IMS 12 TM Enhancements &
IMS 12 Enhancements and the Repository

Suzie Wendler, Diane Goff, Angie Greenhaw
IBM

Wednesday, August 10, 2011
Share Session 9400
Agenda

- IMS TM Enhancements – Suzie Wendler (wendler@us.ibm.com)

- IMS System Enhancements – Diane Goff (dgoff@us.ibm.com)

- The Repository – Angie Greenhaw (greenhaw@us.ibm.com)
IMS TM Enhancements

- APPC and OTMA Shared Queues Enhancement
 - Removes the dependency on RRS for Synclevels None|Confirm
- OTMA Enhancements
- WMQ Message Expiry Support
- IMS Connect Enhancements
- IMS-IMS Connectivity
 - OTMA Support for Asynchronous IMS-IMS Communications
 - MSC TCP/IP Support
APPC and OTMA SQ Enhancement

- New capability that removes the dependency on RRS in a Shared Queues environment for
 - APPC synchronous conversations and OTMA CM1 (send-then-commit)
 Applies only to synclevel=None | Confirm
 - Synclevel=Syncpoint still requires RRS
 - Communications use XCF services
 - New options for the existing AOS= parameter in DFSDCxxx

- Benefit
 - Using XCF rather than RRS allows IMS to be the syncpoint manager
 - Enhances the performance of the commit processing by eliminating
 - RRS logging overhead
 - Potential RRS commit processing bottleneck
 - Overhead associated with communicating with an external syncpoint manager
OTMA ACEE Reduction for Multiple OTMA Clients

• New capability that creates, shares and **caches** a **single** ACEE associated with a RACF userid
 • Shared across multiple OTMA member clients (TMEMBER)

• **AND**… a new maximum ACEE aging value during client-bid
 • 9999999 seconds (11.5 days)
 • Previously 68 years
 • Range: 300 seconds to 999999 seconds
 • If OTMA receives a value less than 300, the value is reset to 0 and OTMA will not refresh ACEEs

• A cached ACEE has an aging value based on the OTMA member client with the lowest value
Benefits of OTMA ACEE Enhancements

• Cached ACEEs
 • Reduce the system storage requirements while providing better security and performance
 • Only one copy of the ACEE instead of multiple per OTMA client
 • Reduced storage usage
 • Reduced security exposure
 • Improved performance
 • Provide consistency
 • Same security result regardless of which OTMA client is used
• Lower maximum ACEE aging value
 • Triggers faster ACEE cache refresh
 • Reduces security exposure, e.g., userid is revoked or access permissions are changed
OTMA Performance

- Reduced path length for OTMA transaction processing
 - Simplification in logic when validating a TPIPE name
 - Only when a new tpipe name is received on a message
 - Instead of when each message is received
 - APARs PM20292 (V10) / PM20293 (V11)
 - Shipped with the ICAL enhancements

- Benefit
 - Improved OTMA performance
V11 Transaction Expiration SPE

- IMS Transaction Expiration SPE

 - APARs PM05984 (IMS10) / PM05985 (V11)
 - Sends DFS3688I message *instead of* DFS555I or DFS2224I message for transaction expiration during application GU phase

 DFS3688I Transaction **aaaaaaa** expired: `EXPRTIME=nnnnnn`, `ELAPSE=ssssss`

 Tmember xxxxx Tpipe xxxx

- Enhancement only affects **OTMA** messages
 - Expired non-OTMA messages already receive DFS3688I
 - PK86426/UK47070 (V11) – non-OTMA transaction expiration is V11 only
 - DFS3688I Transaction **aaaaaaa** expired: `EXPRTIME=nnnnnn`, `ELAPSE=ssssss`
MQ Message Expiration

• Extension of the WebSphere MQ (WMQ) Message Expiry facility to include the IMS transaction expiration function (WMQ 7.01)
 • A new service parameter
 • CSQ6SYSP SERVICE = 0000000001 or also specified through the SET SYSTEM SERVICE(0000000001) command
 • Used in conjunction with other queue manager service parameters
 • e.g. if queue manager already uses service parm 0040 then setting the new service would result in 0040000001
 • Provides toleration of an OTMA NACK_FOR_TRANS_EXPIRED response from IMS through the OTMA support
 • Leverages WMQ expiry processing as if the message had expired prior to sending the message to OTMA
MQ Message Expiration ...

