z/OS Communication Server
IPSec and IP Packet Filtering

SHARE Session 9287

Lin Overby - overbylh@us.ibm.com
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States or other countries or both:

- Advanced Peer-to-Peer Networking®
- AIX®
- alphaWorks®
- AnyNet®
- AS/400®
- BladeCenter®
- CICS®
- DataPower®
- DB2 Connect
- DB2®
- DRDA®
- e-business on demand®
- e-business (logo)
- e-business (logo)®
- ESCON®
- FICON®
- GDMD®
- GDPS®
- Geographically Dispersed Advanced Peer-to-Peer Networking®
- HyperSwap
- i5/OS (logo)
- i5/OS®
- IBM eServer
- IBM (logo)
- IBM©
- IBM z/Enterprise™ System
- IMS
- InfiniBand®
- IP PrintWay
- IPDS
- iSeries
- LAND®
- Language Environment®
- MQSeries®
- MVS
- NetView®
- OMEGAMON®
- Open Power
- OpenPower
- Operating System/2®
- Operating System/400®
- OS/2®
- OS/390®
- OS/400®
- Parallel Sysplex®
- POWER®
- POWER7®
- PowerVM
- PR/SM
- pSeries®
- RAC®
- Rational Suite®
- Rational®
- Redbooks
- Redbooks (logo)
- Sysplex Timer®
- System i5
- System p5
- System x®
- System z®
- System z9®
- Tivoli (logo)®
- Tivoli®,
- VTAM®
- WebSphere®
- xSeries®
- z9®
- z10 BC
- z10 EC

* All other products may be trademarks or registered trademarks of their respective companies.
z/OS Communications Server IP security agenda

- Introduction to IP security on z/OS
- IP filtering
- IPSec
- Special topics
- IP security displays and controls
- Configuring and enabling IP Security
Introduction
z/OS IP security support

- z/OS IP Security is a complete IPSec, IP filtering, and IKE solution and is part of z/OS Communications Server

- Services
 - Protect the system from the network
 - IP filtering to control which packets can enter the system
 - Protect against data leakage from the system
 - IP filtering to control which packets can leave the system
 - Cryptographic protection of data in the network
 - Manual IPSec (statically defined security associations)
 - Dynamic negotiation of IPSec security associations using Internet Key Exchange (IKE)
 - Filter directed logging of IP Security actions to syslogd
z/OS Communications Server IP security features

- **Supports many configurations**
 - Optimized for role as endpoint (host), but also support routed traffic (gateway)
 - IPSec NAT Traversal support (address translation and port translation)
 - IPv4 and IPv6 support

- **Policy-based**
 - Configuration Assistant GUI for both new and expert users
 - Direct file edit into local configuration file

- **Default filters in TCP profile provide basic protection before policy is loaded**

- **Cryptographic algorithms**
 - RSA signature-based authentication
 - ECDSA signature-based authentication *(V1R12)*
 - HMAC-SHA-1, HMAC-MD5 authentication
 - HMAC-SHA-2, AES-XCBC, AES-GMAC authentication *(V1R12)*
 - AES-CBC, 3DES and DES encryption
 - AES-GCM (128- and 256-bit) encryption *(V1R12)*
 - Uses cryptographic hardware if available for most algorithms
 - FIPS 140 mode *(V1R12)*

- **zIIP Assisted IPSec**
 - Moves most IPSec processing from general purpose processors to zIIPs

- **IP Security Monitoring Interface**
 - IBM Tivoli OMEGAMON XE for Mainframe Networks uses the CommServer NMI interfaces for IP Security

- **Support for latest IPSec RFCs**
 - RFCs 4301-4305, 4307-4308 *(V1R10)*
 - RFCs 4306, 5996 (IKEv2) *(V1R12)*

- **z/OS CommServer V1R12 successfully completed USGv6 interoperability testing including the IPSec, IKE, and ESP test suites**
 - http://www.iol.unh.edu/services/testing/ipv6/usgv6tested.php
z/OS Communications Server IP security infrastructure overview

- **TCP/IP stack**
 - IPSec and IP filtering
- **Policy agent**
 - Reads and manages IPSec and IKE policy
- **Configuration Assistant for z/OS Communications Server**
 - Creates policy definitions
- **IKE daemon**
 - Negotiates security associations
- **ipsec command**
 - Displays and controls IP filtering, IPSec, and IKE
- **trmd**
 - Monitors TCP/IP stacks for log messages
- **syslogd**
 - Write log messages to syslogd destinations
- **Network Security Services daemon**
 - Provides certificate services for IKE
z/OS Communications Server IP security

IP filtering
Basics of IP packet filtering

IP packet filtering used to control:

Traffic being routed

- Filter rules defined to match on inbound and outbound packets based on:
 - packet information
 - network attributes
 - time

Access at source / destination host

- Possible actions
 - Permit
 - Deny
 - Permit with manual IPSec
 - Permit with dynamic IPSec
 - Log (in combination with other actions)
IP filtering processing overview

1. Inbound or outbound IP packet arrives

2. Consult set of filter rules in a filter rule table - Security Policy Database (SPD)
 - Rules have conditions and actions

3. Apply action of matching rule to packet
 - Deny
 - Permit
 - Permit with additional processing applied

- Filter rules are searched in the order they were configured
- Each rule is inspected, from top to bottom, for a match
- If a match is found, the search ends and the action is performed
IP security's Security Policy Database (SPD)

1. Default IP filter policy
 - Intended to allow limited access while IP security filter policy is being loaded
 - Can be reverted to in an "attack" situation
 - Defined in the TCP/IP profile
 - Default is to deny all traffic
 - Provides basic filtering function
 - Permit rules only - Permit traffic needed for basic services / fix problems with IP security filter policy
 - No IPSec support

2. IP security filter policy
 - Intended to be the primary source of filter rules
 - Defined in a Policy Agent IPSec configuration file
 - Policy can be generated by the Configuration Assistant for z/OS GUI

Implicit filter rules
 - Always present, not user-defined
 - Deny all inbound traffic
 - Deny all outbound traffic
 - Appended to Default IP filter policy by the TCP/IP stack
 - Appended to IP Security filter policy by Pagent
 - If neither policies are defined, the implicit rules become the default policy (deny all)
IP filter policy on z/OS - overview

Configuration Assistant for z/OS

TCP/IP Stack

IPSec Config Files

pagent

ipsec command

Controls which SPD is used when both are loaded

Must specify IPSECURITY on IPCONFIG statement

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules

IP filter policy on z/OS - overview

TCP/IP Stack

Configuration Assistant for z/OS

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules

IP filter policy on z/OS - overview

TCP/IP Stack

Configuration Assistant for z/OS

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules

IP filter policy on z/OS - overview

TCP/IP Stack

Configuration Assistant for z/OS

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules

IP filter policy on z/OS - overview

TCP/IP Stack

Configuration Assistant for z/OS

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules

IP filter policy on z/OS - overview

TCP/IP Stack

Configuration Assistant for z/OS

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules

IP filter policy on z/OS - overview

TCP/IP Stack

Configuration Assistant for z/OS

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules

IP filter policy on z/OS - overview

TCP/IP Stack

Configuration Assistant for z/OS

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules

IP filter policy on z/OS - overview

TCP/IP Stack

Configuration Assistant for z/OS

TCP/IP Profile

Filtering Logic

IP Security Filter Policy

Implicit Rules

Default IP Filter Policy

Implicit Rules
Filtering conditions

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From packet</td>
<td></td>
</tr>
<tr>
<td>Source address</td>
<td>Source IP address in IP header of packet</td>
</tr>
<tr>
<td>Destination address</td>
<td>Destination IP address in IP header of packet</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol in the IP header of packet (TCP, UDP, OSPF, etc.)</td>
</tr>
<tr>
<td>Source port</td>
<td>For TCP and UDP, the source port in the transport header of packet</td>
</tr>
<tr>
<td>Destination port</td>
<td>For TCP and UDP, the destination port in the transport header of packet</td>
</tr>
<tr>
<td>ICMP type and code</td>
<td>For ICMP, type and code in the ICMP header of packet</td>
</tr>
<tr>
<td>OSPF type</td>
<td>For OSPF, type located in the OSPF header of packet</td>
</tr>
<tr>
<td>IPv6 Mobility type</td>
<td>For traffic with IPv6 mobility headers, MIPv6 type in header of packet</td>
</tr>
<tr>
<td>Fragments Only</td>
<td>Matches fragmented packets only (applicable to routed traffic only)</td>
</tr>
<tr>
<td>Network attributes</td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>Direction of packet.</td>
</tr>
<tr>
<td>Routing</td>
<td>Packet is local if source or destination IP address exists on local host,</td>
</tr>
<tr>
<td></td>
<td>otherwise it is routed</td>
</tr>
<tr>
<td>Link security class</td>
<td>A virtual class that allow you to group interfaces with similar security</td>
</tr>
<tr>
<td></td>
<td>requirements. Non-VIPA addresses can be assigned a security class.</td>
</tr>
<tr>
<td></td>
<td>Packets inherit the security class of the interface over which packet is</td>
</tr>
<tr>
<td></td>
<td>sent/received.</td>
</tr>
<tr>
<td>Time condition</td>
<td></td>
</tr>
<tr>
<td>Time, Day, Week, Month</td>
<td>Indicates when filter rule is active</td>
</tr>
</tbody>
</table>
z/OS Communications Server IP security

