Understanding The Interaction Of z/OS Workload Manager And DB2

Ed Woods / IBM Corporation
Session 9395
Thursday August 11th, 4:30 PM
Agenda

- Workload Manager Overview
- Important WLM Concepts And Terminology
- How DB2 Exploits Workload Manager
- Understanding WLM and how it impacts DB2
- WLM/DB2 Usage Recommendations
- Summary
Why Workload Manager (WLM)?

Goal Prioritization

- Complexity of systems has increased dramatically
 - In the past priority managed by PARMLIB options
 - Too much work to ‘micro-manage’ each z/OS system
 - Multiple LPARs, Data sharing, large sophisticated workloads

- Workload Manager improves the performance management process
 - Prioritize workload based upon goals and business objectives
 - Let the system optimize and prioritize resource management
 - Make sure that the most important workload gets the appropriate resource

What does z/OS need to accomplish objectives?
How important is the workload to the business?
DB2 And Workload Manager

- Workload Manager (WLM) is the priority and resource manager for z/OS and implicitly for DB2 as well.
- Workload Manager manages CPU, I/O, and memory resources as needed by the workload.
- WLM manages critical DB2 address spaces
 - DB2 subsystem address spaces (DBM1, MSTR, IRLM)
 - DB2 Stored Procedure address spaces
- These resources have an impact on how DB2 applications perform
 - May impact duration and efficiency of DB2 application processing.
- Workload Manager is used to manage DB2 workflow
 - Priority and performance of allied tasks (CICS, IMS, batch, TSO, WebSphere) that call DB2
 - DB2 Distributed and DB2 Stored Procedure workload.
- Important to have a basic understanding of WLM.
Workload Manager Terminology

- A SERVICE DEFINITION consists of one or more SERVICE POLICIES
- A service policy contains several WORKLOADS
- Each workload consists of one or more SERVICE CLASSES
- Each service class has at least one PERIOD and each period has one GOAL
 - You will specify a goal for a DURATION
- There are five types of goals
 - System, Average Response Time, % Response Time, Execution Velocity, Discretionary
- Address spaces and transactions are assigned to service classes by CLASSIFICATION RULES
Key WLM Concepts

- WLM is built upon two key concepts
 - **DEFINITION** - WLM provides mechanisms to categorize, prioritize, and manage workload
 - These are the service definitions managed by the WLM dialogs
 - **FEEDBACK** - The components managed by WLM provide information (samples) to help WLM determine how well it is doing
 - These are feedback mechanisms provided by each component, subsystem, and operating system
WLM
Service Classes Categorize Workload

- Classification rules assign incoming work to the appropriate WLM Service Class
- Classification rules group together logically related work
Workload Manager
Service Classes And Goals

- z/OS resources assigned based upon goals defined in WLM

Service Classes categorize work and set goals
- Response time
- Velocity
- System
- Discretionary

WLM Checks every 10 sec

Resources Assigned
- CPU
- I/O
- Storage
- Server Address Spaces

Calculates the PI (Performance Index)
PI = 1 (meeting the goal)
Types Of WLM Goals

Velocity Goals

- The percentage of time workload is ready and able to run, and is not delayed for lack of resources
 - Example - Velocity of 50 means that 50% of the time resources should be available for work to run

- Velocity goals measure of acceptable delay based on samples
 - High velocity goals (higher than 60 or so) in general are unreasonable
 - Use relatively higher velocity goals for DBM1 and SSAS
 - At first glance easy to set – may require more thought

- Velocity goals actually requires more analysis
 - Systems, environments, and workloads will change over time
 - Velocity goals require regular review
 - As systems change, velocity goals may need ‘fine-tuning’
Types Of WLM Goals

Response Time Goals

- Average response time
 - Average response time for a given set of transactions
 - Include queue time and execution time

- Percentile response time
 - Percentile of transactions that need to complete within a desired response time
 - Reduces the impact of ‘outliers’

- Rule of thumb
 - Work should have at least 10 completions in a 20 minute time frame to have adequate samples

- Consider Response time goals where possible for DB2 workloads
 - DDF requests, even batch jobs
Special Service Classes
SYSTEM, SYSSTC, & SYSOTHER

