Assembler BootCamp Plus:
Instructions Everyone Can Use

(Created by)
John Dravnieks, IBM Australia
(dravo@aul.ibm.com)

= 5"‘=-_\ (Presented by Dan Greiner and John Ehrman)
» o < ~.‘\!‘~
2 i
™ gy “*m“"?‘
polbag SHARE 117, Orlando, FL
S
Thursday, August |1, 201 |

Session 9286

Agenda

= Bit shifting

= Single byte operands

= Halfword operands

= Multiple byte operands

= Variable length operands
= Character translation

1-2

= Characters used in instruction mnemonics

Definitions

» G - Grande - 64-bit operand
» F - Fullword - 32-bit operand
» H - Halfword - 16-bit operand

» Single byte operands
—B - Byte (signed 8 bit value)
—C - Character
» L - Logical - unsigned, or Load and clear

»Y - 20-bit displacement

Definitions

= Parts of a 64-bit register

HH

HL

LH

LL

HF

LF

0

1516

47 48

= H=High, L= Low, F=Fullword

3-4

Bit shifting

= RS-type format instructions

Opcode | R, B. D,

0 8 16 20 31
= R, - Source and target

= 2nd operand address
» NO storage reference
> Last 6 bits used as shift amount

Bit shifting (continued)

= Two directions, two types, and two sizes
» Left or Right
» Logical or Arithmetic
» Single or Double register

= 8 mnemonics - Shift ...

-SLA SLDA
-SLL SLDL
-SRA SRDA

-SRL SRDL

5-6

Bit shifting (continued)

= 64-bit register instructions
» NO 64-bit-register-pair (128-bit) shifts
» Single-length: SLAG, SRAG, SLLG SRLG

= Separate source (R;) and target (R,) registers
= Example:

SLAG R, R;, D,(B,)
» Shifted contents of R; goes into R,

Bit shifting (continued)

= Arithmetic shifts:
» Sign bit not modified
» Right shifts copy sign bit
» Left shifts may overflow
» Condition code set

= |_ogical shifts:
» No sign bit
» Always inserts 0's
» Condition code not changed

7-8

Bit shifting: example 1

SRA 5,16
» Object code X 8A50 0010
»c(r5) before X 8001 000OQ" (signis propagated)
»c(r5) after X' FFFF 8001
» Condition code 1 set (result < 0)
SRA 5,7
» Object code X 8A50 0007
»c(r5) after X' FFOO 0200
SRA 5, 20
»c(r5) after X' FFFF F800'

Bit shifting: example 2

SRL 5,16

» Object code X 8850 0010

»c(r5) before X 8001 FFFF

»C(r5) after X' 0000 8001" (sign not propagated)
SRL 5,7

» Object code X 8850 0007

> c(r5) after X 0100 O3FF (3 = 0011)
SRL 5, 20

> c(r5) after X' 0000 0800

9-10

Bit shifting: example 3

SLA 5, 16
» Object code
»c(r5) before
> c(r5) after

X 8B50 0010
X 0000 8001
X 0001 0000

» Condition code 3 set (Overflow)

SLA 5,7
» Object code
»c(r5) after

SLA 5,30

> c(r5) after

X 8B50 0007
X 0040 0080

X 4000 0000

(CC2, no overflow)

(overflow)

Bit shifting: example 4

SLL 5,16

» Object code
» c(r5) before
> c(r5) after

SLL 5,7
» Object code
> c(r5) after
» SLL 5, 30
> c(r5) after

X' 8950
X' 0000
X 8001

X' 8950
X' 0040

X' 4000

0010’
8001
0000’

0007’
0080

0000*

11-12

Bit shifting (continued)
= Rotate Left Single Logical

» RLL(G R, R, D,(B,)
— Separate target (R,) and source (R;) registers

»Example: RLL 7,8,12(0)

»Before: c(R7)=X ???7??7???', c(R8)=X FEDC0O000'
» After: ¢(R7)=X COO00FED , c(R8)=X FEDCO000'

Bit shifting: uses

= Arithmetic Operations
» Fast multiplication or division by a power of 2
» Hashing algorithms

= Masking
» [n conjunction with Boolean operations
— Exclusive OR (XOR), OR, AND
» Extracting data
—Merged or compressed data

