to the IMSRSC repository

IMS Repository Function Benefits

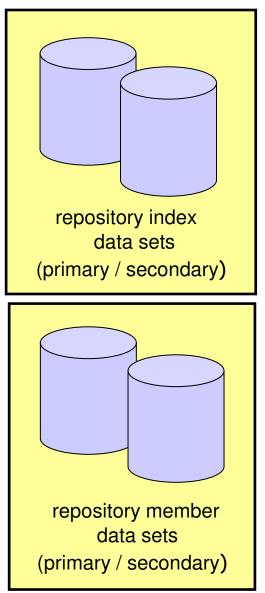
- Consolidation of resource definitions in a single place, the repository
- DRD definitions are the initial implementation of the IMS repository function (to replace RDDSs)
- Full support for populating, managing, storing, sharing, and retrieving a consistent set of DRD stored resource definitions for multiple-IMS IMSplexes and single-IMS IMSplexes
- Manual coordination of multiple RDDSs in a multiple-IMS IMSplex eliminated, replaced by basic functioning of the IMS repository
- Improvements in IMSplex systems and resource management with the repository
- A strategic direction for IMS architecture

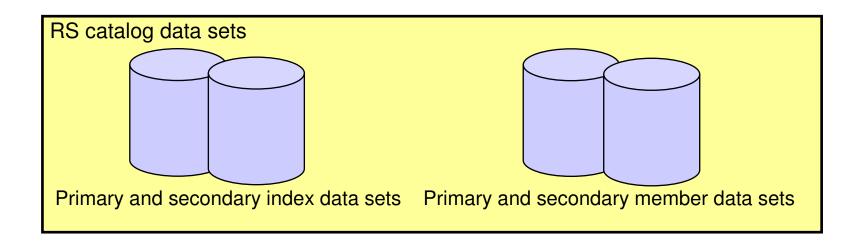
- Repository Server (RS)
- Repositories
 - Catalog repository
 - IMSRSC repository(s)
- Common Service Layer (CSL) IMSplex configuration consisting of
 - Operations Manager (OM)
 - Resource Manager (RM)
 - Structured Call Interface (SCI)
 - SPOC for entering type-2 commands
 - Optional resource structure with CQS address space
- Batch utilities
 - Batch ADMIN utility
 - RDDS to / from repository utilities

50

- Repository Server (RS)
 - New BPE-based address space
 - Managed by the RM CSL address space
 - Two types
 - Master Repository Server
 - Single instance
 - Manages access to repository data sets
 - First RS address space to access repository
 - Subordinate Repository Server
 - One or more instances
 - Used if master Repository Server goes down
 - Optional but recommended

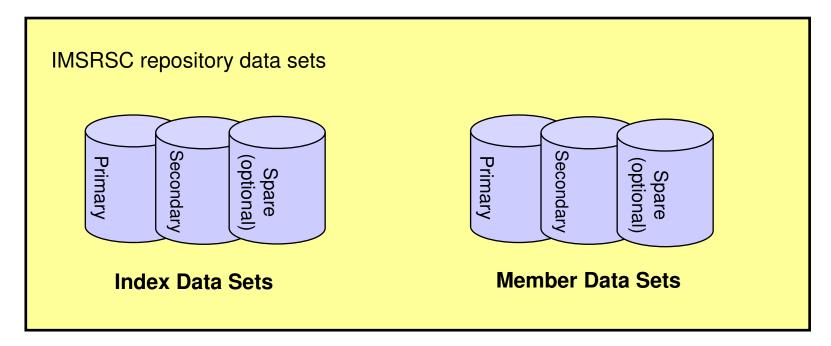
- Repository Server (RS)
 - Uses VSAM KSDS data sets to store information
 - Recommendation
 - One master Repository Server address space per IMSplex
 - Has its own internal repository called the 'catalog repository'
 - Manages IMS repositories (IMSRSC for DRD)
 - Ensures repository data integrity
 - Uses SAF to restrict access to repositories
 - Provides an audit trail using the z/OS logger
 - Provides tracing capabilities via BPE




SHARE Technology · Connections · Results

- Repository data sets
 - Multiple sets of VSAM KSDS data sets
 - · Each set composed of
 - Repository index data set
 - Repository member data set
 - Each of these has a primary and secondary data set (duplexed)
 - Optional spare set (third) can be defined
 - Two types of repository data sets
 - IMS repository data sets
 - Catalog repository data sets