- User-Specified Expiry time (message-level)
 - A value is passed to IMS if an MQ message expiry time (MQMD.Expiry) exists for the message AND the service parameter is set
 - Value is in 10ths of a second
 - The residual expiry time for the message is built into the OTMA interface
 - MQ expiry time minus the time that was spent in the MQ queues

From the remote application perspective (business as usual):
- The MQPUT application will be unaware of an expiry unless it specifies a Report option which can
 > include the generation of an expiry report which will be sent to the specified reply-to queue,
 > passing the remaining expiry interval from a request message to a response message,
 > or just discarding the expired message.
New Type-2 Commands for IMS Connect

- New Type-2 commands for IMS Connect resources
 - QUERY IMSCON
 - UPDATE IMSCON
XML Converter Refresh

• New Command to refresh an XML converter file that is already in use

```
UPDATE IMSCON TYPE(CONVERTER)...
x x,REFRESH CONVERTER NAME(cvtrname)
F h w s , U P D A T E C O N V E R T E R N A M E (cvtrname) O P T I O N (R E F R E S H )
```

• Supported by all command interfaces: Type-2, WTOR, z/OS Modify

• Converter files continue to be:
 • Generated using RDz
 • Loaded by IMS Connect from STEPLIB/JOBLIB/LNKLIST

• Benefit
 • More timely ability to change and implement converter files
 • Without requiring an IMS Connect restart
New IMS Connect Recorder Trace Points

F HWS1,UPDATE TRACETABLE NAME(RCTR) OWNER(HWS) LEVEL(HIGH) EXTERNAL(YES)

- Benefit
 - Additional trace points provide the ability to capture client errors for improved problem determination and analysis
 - The use of BPE external tracing allows large amounts of data to be captured
IMS Connect – RACF Userid Caching

- Existing IMS Connect security with RACF=Y
 - Limited caching of RACF Utoken
 - Consecutive requests on a persistent socket with the same Userid/Password/Group
- IMS 12 enhancement with RACF=Y
 - Common cache for userids across ALL sessions and ALL ports

 HWSCFG HWS statement: UIDCACHE={N|Y} , UIDAGE=aging_value

```
xx,VIEWHWS

HWSC0001I  HWS ID=HWS1  RACF=Y  PSWDMC=R
HWSC0001I  UIDCACHE=Y  UIDAGE=300
HWSC0001I  MAXSOC=2000  TIMEOUT=6000
HWSC0001I  NUMSOC=6  WARNSOC=80%  WARNINGC=5%
HWSC0001I  RRS=Y  STATUS=ACTIVE
HWSC0001I  VERSION=V12  IP-ADDRESS=009.030.218.050
HWSC0001I  SUPER MEMBER NAME=CM0  ACK TOQ=
HWSC0001I  ADAPTER=Y
```
CM0 ACK NoWait for RYO Clients

• Existing protocol for Roll Your Own (RYO) clients requires
 • CM0 Send-Receive interactions to receive a timeout notification after ACK/NAK
 • Receive and timeout flow adds unnecessary overhead to the client application

• New option of NoWait on ACK or NAK
 • Indicates the remote client will not issue subsequent receive

<table>
<thead>
<tr>
<th>Previous CM0 send-receive flow</th>
<th>New CM0 send-receive flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send request</td>
<td>Send request</td>
</tr>
<tr>
<td>Receive response</td>
<td>Receive response</td>
</tr>
<tr>
<td>Send ACK</td>
<td>Send ACK NoWait</td>
</tr>
<tr>
<td>Receive T/O</td>
<td>(no need to issue receive for final timeout)</td>
</tr>
</tbody>
</table>

• Benefit
 • Greater efficiency and simplified interaction
 • Eliminates need for extra send after an ACK/NAK
Partial Read Status