= Encryption

13-14

Single byte operands

= |nsert Character
> I (: F%J E&(>Qh E%J

» Copies a single byte from storage into low
order byte of R,

» Note: rest of R, register unchanged

= STore Character
> STC R, D(X, B,)
» Copies the low order byte of R, into storage

Single byte operands: example 1

n |IC 7,0(0, 11)
» Object text X' 4370 B0OOO'
= R11 points to storage byte containing X' A5’

= ¢(R7) before X 1234 5678

= c(R7) after X' 1234 56A5
» Remainder of register R7 is unchanged

= Condition code is unchanged

15-16

Single byte operands

= | oad Logical Character
» LL(GOCR R, R
» LL(GOC R,D(X,B,)

» Clears the register and copies a byte from
register or storage into low order byte of R,

= | oad Byte
» L(GBR R, R
» L(GB R, D.(X, B,)

» Single byte from register or storage is sign
extended and updates the entire register

Single byte operands: example 2

= LLC 7,0(0, 11) Load Logical Character
» Object text X' E370 BO0O0O 0094’

= R11 points to storage byte containing X' A5’

= ¢(R7) before X 1234 5678

= c(R7) after X' 0000 OOAS5'
» Remainder of register R7 is zeroed

= Condition code is unchanged

17-18

Single byte operands: example 3

- LB 7,0(0,11) Load Byte
» Object text X' E370 BO0OO 0076’
= R11 points to storage byte containing X' A5'

= ¢(R7) before X 1234 5678

= c(R7) after X FFFF FFAS'
» Leftmost bit of X' A5' extended to left

= Condition code is unchanged

Single byte operands: uses

= Translation example (we'll use it again):

UNPK STRI NG L' STRI NG) , HEXDATA(L' HEXDATA+1)
* Get data into zoned format.

LA 3, STRI NG Point to STRI NG
LH 4,1 Load JXLE i ncrenent.
LA 5, L' STRING 1(,3) Point at |ast byte.
LOOP | C 2,0(,3) CGet next character.
NI LL 2, X O00F Renmove zone.
IC 2, TABLE(2) Use c(R2) as index.
STC 2,0(,3) Store "translated" digit.
JXLE 3,4, LOCP Loop until finished.

TABLE DC C 0123456789ABCDEF

= The low-order hex digit of each byte referenced
by R3 is replaced by its character representation

19-20

Halfword (two byte) operands

= RX instructions
—Mnemonic R, D.(X, B,)

= Operand 1 is entire R, register

- STH ignores high order 16 bits of R,, stores
only rightmost 16 bits

= Operand 2
» Halfword in storage

» Signed value - LH expands to fullword with
sign extension

Halfword (two byte) operands
(continued)

= Add Halfword AH
= Compare Halfword CH
= |_oad Halfword LH

= Multiply Halfword MH
= STore Halfword STH
= Subtract Halfword SH

21-22

Halfword (two byte) operands
(continued)

= Halfword immediate format
—= Mienonic R,
where | , is a signed 16-bit field in the

instruction
= Add Halfword Immediate AHI
= Compare Halfword Immediate CHlI
= | oad Halfword Immediate L HI

= Multiply Halfword Immediate MHI

Halfword (two byte) operands
(continued)

= Halfword-immediate operands for 64-bit
reqgisters:
» AGHI, CGHI, LGHI, MGHI
» LGH(R)

= | ong displacement facility (instructions with
signed 20-bit displacement)

»AHY, CHY, LHY, STHY, SHY

23-24

Halfword (two byte) operands
(continued)

= Register-to-register form: L(G)HR
> Source is in bits 48-63 of 2nd-operand register

= | oad Logical form: LL(G)HR, LL(G)H
» Remainder of 1st-operand register zeroed

= Load Logical Immediate form: LLIxx
» Source is in bits 16-31 or 16-47 of the instruction

= |[nsert Immediate form: lIxx

» Remainder of 1st-operand register unchanged

= Where xx - HH, LH, HL, LL (See slide 4)

Halfword operands: example 1

= LH 0,0(0, 12)
» Object text X' 4800 C000'
= R12 points to storage containing X' B1A4'
= c(RO) before X' FEDC BA98'
= c(RO) after X' FFFF B1A4'
» High-order bit of X' B1A4' extended to left