IPSec
IPSec protocol overview

- Open network layer security protocol defined by IETF
- Provides authentication, integrity, and data privacy
 - IPSec security protocols
 - **Authentication Header (AH)** - provides data authentication / integrity
 - **Encapsulating Security Protocol (ESP)** - provides data privacy with optional authentication/integrity
- Implemented at IP layer
 - Requires no application change
 - Secures traffic between any two IP resources
 - Security Associations (SA)
- Management of crypto keys and security associations can be
 - manual
 - automated via key management protocol (*Internet Key Exchange (IKE)*)
IPSec security associations

- **IPSec Security Association (SA)** defines security services for a defined traffic type
 - Unidirectional logical connection between 2 IPSec hosts
 - Used in pairs for bidirectional traffic
- **SA scope of protection** can vary
 - Wide - Traffic protection for multiple connections e.g. Protect all traffic between 2 hosts
 - Narrow - Traffic protection for a single connection
- **SA endpoints** can vary
 - Entire data path can be secured with IPSec
 - Security and connection endpoints are the same - **Transport mode**
 - Portion of data path considered "untrusted" can be secured with IPSec
 - Security and connection endpoints are different - **Tunnel mode**
IPSec scenarios and z/OS roles

z/OS as Host (Data Endpoint)

Host-to-Host: End-to-End Security Association

- **z/OS**
- **H1**
- **H2**
- **Internet/intranet**
- Connection
- **Transport mode IPSec SA**

Host-to-gateway: Protect segment of data path

- **z/OS**
- **H1**
- **G1**
- **G2**
- **H2**
- **intranet**
- **Internet/intranet**
- Connection
- **Tunnel mode IPSec SA**

z/OS as Gateway (Routed Traffic)

Gateway-to-Host: Protection over Untrusted Network Segment

- **H1**
- **G1**
- **G2**
- **H2**
- **intranet**
- **Internet/intranet**
- Connection
- **Tunnel mode IPSec SA**

Gateway-to-Gateway: Protection over Untrusted Network Segment

- **H1**
- **G1**
- **G2**
- **H2**
- **intranet**
- **Internet/intranet**
- Connection
- **Tunnel mode IPSec SA**

Legend:
- Data endpoint
- Security endpoint
IPSec encapsulating modes - transport and tunnel mode

Creating an IPSec transport mode packet
- Inserts IPSec headers between original IP header and protected data

Creating an IPSec tunnel mode packet
- Creates a new IP header with an IPSec header
- IPSec header followed by original IP header and protected data

Transport mode is typically used between two hosts that establish an IPSec SA end-to-end between them.

Tunnel mode is used if at least one of the two IPSec SA end-points is a gateway.
Encapsulation mode rules

- **Must use tunnel mode:**

 - Gateway to Gateway
 - Gateway to Host
 - Host to Gateway

- **May use tunnel or transport mode:**

 - Host to Host

Legend:
- Security Endpoint
- Data Endpoint
- Protected Data
- Unprotected Data
- Data Endpoint same as Security Endpoint
IPSec Authentication Header (AH) protocol

AH provides authentication / integrity
- Authenticates entire datagram including IP header (excluding changeable or "mutable" fields)

- If transport mode then "Payload" contains the original transport header and original data
- If tunnel mode then "Payload" contains the original IP header, original transport header, and original data
Encryption algorithms

- Protects IP payload and IPSec ESP trailer
- Null encryption option allows authentication only as AH protocol alternative

- If transport mode then "Payload" contains the original transport header and original data (possibly encrypted)
- If tunnel mode then "Payload" contains original IP header, original transport header, and original data
 - "Payload" can be encrypted

ESP provides privacy with optional authentication / integrity
- Authentication coverage does not cover IP header

Authentication algorithms

- Authentication data (Integrity Check Value) - variable length

IPSec Encapsulating Security Payload (ESP) protocol

- ESP provides privacy with optional authentication / integrity
 - Authentication coverage does not cover IP header

- Encryption algorithms
 - Protects IP payload and IPSec ESP trailer
 - Null encryption option allows authentication only as AH protocol alternative
IPSec security associations (SAs)

- Endpoints must agree on how to protect traffic
 - Security protocol
 - AH
 - ESP
 - Algorithms to be used by the security protocols
 - Encryption Algorithm
 - Authentication Algorithm
 - Cryptographic keys
 - Encapsulation mode
 - tunnel
 - transport
 - Lifetime/lifesize (for dynamic SAs)

- This agreement is known as a "security association"