• New READ client status
 • The message has been received by IMS Connect but is not yet considered a complete input message
 • Should be transient but can be an indicator of a problem
 • Affects VIEWPORT, VIEWHWS, QUERY MEMBER, QUERY PORT, QUERY IMSCON command output

• Benefit
 • Facilitates the detection of a remote application programming error
 • Invalid length specification of an input message
IMS Connect User Exit Load Modules

• IMS Connect ships load modules for User Exits
 • HWSUNIT0, HWSJAVA0, HWSSMPL0, HWSSMPL1
 • Previously, working samples were provided but always had to be assembled and bound
 • Even if no changes were made to the provided source samples

• Benefit
 • Eases installation and maintenance processing if the user exits are to be used unchanged
IMS to IMS TCP/IP Connectivity

- Enhancements to leverage TCP/IP networks for communications between IMS systems for:
 - OTMA Support for Asynchronous IMS-IMS Communications
 - Uses one-way message communications (ALTPCB)
 - TCP/IP-Type Physical Links (MSC)
 - Request and response message communications
 - IMS Connect processes both the request and response messages as one-way asynchronous messages
Asynchronous IMS-IMS TCP/IP Support …

- **OTMA**
 - Sends OTMA remote ALTPCB messages to IMS Connect using new destination information
 - OTMA destination descriptors or DFSYDRU0 exit Routine
- **IMS Connect**
 - Receives OTMA ALTPCB messages from a local IMS and sends them to the remote IMS Connect for processing in the remote IMS
 - Enhanced IMS Connect configuration specifications

ALTPCB destination is resolved using an **OTMA Destination Descriptor** or the **DFSYDRU0 exit**

IMS Connect configurations defines the connection to the remote Partner
Usage and Benefits

• Usage
 • IMS applications: ISRT ALTPCB
 • IMS environment: destination descriptor or a DFSYDRU0 exit routine
 • IMS Connect: configuration specifications

• Benefits
 • Supports TCPIP communications to invoke transactions between IMS systems without having to create or maintain a separate gateway solution
 • IMS-provided and supported solution
MSC TCP/IP

- Support for MSC communications across a TCP/IP network
 - MSC TCP/IP leverages IMS Connect and the Common Service Layer
 - A new physical link MSPLINK TYPE=TCPIP
 - Provides a mechanism to
 - Take advantage of TCP/IP networks
 - Complement or backup existing SNA/VTAM links
 - Take advantage of potentially higher bandwidths
 - Supports operational compatibility with other link types (CTC, MTM, VTAM)
 - Starting, stopping, updating, displaying, and assigning resources

- Only between IMS 12 systems
MSC TCP/IP

- MSC TCP/IP leverages IMS Connect and the Common Service Layer
 - IMS Connect sends/receives messages via the TCP/IP network
 - IMS Connect manages the TCP/IP communications
 - IMS MSC manages the message processing
 - CSL provides the Structured Call Interface (SCI) for communications between IMS components including IMS Connect
 - Each IMS and its local MSC-routing IMS Connect system must be part of the same IMSplex
 - IMSPLEX= plexname parameter in the Common Layer Section of the DFSDFxxx of IMS proclib
 - The Operations Manager (OM) is not required but recommended
 - For type-2 command support
MSC TCP/IP …

• IMS to IMS Connect functionality
 • Isolates TCP/IP from the IMS Control Region
 • Uses the existing IMS Connect TCP/IP support
 • Provides a new MSC driver as well as TCP/IP driver for MSC
 • Supports communication with IMS via the Structured Call Interface (SCI)
MSC TCP/IP - Benefits

• Benefits
 • Takes advantage of TCP/IP networks for MSC
 • Can potentially provide for a higher MSC bandwidth
 • Supports different configurations
 • Coexistence with or backup of VTAM/SNA links
 • Increases availability
 • Logical links can be moved between VTAM and TCPIP
 • Flexibility
TM Summary

- IMS 12 continues to enhance:
 - APPC
 - OTMA
 - IMS Connect

- And introduces new ways to support
 - IMS-IMS Communications
IMS 12 System Enhancements
IMS 12 System Enhancements