- **SYSTEM**
 - For selected high priority system address spaces
 - Get highest CPU and I/O dispatching priority in system

- **SYSSTC**
 - For selected high priority started tasks and workload
 - Second highest priority behind SYSTEM
 - Place very high importance workload items here
 - DB2 Example - place IRLM here

- **SYSOTHER**
 - Unclassified work falls here
 - Bottom of the resource food chain
Goals, Periods, Importance And Duration

A Service Class may consist of one or multiple periods
As work progresses goals and importance may be adjusted across periods
The Importance Of Importance

- Importance parameter
 - A way to prioritize critical goals
- Not analogous to Dispatching Priority
 - What is the importance of achieving the goal?
- WLM attempts to meet importance 1 goals first, and so on....
- Helps WLM determine donors and receivers of resources
 - Donors – workload that can give up resource
 - Receivers – workload that needs resource
Understanding WLM Goals

The Performance Index

- Service Class periods are compared by calculating a Performance Index (PI) for each
- PI gives WLM a common way to track how well the work is doing regardless of goal type
- Importance parameter
 - Defined as part of the Service Class - 1 (high) to 5 (low)
 - Assigned to a Service Class Period
 - A way to prioritize critical goals
 - For work at the same importance level, WLM attempts to equalize the PIs

<table>
<thead>
<tr>
<th>PI Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PI equals 1</td>
<td>The work in the period is meeting its goal exactly</td>
</tr>
<tr>
<td>The PI is less than 1</td>
<td>The work is doing better than its goal</td>
</tr>
<tr>
<td>The PI is more than 1</td>
<td>The work is missing its goal</td>
</tr>
</tbody>
</table>
Specifying The WLM Objectives

WLM provides an ISPF interface to define and manage the WLM Service Definition

Note – z/OS Management Facility V1.12 provides a new management interface
Workload Manager As A DB2 Priority Mechanism

Thread attributes in WLM allow for considerable granularity in the classification of DB2 workloads into the appropriate Service Class.

Examples of
Thread Attributes

- AI (Accounting Information)
- CI (Correlation Information)
- CN (Collection Name)
- CT (Collection Type)
- LU (LU Name)
- NET (Net ID)
- PK (Package Name)
- PN (Plan Name)
- SI (Subsystem Instance)
- UI (Userid)
DB2 Workload Priority
How Does WLM Assign Priority To DB2 Workload?

- The priority of the DB2 workload will vary depending upon the origin of the workload

- DB2 workload originating from a local application (examples - IMS, CICS, TSO, Batch, WebSphere)
 - Priority is inherited from the invoking application
 - This applies to Stored Procedures invoked locally

- DB2 Distributed requests (Subsystem type DDF)
 - Priority controlled by DDF Service Class definitions
 - DB2 Stored Procedure request via DDF - priority controlled by Service Class definitions

- DB2 Sysplex Query parallelism (Subsystem type DB2)
 - Classification done by DB2 Service Class definitions
DB2 Distributed WLM Goal Considerations

- DB2 thread options may influence enclave creation and how DB2 interacts with WLM
 - Impacted by such things as KEEPDYNAMIC options, cursor with hold
 - Enclave creation may drive using velocity versus response time goals
About Enclaves

- Enclaves represent a "business unit of work"
- Enclaves are managed separately from the address space
- Enclaves can include multiple SRBs/TCBs
 - Can span multiple address spaces
 - Can have many enclaves in a single address space
 - Assigned by WLM to a service class
- Enclaves are managed separately from the address space
- DB2 exploits the WLM Enclave interface
 - DB2 workload may create/delete the enclave, join an enclave, etc.
DDF Goal Considerations

- DDF workload may call for a combination of Velocity and Response time goals
 - DDF address space versus DDF workload
When a Stored Procedure is called from DDF thread
- DB2 references the enclave created for the DDF request for Stored Procedure
- Stored Procedure priority is the priority of the DDF request
Stored Procedure Priority Called From A Local Application