- IPSec security associations can be manually configured in the IPSec policy or created dynamically using the IKE protocol
Manually defined SAs

- **Not commonly used**
 - Do not provide a scalable solution
 - In the long run difficult to manage

- **Defined in a Policy Agent IPSec configuration file**
 - Utilized by filter rules with an action of ipsec
 - SA is defined by a manual VPN action
 - Can be generated by the Configuration Assistant for z/OS GUI

- **Use ipsec command activate/deactivate manual SAs**
 - Can also be automatically activated when policy is installed

- **Definition of SA attributes require mutual agreement between tunnel endpoint administrators**
 - Cryptographic keys and IPSec security protocol parameters must be mutually agreed to between tunnel endpoint administrators
 - Need to decide how to safely exchange keys
 - Need to decide how to refresh keys
 - Manual SAs must be deactivated and activated when refreshing keys
 - Refreshing keys must be coordinated with the remote tunnel endpoint's administrator
 - Remote endpoint may need to reactivate a manual SA if you locally deactivate the SA and then locally activate the SA.
IPSec manual SAs overview

- Define IP filter conditions here (which packets using manual tunnels for encryption)
- Define all encryption info between 2 data endpoints here (Ciphersuite, spi, keys, method (AH/ESP), Mode (Tunnel/Transport), gateways to use, etc.)

TCP/IP Profile

IP Security Filter Policy

- Implicit Rules

Manual SA

Filtering Logic

IPSec Logic

TCP/IP Stack

Configuration Assistant for z/OS GUI

IPSec Config Files

pagent

ipsec command

Controls which manual SAs are active

Must specify IPSECURITY on IPCONFIG statement

Must specify IPSECURITY on IPCONFIG statement
Dynamically defined SAs

- **Currently state of the art**
 - Scalable
 - Automatic, non-disruptive refresh of SAs and session keys

- **Initially requires more configuration than a manual SA**
 - In the long run easier to manage
 - Set and forget it

- **Dynamic SAs are negotiated by the IKE daemon**

- **Dynamic IPSec policy defined in a Pagent IPSec configuration file**
 - Can be generated by the Configuration Assistant for z/OS Communications Server GUI
 - Dynamic VPN action identifies "acceptable" SA attributes
 - Utilized by filter rules with an action of IPSEC

- **Authentication methods**
 - Pre-shared key
 - Each host needs to be keyed with key of each potential IKE partner
 - This key is not directly used to encrypt data.
 - Often used during the initial stages of dynamic SA deployment
 - Digital signature (most scalable)
 - Uses x.509 certificates for host-based authentication
 - Each host needs only its own host-based certificate and the certificate of the trusted Certificate Authority that signed the IKE peer's host-based certificate
 (Requirements for the CA of the peer certificate can differ with V1R12 Certificate Trust Chain support)
 - Algorithms
 - RSA Signature
 - Elliptical Curve Digital Signature for IKEv2 (V1R12)
The IKE daemon

- The IKE daemon implements the Internet Key Exchange protocol
 - A two phase approach to negotiating dynamic IPSec SAs
 - Two versions:
 - IKEv1 - Defined in RFC 2409
 - IKEv2 - Defined in RFCs 4306, 5996 (z/OS V1R12)

- The IKE daemon obtains its policy from Pagent
 - Policy information for negotiating IPSec SAs
 - Dynamic VPN actions
 - Policy for creating a secure channel used to negotiate IPSec SAs
 - Key Exchange Policy
 - Policy for ipsec command activation and autoactivation
 - Local Dynamic VPN Policy

- Utilizes UDP ports 500 and 4500 to communicate with remote security endpoints
 - Negotiating SAs
 - Sending informational messages
Two phases of IKE negotiations

- **Phase 1**
 - Creates a secure channel with a remote security endpoint
 - Negotiates an IKE SA
 - Generates cryptographic keys that will be used to protect Phase 2 negotiations and informational exchanges
 - Authenticates the identity of the parties involved
 - Done infrequently

- **Phase 2**
 - Negotiates an IPSec SA with a remote security endpoint
 - Generates cryptographic keys that are used to protect data
 - Authentication keys for use with AH
 - Authentication and/or encryption keys for use with ESP
 - Performed under the protection of an IKE SA
 - Done more frequently than phase 1
Dynamic SA activation methods

Security associations can be activated in one of four ways:

- **On-demand activation**
 - Activation attempted when the stack receives an outbound packet requiring the protection of a new dynamic tunnel

- **Remote activation**
 - A remote security endpoint initiates the negotiation of a new SA

- **Command activation**
 - `ipsec -y activate` command
 - Requires definition of local dynamic VPN policy:

- **Autoactivated**
 - Activation attempted when a stack connects to IKED or when IP Security filter policy is reloaded
 - Requires definition of local dynamic VPN policy:
IP Security dynamic SAs overview

TCP/IP Stack

Filtering Logic

IP Security Filter Policy

Implicit Rules

Dynamic SA

IPSec Logic

TCP/IP Profile

Configuration Assistant for z/OS GUI

IPSec Config Files

pagent

IKE Daemon

Must specify IPSECURITY on IPCONFIG statement

IKE SAs

UDP ports 500 and 4500

Local DynVPN policy

Dynamic VPN actions

Key exchange policy

Install dynamic SAs

Indicates which action to use

Controls which IKE and dynamic SAs are active

Exchange IKE messages

ipsec command
Special Topics
The IPSec NAT traversal problem

- Network Address Translation (NAT) alters addressing information in packet
 - IP addresses in IP headers
 - Addresses in data payload for some protocols
- Some NATs do port translation (NAPT)
 - IP addresses in IP headers
 - Ports in TCP and UDP headers
 - Addresses and ports in data payload for some protocols
- IPSec and NAT / NAPT at original RFC levels were not compatible
 - IPSec SA could not traverse NAT/NAPT device
 - Forced configuration where multiple SAs required to make end-to-end connection
 - Cascaded SAs

```
+-----------------+          +-----------------+          +-----------------+
|     G1           |  Internet |     G2           |
|  |               |          |  |               |
+-----------------+          +-----------------+          +-----------------+
|     NAT          |          |     NAT          |
|  |               |          |  |               |
+-----------------+          +-----------------+          +-----------------+
|     z/OS         |          |     H2           |
|  |               |          |  |               |
+-----------------+          +-----------------+          +-----------------+
|      H1          |          |      H2          |
|  |               |          |  |               |
+-----------------+          +-----------------+          +-----------------+
| intranet        |          | intranet        |
|  |               |          |  |               |
+-----------------+          +-----------------+          +-----------------+
|               |          |                |
|               |          |                |
|               |          |                |
|               |          |                |
```

- Cleartext for NAT
- Cascaded IPSec SAs
- Connection
The IPSec NAT Traversal Solution

- Later IETF RFCs address this incompatibility for NAT / NAPT alterations in IP and transport headers
 - RFC 3947 and 3948
 - Does not address translation of addresses in data payload
 - Application protocol specific solution required (e.g. FTP EPSV support which eliminates use of addresses in data payload)
 - ESP only
 - AH not allowed

- z/OS NAT traversal support
 - z/OS Host-to-host
 - transport or tunnel mode
 - z/OS Host-to-gateway
 - tunnel mode
 - No z/OS gateway support
 - NAT / NAPT
VIPA takeover and sysplex distributor support for IPSec traffic - Sysplex Wide Security Associations

Sysplex Wide Security Associations (SWSA) provides sysplex support to IPSec protected traffic with a DVIPA security endpoint

- **SWSA Sysplex Distributor support**
 - Distributes IPSec-protected workload with connection distribution
 - Consistent filter policies needed across processors in Sysplex

- **SWSA VIPA Takeover support**
 - IPSec phase 1 & 2 SAs automatically restarted on backup after takeover
 - Phase 1 & 2 info needed for restart saved in Coupling Facility
 - No administrative movement of SAs required.
 - Policy filters at backup host must be able to accommodate filter rules and SAs for backup processor
IKEv2 (added in V1R12)

- IKE version 1 (IKEv1) specified by RFCs 2407-2409
- IKE version 2 (IKEv2) specified by RFCs 4306, 5996

IKEv2 protocol
- Supports all of the same configurations as IKEv1
- Different protocol than IKEv1
 - similar function
 - different messages and flows
 - different terminology
- More efficient than IKEv1:
 - fewer messages per negotiation
 - new formats allow for smaller messages
- More robust than IKEv1:
 - Request/response model for all flows
 - Built-in dead peer detection

z/OS IKEv2 implementation
- Coexists and concurrently supported with IKEv1 in IKED
- Fully supported by Configuration Assistant for z/OS
- Requires network security services (NSS) for certificate-based authentication
- NAT traversal for IPv4
 - Not supported in V1R12,
 - Supported added in V1R13
- System-Wide Security Associations (SWSA)
 - Not supported in V1R12
 - Support added in V1R13

See session 9533 for more information
Network Security Services for IPSec

- **Centralized network security services for a set of z/OS images**
 - Images can be non-sysplex, intra- or inter-sysplex
- **NSS digital signature services**
 - Allows central administration of RACF certificates and private keys
 - Sign and verify during runtime IKE negotiations
- **NSS monitoring services**
 - Allows selection of single focal point as IPSec management hub
 - `ipsec` command for administrator
 - NMI API for management applications
- **Availability options**
 - Backup NSS can be specified