- Dynamic resource definition (DRD) enhancements
- Extended address volume (EAV) enhancement
- IMS logger enhancements
- System pools storage enhancement
- Command enhancements
- Syntax checker enhancements
- CQS traceability enhancements
Dynamic Resource Definition (DRD) Enhancements

• New UPDATE option for IMPORT command
 • Previously, IMPORT could only be used for adding runtime resource definitions/descriptors that did not exist in the target IMS system
 • New IMPORT .. OPTION(UPDATE) allows existing runtime resource definitions/descriptors in the target IMS to be changed
 • Command fails if changed definition is in use

• DRD usage of the IMS repository function
 • Previously, stored resource definitions/descriptors were kept in resource definition data sets (RDDSs)
 • New IMS repository function provides an additional method for storing stored resource definitions/descriptors
 • IMS repository will be described later in this session

• Benefits
 • Improved manageability for DRD
Extended Address Volume (EAV) Enhancement

- IMS 12 allows certain non-VSAM IMS data sets to use EAV volumes
 - Data sets can reside in Extended Address Space (EAS) on EAV volumes
 - z/OS addressable disk storage increased beyond 65K cylinders
 - New architecture will support 100’s of Terabytes on single volume
 - Storage is addressed using new 28-bit cylinder/track address
 - Requires z/OS 1.12

- IMS 11 provided support for IMS VSAM data sets to use EAV volumes
Extended Address Volume (EAV)

- A volume with more than 65,520 cylinders
 - 3390 Model A
 - 1 to 268,434,453 cylinders
 - Architectural EAV maximum

Maximum Sizes

- 3390-3
 - 3 GB
 - Max cyls: 3,339

- 3390-9
 - 9 GB
 - Max cyls: 10,017

- 3390-27
 - 27 GB
 - Max cyls: 32,760

- 3390-54
 - 54 GB
 - Max cyls: 65,520

- 3390-A
 - “EAV”
 - 100s of TBs
EAV Key Design Points

- EAV maintains 3390 track format
 - Track-managed space:
 - Area on EAV within the first 65,520 cyls
 - Space allocated in track or cyl increments
 - Storage for “small” data sets
 - Cylinder-managed space:
 - Area on EAV located above first 65,520 cyls
 - Space is allocated in multicylinder units
 - Storage for “large” data sets
- New DSCB format types identify EAS data sets
 - New formats (Format 8 and 9) in VTOC
 - Data set resides in cylinder-managed space
Non-VSAM IMS Data Sets Supported

- Overflow Sequential Access Method (OSAM) data sets
 - OSAM database data sets
 - Restart data set (RDS)
 - Message queue blocks data set
 - Long and short message data set
- IMS Online Log Data Sets (OLDS)
- IMS Write Ahead Data Sets (WADS)
- IMS SPOOL data sets
- BPE External Trace Data Sets
Extended Address Volume (EAV) Enhancement for non-VSAM data sets

• Prerequisites
 • Software requirements
 • z/OS 1.12
 • Hardware requirements
 • DS8000, DS8700
 • 3390 Model A

• Benefits
 • Supports the placement of more data sets on a single volume
 • Allow users to manage fewer numbers of larger volumes
 • Less need for multi-volume OSAM
IMS Logger Enhancements …

• Extended Format Support for OLDS and SLDS (optional)

• Option for log buffers above the 2-gigabyte boundary ("bar") in virtual

• WADS management changed to be more efficient
IMS Logger Enhancements …

• New optional capability for OLDS and SLDS
 • IMS 12 allows OLDS and SLDS to be defined as extended format data sets
 • Use of extended format data sets allows striping
 • Striping allows multiple concurrent I/Os for sequential processing
 • Data set is spread across multiple volumes
 • Increased logging rates

• Option for log buffers above the 2-gigabyte boundary ("bar") in virtual
 • Frees substantial amount of ECSA
 • OLDS must be in extended format with BLKSIZE 4K multiple
 • BUFSTOR=64 on OLDSDEF statement in DFSVSMxx
IMS Logger Enhancements