- Catalog repository (RS catalog data sets)
 - Required per Repository Server
 - Manages the Repository Server (RS) functions
 - Manages information about IMS repository data sets
 - Composed of two pairs of data sets
 - Primary index data set and primary member data set (required)
 - Secondary index data set and secondary member data set (required)
 - No spare capability

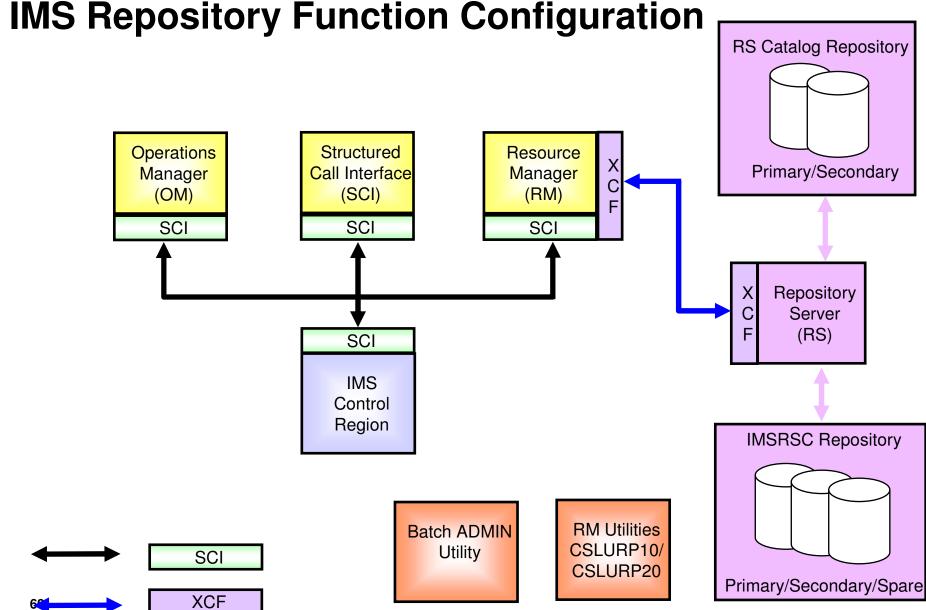


- IMS repositories
 - IMSRSC repository contains
 - Stored resource definitions for DRD resources for one or more DRDenabled IMS systems
 - Programs / transactions / databases / FP routing codes and descriptors
 - Resource lists for each IMS
 - Contains resource names and resource types that can be processed by an IMS system
 - Changed resource lists for each IMS
 - Contain resource changes made when an IMS is down
 - Typically one IMSRSC repository per Repository Server (RS) per IMSplex

- IMS repositories
 - IMSRSC repository
 - Composed of up to three pairs of data sets
 - Primary index data set and primary member data set (required)
 - Secondary index data set and secondary member data set (required)
 - Spare index data set and spare member data set (optional)

- A Common Service Layer (CSL) IMSplex configuration consisting of
 - Operations Manager (OM)
 - Used for new/modified type-2 commands for repository functions
 - Resource Manager (RM)
 - Used for managing the new Repository Server (RS) address space
 - All online access to Repository Server is through RM address space
 - New type-2 commands for managing the Repository Server
 - UPDATE RM
 - QUERY RM
 - RM is enabled to the repository by specifying a Repository Section in the RM initialization member (CSLRIxxx)

- A Common Service Layer (CSL) IMSplex configuration consisting of
 - Structured Call Interface (SCI)
 - Used for communications within the CSL
 - Not used for communications between RM and the RS
 - RS is not considered a CSL manager
 - Optionally, a resource structure in a Coupling Facility
 - Used for repository name and repository type consistency if present
 - Managed by a Common Queue Server (CQS) address space
 - Multiple RMs in an IMSplex require that a resource structure exists
 - SPOC (single point of control) for entering type-2 commands
 - Can be a single-IMS IMSplex or a multiple-IMS IMSplex



- Batch utilities
 - Batch ADMIN utility (FRPBATCH)
 - Commands for managing IMSRSC repositories
 - Functions such as ADD a new IMSRSC repository, LIST the characteristics of an IMSRSC repository, START or STOP an IMSRSC repository
 - RDDS to / from repository utilities (Batch RM utilities)
 - RDDS to Repository Utility (CSLURP10)
 - For migration
 - Repository to RDDS Utility (CSLURP20)
 - For fallback