NSS role extended in z/OS V1R12
- NSS is required for z/OS V1R12 advanced certificate support
 - Certificate Revocation List
 - Certificate Trust Chain
- NSS is required for ALL IKEv2 certificate services
IPSec Cryptographic Enhancements (V1R12)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Existing</th>
<th>New z/OS V1R12</th>
<th>Purpose</th>
<th>Existing</th>
<th>New z/OS V1R12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption algorithm</td>
<td>DES, 3DES, AES_CBC KeyLength 128</td>
<td>AES_CBC Keylength 256</td>
<td>Encryption algorithm</td>
<td>DES, 3DES, AES_CBC KeyLength 128</td>
<td>AES_CBC KeyLength 256, AES_GCM_16 KeyLength 128</td>
</tr>
<tr>
<td>Diffie-Hellman group</td>
<td>Group1, Group2, Group5, Group14</td>
<td>Group19, Group20, Group21, Group24</td>
<td>Authentication algorithm</td>
<td>HMAC_MD5, HMAC_SHA1</td>
<td>HMAC_SHA2_256_128, HMAC_SHA2_384_192, HMAC_SHA2_512_256</td>
</tr>
<tr>
<td>IKEv1 hash algorithm</td>
<td>MD5, SHA1</td>
<td>SHA2_256, SHA2_384, SHA2_512</td>
<td>Perfect forward secrecy group</td>
<td>Group1, Group2, Group5, Group14</td>
<td>Group19, Group20, Group21, Group24</td>
</tr>
<tr>
<td>Partner authentication</td>
<td>PreSharedKey, RSASignature</td>
<td>ECDSA-256, ECDSA-384, ECDSA-521 (these are only for IKEv2)</td>
<td>IKEv2 message verification algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKEv2 message verification algorithm</td>
<td>N/A</td>
<td>HMAC_MD5_96, HMAC_SHA1_96, AES128_XCBC_96, HMAC_SHA2_256_128, HMAC_SHA2_384_192, HMAC_SHA2_512_256</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKEv2 pseudo random function</td>
<td>N/A</td>
<td>HMAC_MD5, HMAC_SHA1, AES128_XCBC, HMAC_SHA2_256, HMAC_SHA2_384, HMAC_SHA2_512</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IKEv1 Phase 1 and IKEv2 IKE SA

- **IKEv1 Phase 2 and IKEv2 Child SA**

IKE
- **TCP/IP**
- **IKE**
- **TCP/IP**

Phase 1 or IKE SA

Phase 2 or Child SA

SA: Security Association aka. the tunnel
Federal Information Processing Standard 140
- US government standard
- Current version is FIPS 140-2
- Governs the integrity and functionality of cryptographic modules (not systems or even applications)
 - Clearly defined boundaries and interfaces
 - Integrity of algorithms including self-test
 - Limits on supported algorithms (no MD5, DES, 512-bit RSA or certain AES modes)
 - Security of keys
 - Other things that are beyond the scope of this discussion
- Originally written for hardware devices - now extending to software modules

When enabled for z/OS IPSec, all crypto functions are performed by z/OS FIPS 140 crypto modules:
- System SSL in with FIPS 140 mode enabled
- ICSF’s PKCS #11 interface with FIPS 140 mode enabled
- All other crypto services that IKED or the stack’s IPSec support may otherwise use are disabled

FIPS 140 option provided for IKED, NSSD and stack’s IPSec function
- Stacks configured individually
- IKED and NSSD must be enabled if any TCP/IP stack is enabled
z/OS Communications Server IP security

IP Security
Displays and Controls
ipsec command summary - primary command options

<table>
<thead>
<tr>
<th>Primary Command</th>
<th>Main functions provided</th>
</tr>
</thead>
</table>
| ipsec -f | - Display information about active filter set
| | - Display information about default IP filter rules
| | - Display information about IP Security filter rules
| | - Make the default IP filter rules the active filter set
| | - Make the IP Security filter rules the active filter set |
| ipsec -m | - Display information about manual tunnels
| | - Activate manual tunnels
| | - Deactivate manual tunnels |
| ipsec -k | - Display information about IKE tunnels
| | - Deactivate IKE tunnels
| | - Refresh IKE tunnels |
| ipsec -y | - Display information about dynamic tunnels (stack's view)
| | - Display information about dynamic tunnels (IKED's view)
| | - Activate dynamic tunnels
| | - Deactivate dynamic tunnels
| | - Refresh dynamic tunnels |
| ipsec -i | - Display interface information |
| ipsec -t | - Locate matching filter rule |
| ipsec -o | - Display NAT port translation table information |
| ipsec -? | - Help |