- WADS management changed to be more efficient
 - Track groups no longer used
 - WADS written in wrap around fashion
 - WADS should be sized to provide enough space for any OLDS buffers not yet written at any time plus one track
 - WADS should be kept in cache in storage subsystem

- Benefits
 - Increased logging bandwidth / improved logging performance
 - ECSA constraint relief
 - Simplified WADS management for improved performance
System Pools Storage Enhancement

- Storage for selected database pools is obtained in 31-bit virtual storage, backed by 64-bit real storage
 - DBWP – Database work pool
 - DLDP – DMB pool
 - DLMP – CSA PSB pool
 - DPSB – DLI PSB pool
 - PSBW – PSB work pool

- Benefits
 - Reduction in 31-bit fixed real frames for fixed pools
 - Some users will now be able to fix these pools
 - Previously, they were constrained by 31-bit real storage
Command Enhancements

- Enhancements to existing commands and new commands
 - CQS trace command enhancements
 - DBRC command enhancements
 - Dynamic database buffer pool command enhancements
 - Dynamic resource definition (DRD) command enhancements
 - Fast Path secondary index command enhancements
 - HALDB command enhancements
 - IMS Connect command enhancements
 - MSC command enhancements
 - IMS repository function command enhancements
 - OTMA command enhancements
Command Enhancements

• Enhancements are focused on type-2 commands for the Operations Manager (OM) environment

• Benefits
 • Support of new IMS 12 functions
 • Improved manageability
Syntax Checker Enhancements

- Syntax Checker supports PROCLIB members for IMS 12 / IMS 11 / IMS 10
 - IMS 9 PROCLIB members are not supported
- All previously supported members are supported
 - Newly added parameters of these members are supported
- Support added for Repository Server configuration member
- Support added to view/save parameters of members in a custom order
 - Formerly, only alphabetical order was used

- Benefits
 - Support of new IMS 12 PROCLIB members
 - Improved usability with custom order of parameters
CQS Traceability Enhancements

• Existing CQS structure trace table (STR) can quickly fill, wrap around, and lose critical trace entries

• Two new BPE trace tables are available to track CQS structure events
 • One for overflow events (OFLW), one for structure events (SEVT)
 • Retain critical trace data for longer periods of time

• Benefits
 • Improves CQS serviceability
IMS 12 System Enhancements

- Dynamic resource definition (DRD) enhancements
- Extended address volume (EAV) enhancement
- IMS logger enhancements
- System pools storage enhancement
- Command enhancements
- Syntax checker enhancements
- CQS traceability enhancements
The Repository
IMS Repository Agenda

• Overview of the IMS repository function
• IMS repository function components
 • Repository Server (RS) address space
 • Repository data sets
 • Repository catalog data sets
 • CSL requirements and RM usage
• IMS repository setup
 • Repository Server setup
 • Creating/enabling an IMSRSC repository for DRD
• IMS repository commands and usage
• Migration to DRD with the repository
IMS Repository Function Overview

- A ‘repository’ is a generalized data storage facility that can be used to store various types of information.
- The IMS repository function is a centralized method for storing and retrieving resource definitions in an IMSplex.
 - Enables multiple IMS systems in a multiple-IMS IMSplex to manage, store, share, and retrieve resource definitions.
 - Enables a single IMS system in a single-IMS IMSplex to manage, store, share, and retrieve resource definitions.
- Focus is on improving the systems management and resource management aspects of handling IMS resource definitions.
 - Across multiple IMSs or for a single standalone IMS.
 - For test systems, for production systems.
IMS Repository Function Usage