IMS Repository Function Configuration

IMS Repository Setup

- Repository Server setup
- Creating / enabling an IMSRSC repository for DRD

IMS Repository Setup

- Repository Server
 - Create catalog repository data sets
 - Set up BPE configuration member
 - Set up FRPCONFG configuration member
 - Repository Server settings
 - Audit log definitions
 - Define security
 - Set up the CSL
 - RM needs new CSLRIxxx repository section
 - Set up IMS
 - DFSDFxxx needs new repository section
 - Start the master Repository Server
 - Start subordinate Repository Servers

Enabling an IMSRSC repository for DRD

- Create IMSRSC repository data sets
- Define security for IMS repository
- Define the IMSRSC repository to the Repository Server
- Start the IMSRSC repository
- Enable the IMSRSC repository to RM and IMS
- Populate the IMSRSC repository
 - If IMS is up, populate using the EXPORT DEFN TARGET(REPO) command to add DRD stored resource definitions to the IMSRSC repository
 - If IMS is down, use the batch RDDS to Repository Utility (CSLURP10) to populate the IMSRSC repository

IMSRSC Repository is Active/Populated

 Begin to use type-2 DRD repository commands that access/update stored resource definitions in the repository

```
EXPORT DEFN TARGET(REPO) TYPE(ALL) NAME(*)

IMPORT DEFN SOURCE(REPO) TYPE(DB) NAME(DBABC)

OPTION(UPDATE)

DELETE DEFN TARGET(REPO) TYPE(DB) NAME(DBXYZ)

QUERY IMS

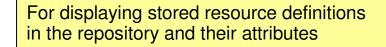
QUERY DB/PGM/TRAN/RTC SHOW(DEFN)
```


IMS Repository Commands

- IMS and RM IMSplex commands issued from SPOC or Manage Resource panels
- Batch ADMIN commands
- Repository Server commands issued through z/OS modify interface

IMS and RM IMSplex Commands issued from SPOC or Manage Resources panels

- IMS type-2 commands
 - UPDATE IMS
 - QUERY IMS


For management of repository and RDDS functions

For status of IMS

- EXPORT DEFN TARGET(REPO)
- IMPORT DEFN SOURCE(REPO)
- DELETE DEFN

For working with DRD stored resource definitions in the repository

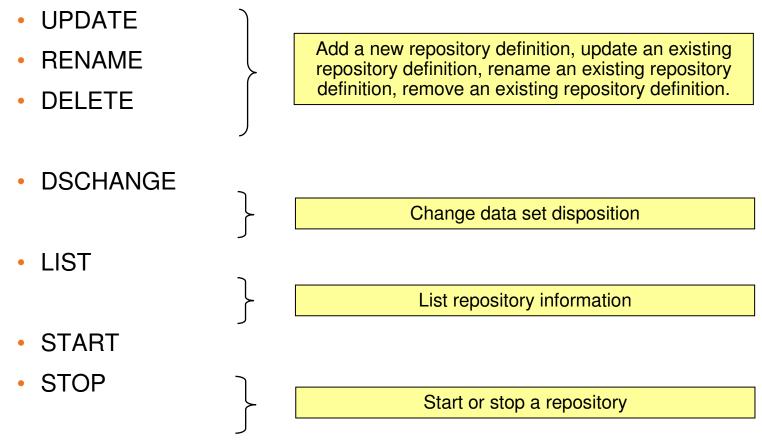
 QUERY DB/DBDESC/PGM/PGMDESC/TRAN/TRANDESC/RTC/RTCDESC SHOW(DEFN)

IMS and RM IMSplex Commands issued from SPOC or Manage Resources panels

- RM type-2 commands
 - UPDATE RM

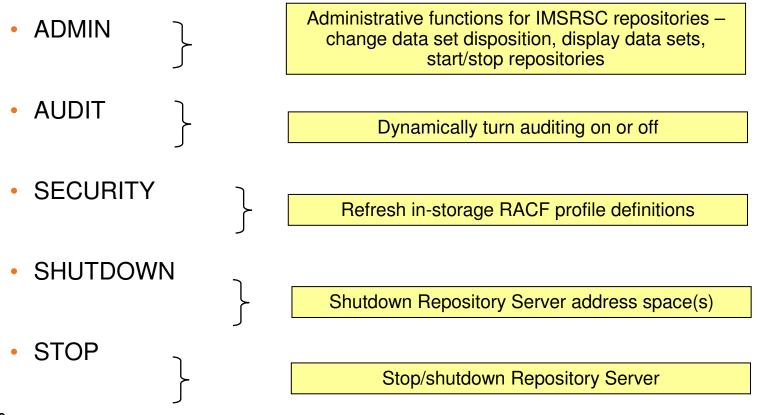
For management of repository and RDDS functions

• QUERY RM


For status of RM

• DRD commands (CREATE, UPDATE, DELETE) work with runtime definitions, not the stored resource definitions in the repository

Batch ADMIN commands (FRPBATCH)


- Commands for managing repositories (IMSRSC)
 - ADD

Repository Server Commands Issued Through the z/OS Modify Interface

 Functions for managing a Repository Server (RS) and its repositories (IMSRSC)

IMS Repository Migration Overview ...