- When a Stored Procedure is called from an application on z/OS
 - DB2 creates an enclave for use by the Stored procedure
 - Stored Procedure priority is the priority of the calling application address space
Service Classes And Thread Priorities

- Depending upon how an enclave is created (local allied address space or via DDF) controls what service class, etc that is assigned to a given thread
Intelligent Resource Director (IRD) And Hiperdispatch

- Extends the concept of goal-oriented resource management
 - Allows the grouping of system images into an "LPAR cluster"
 - Gives WLM the ability to manage resources, both processor and DASD I/O, not just in one single image but across the entire cluster of system images

- LPAR weight management
 - Manages the “weight” of an LPAR and the number of CPs for an LPAR
 - LPAR weight is part of WLM CPU delay analysis

- Dynamic Channel Path management
 - Lets WLM move channel paths from one I/O control unit to another

- Channel Subsystem I/O Priority Queuing
 - Allows WLM to assign a priority to an I/O request
 - Channel subsystem may use a priority managed queue as opposed to FIFO queue

- Hiperdispatch
 - Improves processor performance through optimizing processor-level caching
How DB2 Interacts With WLM To Assign I/O Priorities

- DB2 informs z/OS about which address space's priority is to be associated with a particular I/O request
 - WLM handles the management of the request

Table 8-1 How read I/O priority is determined

<table>
<thead>
<tr>
<th>Request type</th>
<th>Synchronous reads</th>
<th>Prefetch reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Application's address space</td>
<td>Application's address space</td>
</tr>
<tr>
<td>DDF or sysplex query parallelism (assistant only)</td>
<td>Enclave priority</td>
<td>Enclave priority</td>
</tr>
</tbody>
</table>

Table 8-2 describes to which enclave or address space DB2 is associated with the I/O write requests.

Table 8-2 How write I/O priority is determined

<table>
<thead>
<tr>
<th>Request type</th>
<th>Synchronous writes</th>
<th>Deferred writes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Application's address space</td>
<td>ssnmDBM1 address space</td>
</tr>
<tr>
<td>DDF or sysplex query parallelism (assistant only)</td>
<td>DDF address space</td>
<td>ssnmDBM1 address space</td>
</tr>
</tbody>
</table>
WLM Contention Management

- WLM Contention Management helps addressing chronic or long lasting contention situations
 - WLM provides interfaces to allow resource managers (for example – DB2) to signal contention situations
 - WLM has had the ability to promote (increase the DP) for a short duration to resolve the issue
- DB2 example scenario
 - Lock/latch contention in DB2 may impact performance
 - Often contention may be resolved with a short boost of resource
 - DB2 may notify WLM if a contention occurs
 - WLM may optionally raise the priority for the holder to complete the work
- WLM can promote units of work for longer periods of time, and promote them to the priority of the highest-priority units of work waiting for a resource they are holding.
WLM Considerations – Example Stored Procedures

- The original assumption
 - All work requests inserted by DB2 (example – Stored Procedures) were independent requests

- The reality
 - Procedures may recursively call other procedures
 - The processing may be inter-dependent

- The newer logic
 - DB2 tells WLM about dependent stored procedure requests
 - WLM gives dependent requests priority
 - WLM may make adjustments, if needed
WLM Considerations For Nested Stored Procedure Requests

- Triggers, Stored Procedures, and UDFs actions may be nested, sometimes multiple layers of nesting
- DB2 tells WLM about dependent stored procedure requests
 - WLM may give dependent requests priority, if needed
 - WLM may start server regions more aggressively, if needed
DB2 And zIIP Processors

- Work on z/OS may have all or a portion of its resource usage on an enclave SRB
 - Enclave SRB work may be directed to the zIIP
- Certain types of DB2 work may take advantage of zIIP
 - DRDA - Queries that access DB2 for z/OS via DRDA over TCP/IP
 - Complex parallel queries
 - DB2 utilities for index maintenance
 - LOAD, REORG, and REBUILD
 - DB2 V10 – Sequential prefetch eligible for zIIP processor
- WLM and new enclave structures to manage zIIP related workload – work dependent enclave
About Work-dependent Enclaves