- In IMS 12, the resource and descriptor definitions for Dynamic Resource Definition (DRD) can be stored in an IMS repository
 - Contains resource definitions for programs/transactions/databases/FP routing codes & descriptors
 - Called the IMSRSC (IMS resource) definition repository
 - Provides an alternative to using RDDSs (resource definition data sets) for DRD
 - Replaces one or more sets of RDDSs in an IMSplex with a single repository
 - Eliminates the need to manually coordinate and manage separate RDDSs per IMS across a multiple-IMS IMSplex
 - Provides an alternative to using MODBLKS with SYSGEN and online change
 - Considered a strategic alternative to the RDDS
- IMS 12 can retrieve the stored resource definitions from the IMSRSC repository to dynamically generate runtime resources for DRD
IMS 12 Support for the DRD Function …

- DRD users in IMS 10 and IMS 11 moving to IMS 12
 - Can use existing RDDSs from IMS 10 or IMS 11 for stored resource definitions in IMS 12
 - Can use existing RDDSs from IMS 10 and IMS 11 for stored resource definitions at initial migration to IMS 12, then can migrate to the new IMSRSC repository
 - Can use the new IMSRSC repository to store definitions in IMS 12
IMS 12 Support for the DRD Function

- Users in IMS 10 and IMS 11 without DRD
 - Can use the new IMSRSC repository for stored resource definitions in IMS 12
 - Can create new RDDSs for stored resource definitions in IMS 12
- Both RDDSs (system and non-system) and the IMSRSC repository can exist together during migration to the IMSRSC repository
IMS Repository Function Benefits

• Consolidation of resource definitions in a single place, the repository

• DRD definitions are the initial implementation of the IMS repository function (to replace RDDSs)

• Full support for populating, managing, storing, sharing, and retrieving a consistent set of DRD stored resource definitions for multiple-IMS IMSplexes and single-IMS IMSplexes

• Manual coordination of multiple RDDSs in a multiple-IMS IMSplex eliminated, replaced by basic functioning of the IMS repository

• Improvements in IMSplex systems and resource management with the repository

• A strategic direction for IMS architecture
IMS Repository Function Components …

- Repository Server (RS)
- Repositories
 - Catalog repository
 - IMSRSC repository(s)
- Common Service Layer (CSL) IMSplex configuration consisting of
 - Operations Manager (OM)
 - Resource Manager (RM)
 - Structured Call Interface (SCI)
 - SPOC for entering type-2 commands
 - Optional resource structure with CQS address space
- Batch utilities
 - Batch ADMIN utility
 - RDSS to / from repository utilities
IMS Repository Function Components …

- Repository Server (RS)
 - New BPE-based address space
 - Managed by the RM CSL address space
 - Two types
 - Master Repository Server
 - Single instance
 - Manages access to repository data sets
 - First RS address space to access repository
 - Subordinate Repository Server
 - One or more instances
 - Used if master Repository Server goes down
 - Optional but recommended
IMS Repository Function Components …

• Repository Server (RS)
 • Uses VSAM KSDS data sets to store information
 • Recommendation
 • One master Repository Server address space per IMSplex
 • Has its own internal repository called the ‘catalog repository’
 • Manages IMS repositories (IMSRSC for DRD)
 • Ensures repository data integrity
 • Uses SAF to restrict access to repositories
 • Provides an audit trail using the z/OS logger
 • Provides tracing capabilities via BPE
IMS Repository Function Components …

• Repository data sets
 • Multiple sets of VSAM KSDS data sets
 • Each set composed of
 • Repository index data set
 • Repository member data set
 • Each of these has a primary and secondary data set (duplexed)
 • Optional spare set (third) can be defined

• Two types of repository data sets
 • IMS repository data sets
 • Catalog repository data sets
IMS Repository Function Components …

- Catalog repository (RS catalog data sets)
 - Required per Repository Server
 - Manages the Repository Server (RS) functions
 - Manages information about IMS repository data sets
 - Composed of two pairs of data sets
 - Primary index data set and primary member data set (required)
 - Secondary index data set and secondary member data set (required)
 - No spare capability

![Diagram of RS catalog data sets](image)
IMS Repository Function Components …

- IMS repositories
 - IMSRSC repository contains
 - Stored resource definitions for DRD resources for one or more DRD-enabled IMS systems
 - Programs / transactions / databases / FP routing codes and descriptors
 - Resource lists for each IMS
 - Contains resource names and resource types that can be processed by an IMS system
 - Changed resource lists for each IMS
 - Contain resource changes made when an IMS is down
 - Typically one IMSRSC repository per Repository Server (RS) per IMSplex
IMS Repository Function Components …

