Upgrading Assembler Language Programs:

Tips and Techniques

SHARE 117, Session 9281

John R. Ehrman
ehrman@us.ibm.com

IBM Silicon Valley (nee Santa Teresa) Laboratory
555 Bailey Avenue
San Jose, CA 95141

© IBM Corp. 2011. All rights reserved.

August 10, 2011

Table of Contents Contents-1

TOPICS . . o e 1
Part 1: Tidying Up YOUI Programst it it e e e e e e e e e e e 2
Counting CharaCters e 3
Counting characters vs. a simple “MVC2” macro 4
Initializing a buffer 5
Counting bytes to determine displacements 6
Determing record and structure lengths 7
Symbols with offsets e 8
Duplicated record definitions 10
Duplicated record definitions: a better way 11
Enhanced USING Statements e 12
Unreferenced code and data e 14
Register equates and “Names” 15
Part 2: Benefiting from newer, efficient instructions 16
TOPICS . . o 17
Immediate Operands 18
Register segments e 19
Load and insert instructions with immediate operands 20
Examples using load-immediate instructions 21
Arithmetic instructions with immediate operands 22
Immediate instructions for logical operations on registers 23
Review of base-displacement address generation 25
Address generation with base and signed 20-bit displacement 26
Benefits of 20-bit displacements 27

Upgrading Assembler Programs SHARE 117, Session 9281

Table of Contents Contents-2

Review of HLASM USING base-displacement resolution rules 28
Relative addressing 29
Important relative branch instructions 31
Relative branch on condition instructions and extended mnemonics 32
Other useful relative-address instructions 33
Compare and branch instructions e 35
What about macros that generate base-displacement instructions? 36
Conditional load and store iNStructions i 37
High-word instructions: 16 more 32-bit work registers!, 38
Distinct-operand INStruUCtiONS 39
Part 3: Enhancing awareness of CPU behavior 40
Processor evolution e 41
Memory CaChes e 42
Mixing code and work areas: a poor practiCe 43
INterloCKS . . . 44
Incrementing addresSSes 46
Guidelines for Part 3 e e 47
Part 4: Improving program structure and maintainability 48
CEJECT for improved listing readability 49
The incredibly useful and powerful LOCTR assembler instruction 50
Minimizing base register requirements 52
The HLASM Toolkit’'s Structured Programming Macros 53
Advice from experienced (and very successful!) programmers 55

Upgrading Assembler Programs SHARE 117, Session 9281

Table of Contents Contents-3

SUMMAY . . o e e e e e 56
Things worth remembering e 57
Subscribing to ASSEMBLER and IBM-MAIN Discussion Groups 58
Useful references 59

Upgrading Assembler Programs SHARE 117, Session 9281

Topics 1

Part 1: Tidying up portions of your programs

— Easy changes that can make small segments of code more manageable

e Part 2: Upgrading instructions to newer, efficient forms

— Simple instructions that can make code clearer, smaller, and more efficient

e Part 3: Enhancing awareness of CPU behavior

— Little things that can make critical sequences more efficient

e Part 4: Improving readability and maintainability

— Ways you can clarify and simplify program organization

e Summary observations

Upgrading Assembler Programs SHARE 117, Session 9281

Part 1: Tidying up your

programs

Assembler Language doesn't have to be difficult!

Upgrading Assembler Programs

SHARE 117, Session 9281

Counting Characters

e A common instruction sequence:

MVC Buffer(74),=C'Message of about 74 (?) characters...'

— Problem: Some poor soul (you?) had to count the characters to get the “74”

— Or, didn't want to count, and decided 74 was more than long enough

e PBetter: define a constant containing the message:
MVC Buffer(L'Msg3),Msg3

Msg3 DC C'Message of (I don''t care how many) characters...'

e Advantages:
— The assembler counts the number of characters (correctly!)

— You can add a comments field explaining how and why the message is used
(with a literal, you can't)

— You have more control over where it is placed

— Instructions don't need to know anything about data declarations

Upgrading Assembler Programs SHARE 117, Session 9281

Counting characters vs. a simple “MVC2” macro 4

e |f modifying code to use Length Attributes is too tedious, use a MVC2
macro:

MVC Buffer(74),=CL74'Message of < than 74 chars' 01d way
MVC2 Buffer,=C'Message of any number of chars' New way

e Ask someone to install this macro in your macro library:

Macro
&Lab MVC2 &Target,&Source Prototype statement
&Lab CLC 0(0,0),&Source X'D500 0000',S(&Source)

Org *-6 Back up to first byte of instruction
LA 0,&Target. (0) X'4100',S(&Target),S(&Source)

Oorg *4 Back up to first byte of instruction
DC AL1(X'D2',L'&Source-1) First 2 bytes of instruction
Org *+4 Step to next instruction

MEnd

e The generated instruction is

MVC Target(L'&Source),&Source Just what you wanted!