- Extension to an independent, dependent, or other work-dependent enclave
 - Extends the transaction the creating enclave.
- Allows control of zIIP offload by entitled products.
It’s Back
WLM Managed DB2 Virtual Pools - PK75626

- DB2 z/OS WLM buffer pool management capability is now available for use
- Capability is activated for a buffer pool when a buffer pool is defined or altered by the ALTER BUFFERPOOL command with the AUTOSIZE option set to YES.
 - Each time DB2 processes an ALTER BUFFERPOOL command against a buffer pool that has the AUTOSIZE(YES) attribute, DB2 will register the buffer pool with WLM.
 - DB2 will calculate a maximum size and a minimum size for the buffer pool
 - Maximum size will be calculated to be 1.25 times the initial size
 - Minimum size will be calculated to be 0.75 times the initial size.
- As a DB2 thread executes, DB2 will report to WLM delays occurred due to a DB2 buffer pool I/O wait.
- When WLM has to decide on a policy adjustment
 - If any relevant service classes have not met their goals, WLM analyzes the delays against the service class
 - If a large portion of the delays are due to buffer pool I/O waits for a particular buffer pool, WLM may trigger an alter to the size of the buffer pool.
 - When this occurs, a DB2 message, DSNB555I, will be issued
 - When DB2 deletes a buffer pool because it is no longer needed, it will deregister the buffer pool from WLM.
- A buffer pool could be decreased in size if WLM observes that available real storage is being severely over-committed.
DB2 Velocity Goals
Setting Optimal Goals

- Use Velocity goals for always running and long running work
- Use a Velocity goal for the DB2 DDF address space
 - DDF address space has internal tasks that govern thread creation that should have high performance goal
- Use a Velocity goal for
 - DB2 address spaces (SSAS and DBM1)
 - CICS and IMS regions (if not using response time goals)
- Velocity goals at first glance seem easy to set
 - Require more ongoing review
 - Should be validated as the operating environment changes—changes to operating system, hardware, and workload
Things To Note

- Considerations for DDF threads
 - For DDF inactive threads
 - Consider a two-period service class with a response time goal where 80-90% of the transactions complete in first period
 - For DDF always active threads
 - Consider velocity goals and use a single-period service class
- Look for overly simplistic Service Class definitions
 - Example – type DDF and nothing more than DB2 subsystem name
 - Does little to exploit the ability of WLM to prioritize DB2 workloads
 - Some workloads will inherently be more important than others
- Look for workloads that run longer than expected but use less resource than anticipated
 - Indicative of workload that may not being optimally classified
- Avoid too many service classes/periods
 - WLM analyzes service classes/periods in a round-robin manner
 - Too many and WLM is unable to manage them all effectively
DB2 Response Time Goals
Setting Optimal Goals

- Use Response Time goals when possible
 - Less need for ongoing maintenance and review
 - WLM will manage resources dynamically to achieve goals
- Response Time goals work well for certain types of DB2 workloads
 - DB2 Distributed workloads in e-business and WebSphere transactional type workloads
 - Transactional type workloads in general including distributed workloads that invoke Stored Procedures
 - Repetitive workloads that have multiple events for WLM to measure and manage
What’s Improved In z/OS V1.12

- z/OS Management Facility (z/OSMF) V1.12 (5655-S28) provides an improved GUI management interface for z/OS
- A new system management task, Workload Management (policy editor), can simplify the creation, modification, and review of z/OS WLM service definitions
- A new application, Sysplex Status and Monitoring Desktops tasks, can provide real-time status of resources of all your servers, sysplexes, as well as Linux images from one location
- The Configuration Assistant for the z/OS Communications Server (available since z/OSMF V1.11) is updated with support for IP security
- The Incident Log capability (available since z/OSMF V1.11)
Summary
Workload Manager As The Priority Manager Of DB2

- Workload Manager (WLM) is the priority and resource manager for z/OS and DB2
- WLM manages critical DB2 address spaces
- These resources have an impact on how DB2 applications perform
- Workload Manager is used to manage DB2 workflow
- Important to have a basic understanding of WLM
- WLM is constantly being enhanced to provide new features and functions