= Condition code is unchanged

25-26

Halfword operands: example 2

= CH 10,0(0, 11)
» Object text X' 49A0 BOOO'

= R11 points to storage containing X' B1A4'
» Expanded internally to X' FFFF B1A4'

= [f c(R10) = X' FFFF Bl1A4'

» Condition code set to 0 (equal)
» R10 unchanged

= [f c(R10) = X' 0000 Bl1A4
» Condition code set to 2 (greater)

Halfword operands: example 3

- CH 10,0(0, 11)

» Object text X' 49A0 BOOO'
= R11 points to storage containing X' B1A4'
= [f c((R10) = X' FFFF A5A5'

= Resulting Condition Code ?
= |s R10 unchanged?

27-28

Halfword operands: example 4

= LLILH 0O, X' ASAS’

» L oad Logical Immediate Low High
» Object text X' ASOE AS5AS'

= ¢(RO) before X' FEDC BA98'

= c(RO) after X' A5A5 0000
» Remainder of target register is zeroed

= Condition code is unchanged

Halfword operands: example 5

= |ILH 0, X' A5D6'
» Insert Immediate Low High
» Object text X' A502 A5D6!

= ¢(RO) before X' FEDC BA98'

= c(RO) after X' A5D6 BA98'
» Remainder of target register is unchanged

= Condition code is unchanged

29-30

Halfword operands: uses

= Record lengths (DCBLRECL)
»V format records: RDWs, BDWs

= Database records

= Small integers

Multiple byte operands
= |nsert Characters under Mask
» |ICM R, Mask, D,(B)

» Copies 0 to 4 bytes from storage into
mask-selected bytes of R,

» Condition code set

» Note: Unselected bytes unchanged

31-32

Multiple byte operands (continued)

= Mask operand is a 4 bit field

» Bits correspond one to one with bytes of
register

»B' 1001' refers to the first and last byte

= Storage bytes are contiguous
» |ICM 2,B 1010, =X 12345678'
»c(R2) = X' 12?2?3427

Multiple byte operands (continued)

= Compare Logical Characters under Mask
» CLM R, Mask, D,(B)

» Compares 0 to 4 contiguous bytes from
storage with mask-selected bytes of R,

» Condition code is set

= STore Characters under Mask
» STCM R, Mask, D(B),)

» Stores 0 to 4 bytes from selected bytes of R,
register into contiguous storage bytes

33-34

Multiple byte operands (continued)

= 7z/Architecture instructions:
» CLMY, CLMH
» |CMY, ICMH
»STCMY, STCMH

= H = High-order 32 bits of 64-bit register

= |_ong-displacement format (RSY)

Multiple byte operands: uses
- STCM R, B 0111',D(R)

» Stores low-order 24 bits of R, into contiguous
storage bytes

» Historically important use:
- STCM R5, B 0111', Label +1

-Label DC X bits', AL3(address)

e DCB address fields
e CCW address field

35-36

Multiple byte operands: uses
(continued)

= |CM with mask B' 0001"'
» Same as IC, but condition code is set

= |CM withmaskB' 1111"'
» Same as Load, but condition code is set

» | CM 5, B 1111' , 24(8) IS equivalent to:
» L 5, 24(, 8) this

LTR 5, 5 plus this
» NO index register with ICM

Fullword operands

= z/Architecture with extended immediate
facility

»Load and Test- LT (like L + LTR)
» 32-bit Fullword | mmediate operands:
— Arithmetic: AFI, ALFI, SLFI

—Logical AND, XOR, OR: NI HF, NI LF,
XIHF, XILF, OHF JLF

—Compare: CFl, CLFI
—Load immediate: LGFI, LLIHF, LLILF
- |nsert immediate: | | HF, |1 LF

37-38

Variable number of operand
bytes

= Q: How would we store HLASM symbols,
from 1 to 63 bytes long?

= Al: Update MVC instruction in storage?
» Reentrancy violation
» Difficult to debug
» Data / Instruction cache conflicts?
= A2: Use | C and STC in a loop?
> Slow

= A3: Use EXecute instruction!

EXecute instruction
- EX R1; Dz(X21 Bz)

= Operand 2 - Address of target instruction

= If R, IS not general register 0, then low order
byte is ORed internally with the second byte

of the target instruction

= The target instruction is then performed

» The target instruction in memory is unchanged!