- IMS repositories
 - IMSRSC repository
 - Composed of up to three pairs of data sets
 - Primary index data set and primary member data set (required)
 - Secondary index data set and secondary member data set (required)
 - Spare index data set and spare member data set (optional)
IMS Repository Function Components …

• A Common Service Layer (CSL) IMSplex configuration consisting of

 • Operations Manager (OM)
 • Used for new/modified type-2 commands for repository functions

 • Resource Manager (RM)
 • Used for managing the new Repository Server (RS) address space
 • All online access to Repository Server is through RM address space
 • New type-2 commands for managing the Repository Server
 • UPDATE RM
 • QUERY RM
 • RM is enabled to the repository by specifying a Repository Section in the RM initialization member (CSLRlxxx)
IMS Repository Function Components …

- A Common Service Layer (CSL) IMSplex configuration consisting of
 - Structured Call Interface (SCI)
 - Used for communications within the CSL
 - Not used for communications between RM and the RS
 - RS is not considered a CSL manager
 - Optionally, a resource structure in a Coupling Facility
 - Used for repository name and repository type consistency if present
 - Managed by a Common Queue Server (CQS) address space
 - Multiple RMs in an IMSplex require that a resource structure exists
 - SPOC (single point of control) for entering type-2 commands
 - Can be a single-IMS IMSplex or a multiple-IMS IMSplex
IMS Repository Function Components

• Batch utilities
 • Batch ADMIN utility (FRPBATCH)
 • Commands for managing IMSRSC repositories
 • Functions such as ADD a new IMSRSC repository, LIST the characteristics of an IMSRSC repository, START or STOP an IMSRSC repository
 • RDDS to / from repository utilities (Batch RM utilities)
 • RDDS to Repository Utility (CSLURP10)
 • For migration
 • Repository to RDDS Utility (CSLURP20)
 • For fallback
IMS Repository Function Configuration

- Operations Manager (OM)
- Structured Call Interface (SCI)
- Resource Manager (RM)
- IMS Control Region
- SCI
- IMSRSC Repository Primary/Secondary
- Batch ADMIN Utility
- RM Utilities CSLURP10/CSLURP20
- Repository Server (RS)
IMS Repository Setup

- Repository Server setup
- Creating / enabling an IMSRSC repository for DRD
IMS Repository Setup

• Repository Server
 • Create catalog repository data sets
 • Set up BPE configuration member
 • Set up FRPCONFG configuration member
 • Repository Server settings
 • Audit log definitions
 • Define security
 • Set up the CSL
 • RM needs new CSLRIxxx repository section
 • Set up IMS
 • DFSDFxxx needs new repository section
 • Start the master Repository Server
 • Start subordinate Repository Servers
Enabling an IMSRSC repository for DRD

- Create IMSRSC repository data sets
- Define security for IMS repository
- Define the IMSRSC repository to the Repository Server
- Start the IMSRSC repository
- Enable the IMSRSC repository to RM and IMS
- Populate the IMSRSC repository
 - If IMS is up, populate using the EXPORT DEFN TARGET(REPO) command to add DRD stored resource definitions to the IMSRSC repository
 - If IMS is down, use the batch RDDS to Repository Utility (CSLURP10) to populate the IMSRSC repository
IMSRSC Repository is Active/Populated

• Begin to use type-2 DRD repository commands that access/update stored resource definitions in the repository

```
EXPORT DEFN TARGET(REPO) TYPE(ALL) NAME(*)
IMPORT DEFN SOURCE(REPO) TYPE(DB) NAME(DBABC) OPTION(UPDATE)
DELETE DEFN TARGET(REPO) TYPE(DB) NAME(DBXYZ)
QUERY IMS
QUERY DB/PGM/TRAN/RTC SHOW(DEFN)
```
IMS Repository Commands