See the "IP System Administrator's Commands" for the complete syntax
Configuring and Enabling IP Security
z/OS Communications Server IP security infrastructure overview

- **TCP/IP stack**
 - IPsec and IP filtering
- **Policy agent**
 - Reads and manages IPsec and IKE policy
- **Configuration Assistant for z/OS Communications Server**
 - Creates policy definitions
- **IKE daemon**
 - Negotiates security associations
- **ipsec command**
 - Displays and controls IP filtering, IPsec, and IKE
- **trmd**
 - Monitors TCP/IP stacks for log messages
- **syslogd**
 - Write log messages to syslogd destinations
- **Network Security Services daemon**
 - Provides certificate services for IKE
Configuration required for IP security

- **z/OS system preparation tasks**
 - TCP Profile updates to enable IP security, define default filter rules, enable SWSA
 - Policy infrastructure applications configuration and JCL procedures
 - IKE daemon (IKED)
 - Policy agent
 - Network Security Services daemon (NSSD)
 - Traffic regulation management daemon (TRMD)
 - Syslog daemon (syslogd)
 - SAF access control for:
 - Applications
 - ipsec command
 - Integrated Cryptographic Services Facility (ICSF) for hardware encryption
 - Preparation not included with Configuration Assistant

- **IP security policy definition**
 - For each TCP/IP stack create a policy rule set
 - Policy is composed of conditions and actions

- **SAF keyrings for x.509 certificates**
 - Certificate Authority certificates and Host certificates

Prior to z/OS V1R11, the Configuration Assistant helps configure the policy definitions.

Starting in z/OS V1R11, the Configurations Assistant can help with the z/OS System Preparation Tasks!
Configuration Assistant for z/OS Communications Server

- GUI-based approach to configuring multiple policy disciplines:
 - IDS
 - AT-TLS
 - IPSec and IP filtering
 - QoS
 - Policy-based Routing (PBR)
- Separate perspectives but consistent model for each discipline
- Focus on high level concepts vs. low level file syntax
- z/OSMF-based web interface (strategic) and standalone Windows application
- Builds and maintains
 - Policy files
 - Related configuration files
 - JCL procedures and RACF directives
- Supports import of existing policy files

Download the Windows-based Configuration Assistant at: http://tinyurl.com/cgoqsa
Application setup task checklist

Assistance with the z/OS System Preparation Tasks - Use the Application Setup Task Checklist
Configuration Assistant Policy Definition Model and Steps

Group IP addresses that need the same treatment. For example all VIPA addresses, or all real network interface addresses. Simplifies creation of connectivity rules.

Identifies a specific type of application network traffic. Based on protocol (TCP/UDP), local and/or remote ports, connection direction.

Identifies the IP security requirements, such as permit/deny/IPSec with ciphersuites allowed.

IP Address group
Traffic Descriptor
Security Level

Per policy type (not all object types are used with all policy types)

Connectivity rules tie IP addresses to requirement maps

Connectivity Rule

Requirement Map

LPARs (Images)
Stacks

1. Create system image and TCP/IP stack image
2. Create one or more Requirement Maps to define desired security for common scenarios (e.g. intranet, branch office, business partner)
 ▶ Create or reuse Security Levels to define security actions
 ▶ Create or reuse Traffic descriptors to define application ports to secure
3. Create one or more Connectivity Rules between Data Endpoints (IP addresses) and associate with a configured Requirement Map
4. If using IPSec, configure Security Endpoints (IKE peers)
5. Optionally, set additional options (e.g. logging, SA activation methods, effective time for Connectivity Rules)
SAF Certificates and Keyrings - peer-to-peer certificate relationships

- Each host needs only its own end-entity certificate and the certificate of the trusted Certificate Authority that signed the peer's end-entity certificate.