- From DRD with RDDSs to DRD with Repository
- From no DRD to DRD with Repository

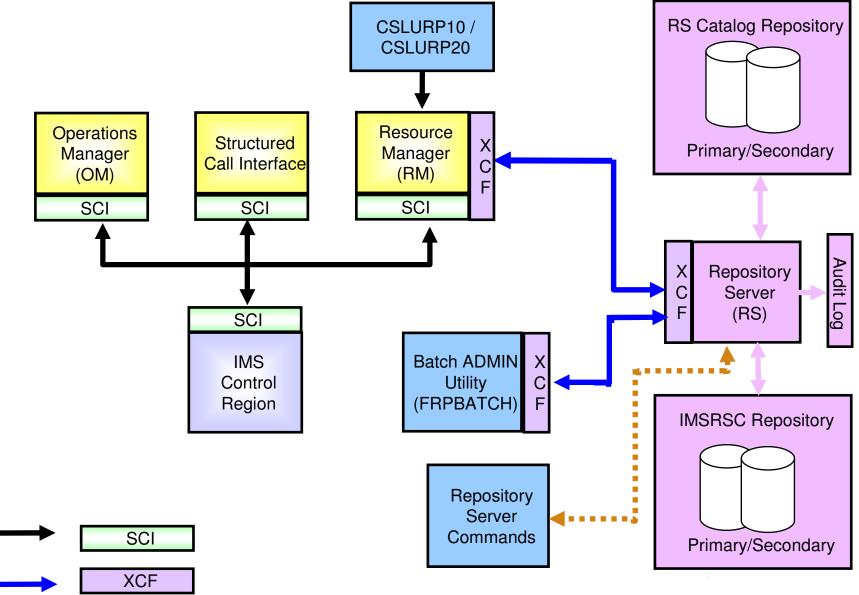
IMS Repository Migration Overview ...

- From DRD with RDDSs to DRD with Repository
 - Create non-system RDDS that contains current definitions via EXPORT command or DRD utilities
 - Set up repository parameters in PROCLIB members FRPCONFG, BPECONFG, CSLRIxxx, DFSDFxxx
 - Create catalog repository data sets and IMSRSC repository data sets
 - Start the Repository Server address space
 - Use the batch ADMIN utility to define the IMSRSC data sets to the Repository Server
 - Run the batch RDDS to Repository utility to populate the repository
 - Cold start IMS with AUTOIMPORT specified

SHARE Technology - Connections - Results

IMS Repository Migration Overview

- From no DRD to DRD with Repository
 - First implement DRD with RDDSs
 - Set up DRD parameters in DFSDFxxx
 - MODBLKS=DYN, RDDSDSN=, AUTOIMPORT=MODBLKS
 - Cold start IMS using updated DFSDFxxx
 - AUTOIMPORT will use MODBLKS for definitions
 - Online change now disabled
 - Follow process to migrate from DRD with RDDSs to DRD with repository


IMS Repository Function Benefits

- Consolidation of resource definitions in a single place, the repository
- DRD definitions are the initial implementation of the IMS repository function (to replace RDDSs)
- Full support for populating, managing, storing, sharing, and retrieving a consistent set of DRD stored resource definitions for multiple-IMS IMSplexes and single-IMS IMSplexes
- Manual coordination of multiple RDDSs in a multiple-IMS IMSplex eliminated, replaced by basic functioning of the IMS repository
- Improvements in IMSplex systems and resource management with the repository
- A strategic direction for IMS architecture

IMS Repository Function Architecture

Summary

- IMS repository function
- IMS repository function components
 - Repository Server (RS) address space
 - Repository catalog data sets
 - Repository data sets
 - CSL requirements and RM usage
- IMS repository setup
 - Repository Server setup
 - Creating/enabling an IMSRSC repository for DRD
- IMS repository commands and usage
- Migration to DRD with the repository