- IMS and RM IMSplex commands issued from SPOC or Manage Resource panels
- Batch ADMIN commands
- Repository Server commands issued through z/OS modify interface
IMS and RM IMSplex Commands issued from SPOC or Manage Resources panels

- IMS type-2 commands

 - UPDATE IMS
 - QUERY IMS

 For management of repository and RDDS functions

 For status of IMS

 - EXPORT DEFN TARGET(REPO)
 - IMPORT DEFN SOURCE(REPO)
 - DELETE DEFN

 For working with DRD stored resource definitions in the repository

 - QUERY DB/DBDESC/PGM/PGMDESC/TRAN/TRANDESC/RTC/RTCDESC
 SHOW(DEFN)

 For displaying stored resource definitions in the repository and their attributes
IMS and RM IMSplex Commands issued from SPOC or Manage Resources panels

- RM type-2 commands
 - UPDATE RM
 - QUERY RM

For management of repository and RDDS functions

For status of RM

- DRD commands (CREATE, UPDATE, DELETE) work with runtime definitions, not the stored resource definitions in the repository
Batch ADMIN commands (FRP BATCH)

• Commands for managing repositories (IMSRSC)
 • ADD
 • UPDATE
 • RENAME
 • DELETE

 Add a new repository definition, update an existing repository definition, rename an existing repository definition, remove an existing repository definition.

 • DSCHANGE

 Change data set disposition

 • LIST

 List repository information

 • START

 • STOP

 Start or stop a repository
Repository Server Commands Issued Through the z/OS Modify Interface

- Functions for managing a Repository Server (RS) and its repositories (IMSRSC)

 - **ADMIN**
 - Administrative functions for IMSRSC repositories – change data set disposition, display data sets, start/stop repositories

 - **AUDIT**
 - Dynamically turn auditing on or off

 - **SECURITY**
 - Refresh in-storage RACF profile definitions

 - **SHUTDOWN**
 - Shutdown Repository Server address space(s)

 - **STOP**
 - Stop/shutdown Repository Server
IMS Repository Migration Overview …

• From DRD with RDDSs to DRD with Repository

• From no DRD to DRD with Repository
IMS Repository Migration Overview …

• From DRD with RDDSs to DRD with Repository
 • Create non-system RDDS that contains current definitions via EXPORT command or DRD utilities
 • Set up repository parameters in PROCLIB members FRPCONFG, BPECONFG, CSLRIxxx, DFSDFxxx
 • Create catalog repository data sets and IMSRSC repository data sets
 • Start the Repository Server address space
 • Use the batch ADMIN utility to define the IMSRSC data sets to the Repository Server
 • Run the batch RDDS to Repository utility to populate the repository
 • Cold start IMS with AUTOIMPORT specified
IMS Repository Migration Overview

• From no DRD to DRD with Repository
 • First implement DRD with RDDSs
 • Set up DRD parameters in DFSDFxxx
 • MODBLKS=DYN, RDDSDSN=, AUTOIMPORT=MODBLKS
 • Cold start IMS using updated DFSDFxxx
 • AUTOIMPORT will use MODBLKS for definitions
 • Online change now disabled
 • Follow process to migrate from DRD with RDDSs to DRD with repository
IMS Repository Function Benefits

• Consolidation of resource definitions in a single place, the repository
• DRD definitions are the initial implementation of the IMS repository function (to replace RDDSs)
• Full support for populating, managing, storing, sharing, and retrieving a consistent set of DRD stored resource definitions for multiple-IMS IMSplexes and single-IMS IMSplexes
• Manual coordination of multiple RDDSs in a multiple-IMS IMSplex eliminated, replaced by basic functioning of the IMS repository
• Improvements in IMSplex systems and resource management with the repository
• A strategic direction for IMS architecture
Summary

- IMS repository function
- IMS repository function components
 - Repository Server (RS) address space
 - Repository catalog data sets
 - Repository data sets
 - CSL requirements and RM usage
- IMS repository setup
 - Repository Server setup
 - Creating/enabling an IMSRSC repository for DRD
- IMS repository commands and usage
- Migration to DRD with the repository