39-40

EXecute instruction (continued)

= Three important points

» Operands 1 and 2 are not modified
» The operation is a logical OR

» \When EXecuting variable-length instructions,
lengths in object text are one less than actual
length

= An example follows

EXecute instruction example
- EX , MOVEI T

-MOVEI T MVC TARGET(0) , SOURCE
> Object text X' D200 bddd bddd!’

mc(R4) =X 1234 5602'
= Effective object text X' D202 bddd bddd’

= So three (3) bytes are moved

41-42

EXecute instruction: lengths

= R4 in that example holds machine length

= |[f R4 holds actual length, then how do we
make R4 the machine length (one less)?
» Any one of these:
> S R4, =F'1' (or SH R4, =H 1') (?)
» BCTR R4, 0
» LA R4, 255(, R4)
» AH R4, -1 (Recommended!)

EXecute instruction: uses

= Often, the target instruction is SS format, like
MWC, CLC, TR or TRT

» Only target instructions not allowed are EX & EXRL

=NOP (i.e., BC 0) can be EXecuted

» Use mask of X' FO' for unconditional branch
» Use other mask for program-specified condition

» Target of BC 15, ... will always branch, regardless of EX R,
field
- However, bits 12-15 of the target can be modified (e.g., BCR R, field)
= Example:

»EX 0O, Target SVC

- Allows shared code (Test and Production) to use different SVCs

43-44

Variable number of operand
bytes - Take 2

= Q: How would we store character strings from
1 to 567 bytes long?

= Al: Update instruction in storage (Bad!)
»Won't work anyway: max length is 256

= A2: Use | C and STC in a loop?
» Even slower

= A3: Use EXecute instruction? (Not bad...)

» Loop moving 256 byte chunks and then an
EXecuted move at the end (used in old days)

= A4: Use Move Long!

Move Long instruction

= WCL R, R
» MVCL 4, 6 - object text X' OE46'

= Operands designate even-odd register pairs:
» Even register: operand address
» Odd register (even+1): operand length

— Source length register has pad character in
high order byte

—Maximum length is 16MB (24 remaining bits
of the odd registers)

45-46

Move Long instruction (continued)

= All 4 registers may be modified
= Sets condition code

= RO (implying the pair RO and R1) is valid
»Yes, RO can contain an address!

= Clear a block of storage:
> LM 0, 3, =A(Bl ock, L' Bl ock, 0, 0)
> MVCL O, 2 X 00" Pad char in R3

Compare Logical Long
Instruction

= CLCL R, R
» CLCL 4,6 -objecttext X' OF46'

= Same register setup as MVCL

= All 4 registers may be modified - data in
storage is NOT modified

= Shorter operand padded with pad character
= Condition code is set

47-48

CLCL example

= Example of CLCL usage

> LM 2,3, =A(Stringl, L' Stringl)
Target addr, length
> LM 0,1, =A(String2,L" String2)
Source addr, length
» |CM 1,B 1000, =C Pad byte
» CLCL 2,0
» BE Equal _strings

Extended Move and Compare
Long

= Move Long Extended (MVCLE)

= Move Long Unicode (MVCLU)

= Compare Logical Long Extended (CLCLE)
= Compare Logical Long Unicode (CLCLU)

—Lengths can be greater than 16MB
—Pad character formed from 2nd operand
—Unicode: 2 bytes per step

— CC set to 3 if operation is incomplete

49-50

Extended Move and Compare
Long - examples

Conpare CLCLE 2,0, bl ank pad
BO Conpar e CC3 test
BE Equal _strings

CompUni CLCLU 2, 0,
BO ConpuUni CC3 test
BE Equal strings

Move with Optional
Specifications

= MWCOs D(B),D(B), R
» Set GPRO to zero
» Set R3 operand to TRUE length

» Moves 0 - 4096 bytes

—If true length greater than 4096, then 4096
bytes moved and condition code 3 is set

— Otherwise, true length bytes moved and
condition code O is set

51-52

Translation

= Q: How to ensure that character data is in
upper case?

= Al: Use the IC/STC code earlier (slide 20)
with a new table

m A2: Use TRanslate instruction!