IKE Phase 1
- Used for validating peer certificate
- Used for signing
Certificate Creation and Installation Example Using RACF

```
//CERTADD JOB 1,ALFRED,CLASS=A,MSGCLASS=X,NOTIFY=USER1
//*
//IEFPROC EXEC PGM=IKJEFT01,REGION=4M,DYNAMNBR=10
//SYSTSPRT DD SYSOUT=* BATCH TSO SESSION LOG
//SYSTSIN DD *
RACDCERT CERTAUTH GENCERT -
   SUBJECTSDN(CN('ABC CA') -
   OU('CS Z/OS CA') -
   O('IBM') C('US')) -
   NOTBEFORE(DATE(2007-01-01)) -
   NOTAFTER(DATE(2010-12-31)) -
   WITHLABEL('ABC CA') -
RACDCERT ID(IKED) GENCERT -
   SUBJECTSDN(CN('ABC IKE Daemon') -
   OU('CS Z/OS Server') -
   O('IBM') C('US')) -
   NOTBEFORE(DATE(2007-01-01)) -
   NOTAFTER(DATE(2010-12-31)) -
   WITHLABEL('IKE Daemon') -
   SIGNWITH(CERTAUTH LABEL('ABC CA')) -
RACDCERT CERTAUTH EXPORT(LABEL('ABC CA')) DSN('USER1.ABCCA.B64')
RACDCERT ID(IKED) ADDRING(IKEDKEYRING)
RACDCERT ID(IKED) CONNECT(LABEL('IKE Daemon') -
   RING(IKEDKEYRING) USAGE(PERSONAL) )
RACDCERT ID(IKED) CONNECT(CERTAUTH LABEL('REMOTE IKE CA') -
   RING(IKEDKEYRING) USAGE(CERTAUTH) )
RACDCERT ID(IKED) LISTRING(IKEDKEYRING)
/*
```

Create our selfsigned CA certificate by which all our other certificates will be signed.

Create our IKE daemon certificate and sign it with our CA certificate.

Export our CA certificate so that the remote IKE peer can download and install as trusted root in remote key database.

Create our IKED keyring.

Connect both our IKE daemon certificate and our peer’s CA certificate to that keyring (presumes that remote peer’s CA certificate has been added to the certificate database).
z/OS Communications Server IP security features

- **Supports many configurations**
 - Optimized for role as endpoint (host), but also support routed traffic (gateway)
 - IPSec NAT Traversal support (address translation and port translation)
 - IPv4 and IPv6 support

- **Policy-based**
 - Configuration Assistant GUI for both new and expert users
 - Direct file edit into local configuration file

- **Default filters in TCP profile provide basic protection before policy is loaded**

- **Cryptographic algorithms**
 - RSA signature-based authentication
 - ECDSA signature-based authentication (V1R12)
 - HMAC-SHA-1, HMAC-MD5 authentication
 - HMAC-SHA-2, AES-XCBC, AES-GMAC authentication (V1R12)
 - AES-CBC, 3DES and DES encryption
 - AES-GCM (128- and 256-bit) encryption (V1R12)
 - Uses cryptographic hardware if available for most algorithms
 - FIPS 140 mode (V1R12)

- **zIIP Assisted IPSec**
 - Moves most IPSec processing from general purpose processors to zIIPs

- **IP Security Monitoring Interface**
 - IBM Tivoli OMEGAMON XE for Mainframe Networks uses the CommServer NMI interfaces for IP Security

- **Support for latest IPSec RFCs**
 - RFCs 4301-4305, 4307-4308 (V1R10)
 - RFCs 4306, 5996 (IKEv2) (V1R12)

- **z/OS CommServer V1R12 successfully completed USGv6 interoperability testing including the IPSec, IKE, and ESP test suites**
 - http://www.iol.unh.edu/services/testing/ipv6/usgv6tested.php
For more information ...

<table>
<thead>
<tr>
<th>URL</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.twitter.com/IBM_CommsServer</td>
<td>IBM Communications Server Twitter Feed</td>
</tr>
<tr>
<td>http://www.facebook.com/IBMCommsServer</td>
<td>IBM Communications Server Facebook Fan Page</td>
</tr>
<tr>
<td>http://www.ibm.com/systems/z/</td>
<td>IBM System z in general</td>
</tr>
<tr>
<td>http://www.ibm.com/systems/z/hardware/networking/</td>
<td>IBM Mainframe System z networking</td>
</tr>
<tr>
<td>http://www.ibm.com/software/network/commsserver/zos/</td>
<td>IBM z/OS Communications Server</td>
</tr>
<tr>
<td>http://www.ibm.com/software/network/ccl/</td>
<td>IBM Communication Controller for Linux on System z</td>
</tr>
<tr>
<td>http://www.redbooks.ibm.com</td>
<td>ITSO Redbooks</td>
</tr>
<tr>
<td>http://www.ibm.com/software/network/commsserver/zos/support/</td>
<td>IBM z/OS Communications Server technical Support – including TechNotes from service</td>
</tr>
<tr>
<td>http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs</td>
<td>Technical support documentation from Washington Systems Center (techdocs, flashes, presentations, white papers, etc.)</td>
</tr>
<tr>
<td>http://www.rfc-editor.org/rfcsearch.html</td>
<td>Request For Comments (RFC)</td>
</tr>
<tr>
<td>http://www.ibm.com/systems/z/os/zos/bkserv/</td>
<td>IBM z/OS Internet library – PDF files of all z/OS manuals including Communications Server</td>
</tr>
</tbody>
</table>