TRanslate instruction

= TR D(L,, B),D(B,) SSformat

= Operand 1 is source and target

= Operand 2 is address of translate table
» Usually 256 bytes - depends on data

& TR STR, Tabl e
= STR DC C Hello, Wrld!

=Table DC C ' (See next page)

53-54

TRanslate instruction (continued)

TABLE addresses a 256 byte table where each data byte is the desired
output byte for that offset. For exanple, this table would translate
| oner case EBCDI C to upper case EBCD C.

CAPTABLE DS 0CL256 0123456789 ABCDEF

XL16' 000102030405060708090A0BOCODOEOF 00- OF
XL16' 101112131415161718191A1B1C1D1EOF 10-1F
XL16' 202122232425262728292A2B2C2D2E2F 20- 2F
XL16' 303132333435363738393A3B3C3D3E3F' 30- 3F
XL16' 404142434445464748494AABACADAEAF 40- 4F
XL16' 505152535455565758595A5B5C5D5E5F 50- 5F
XL16' 606162636465666768696A6B6C6D6EGF 60- 6F
XL16' 707172737475767778797A7B7C7D7E7TF 70-7F
XL16' 80C1C2C3CACSC6C7C8CO8ABB8CBDBESF' 80- 8F
XL16' 90D1D2D3D4D5D6D7 D8D99A9BICIDOESF 90- 9F
XL16" AOA1E2E3EAESEGE7ESE9AAABACADAEAF' AO- AF
XL16' BOB1B2B3B4B5B6B7B8BOBABBBCBDBEBF BO- BF
XL16" C0C1C2C3CAC5C6C7 C8COCACBCCCDCECF (0- CF
XL16' DOD1D2D3D4D5D6 D7 D8 D9DADBDCDDDEDF DO- DF
XL16' EOE1E2E3EAESE6E7ESEQEAEBECEDEEEF EO- EF
XL16"' FOF1F2F3F4F5F6F7F8FOFAFBFCFDFEFF FO- FF

BEEB8EREEEER8E8EEE

TRanslate instruction (continued)

= Each byte in operand 1 is used to index into
operand 2; that function byte from table
replaces the source byte

= TR STR TABLE

» Single instruction replaces previous five
instruction loop (see slide 20)

55-56

TRanslate instruction - example

= Translate hex data to printable characters

> UNPK STRI N L' STRI NG+1) , HEXDATA(L' HEXDATA+1)
* (Cet data into zoned format

LA R5, L' STRI NG 1 Load nachi ne | ength

EX R5, TR I NST Perform transl ati on

TR_INST TR STRI N 0) , TABLE Execut ed TRANSLATE

ORG *-240 Positi on | abel
TABLE DS 0X Start of table

ORG *+240 Skip to actual data

DC C 0123456789ABCDEF

Related instructions

= Translate and Test
» TRT D(L, B), D(B) Left to right
» TRTR D(L, B), D(B,) Right to left
= Operands not modified
= Table - operand 1 byte used as index
» If table byte is zero, scan continues
» If non zero, scan stops
—GR1: Address of operand 1 byte
—GR2: Test-table byte

57-58

Related instructions

= Translate Extended

» TRE R, R,
— First operand address in register R,
— First operand length in register R;+1
— Translate table address in register R,
» Test byte in GRO

— Translation stops if it matches source byte

— Registers updated

m Scan for ASCII (X' 20") or EBCDIC (X' 40") blanks

Yy Y vV vV Y VY

TRT instruction - example

SR
LA
LA
EX
Jz
CHI

R2, R?2 Cear R2

R1l, STRING+L' STRING 1 Set Rl to | ast byte
R5, L' STRI NG 1 Load nachine |l ength
R5, TRT | NST Per f orm scan

No_BIl anks Not hi ng found (CC 0)
R2, X' 20 ASCl | bl ank?

»TRT_I NST TRT STRI N 0), TABLE Executed TRT

»TABLE DC 256X 00

>

vy v VY

ORG
DC
ORG
DC

ORG,

Defi ne 256 byte table

TABLE+X 20’ Move to offset X 20
X 20 Set non zero
TABLE+X' 40' Move to of fset X 40
X' 40' Set non zero

Skip to end of TABLE

59-60

Summary

Many useful instructions!

= Bit shifting

= Single byte operands

= Halfword operands

= Multiple byte operands

= Variable length operands
= Character translation

61-62