MVC2 Buffer,=C'A long message...' MVC2 handles everything

— It automatically uses the length attribute of the second operand

Upgrading Assembler Programs SHARE 117, Session 9281

Initializing a buffer

e A common instruction sequence
MVI Buffer,C' '

MVC Buffer+1(132),Buffer

Buffer DS CL133

Clear a buffer to blanks

Ripple the first blank

— Problem: what if the length of the buffer must be changed?

— You must find all occurrences of the symbol Buffer and change 132, 133 (and

maybe other numbers)

o Better:

BufLen Equ 133
MVI Buffer,C' '

MVC Buffer+l(BufLen-1),Buffer

Buffer DS CL(Buflen)

Define the buffer length
Clear a buffer to blanks
Ripple the first blank

— Advantage: you need to change only the statement defining BufLen,

and reassemble

— Instructions don't need to know anything about data declarations

Upgrading Assembler Programs

SHARE 117, Session 9281

Counting bytes to determine displacements 6

e An instruction sequence generated by a program-start macro:

Macro
&Name BEGIN
&Name Start

B

DC

DC

DC

STM

...various parameters...

102(0,15) <— Someone had to count 102 bytes!
17F'0' (should be 18!) 4+17*4=72

CL20'Assembled &SysDatC ' +20=92

CL10'Time &SysTime' +10=102

14,12,12(13) A11 that, just to get here

— Problem: if any change is made, someone has to recount the bytes

o PBetter:

&Name Start

J

DC

DC

DC

DC

DC

DC
S&SysNdx STM

S&SysNdx The Assembler knows where to go:
18F'0’ Corrected!

C'Assembled &SysDatC '

C'Time &SysTime '

C'At Site &ThisLoc.' ... Additional
C'With HLASM &SysVer. ' ... Signature
C'on System &System ID.' ... information
R14,R12,12(R13)

Upgrading Assembler Programs SHARE 117, Session 9281

Determing record and structure lengths 7

e Two statement sequences to define a record and its fields:

ARecord DS 0CL923 923? ARecord DS OCL(RecLen)
RecHead DC H'923' 92327 RecHead DS Y(RecLen)
Fieldl DS CL44 Fieldl DS CL44

Field2 DS CL55 - - -
- — = RecLen Equ *-ARecord
Fie1d999 DS ** ASMAOSOE Statement is unresolvable (!)

— Problems:
1. Someone counted the Fieldnn lengths to determine “923” (risky!)
2. HLASM complains about the apparently better symbolic definition

e A better method: let the Assembler do all the work for you

RecHead DC Y (RecLen) Record length value (as usual)
Fieldl DS CL44

Field2 DS CL55

Fie1d999 DS CL66

RecLen Equ *—RecHead Define the length

Org RecHead Re—position at start of record
ARecord DS OCL(RecLen) Define name and length of entire record
Oorg , Re—position after the record

Upgrading Assembler Programs SHARE 117, Session 9281

Symbols with offsets 8

e A typical instruction sequence to add inserts in a message:

MVC Buffer+64(12),Insertl Insert something somewhere
MVC Buffer+82(10),Insert2 Insert something somewhere

Buffer DS CL133
Insertl DS CL12 Inserted data
Insert2 DS CL10 Inserted data

— Problem: if the report must be reformatted, you have to look for all the offsets
and lengths

e Better: define the insertion points where the Buffer is defined
Buffer DS CL133

Org Buffer+64 First insertion point
BufInsl DS CL12
Org Buffer+82 Second insertion point
BufIns2 DS CL10
Oorg , Adjust Location Counter
MVC BuflInsl,Insertl Insert something in a message
MVC BufIns2,Insert2 Insert something in a message

— Advantage: no explicit lengths or offsets in the MVC instructions
— Instructions don't need to know anything about data declarations

Upgrading Assembler Programs SHARE 117, Session 9281

Symbols with offsets ... 9

e Still better: define a DSECT to map the buffer area

USING BuffMap,Buffer Dependent USING statement
MVC BuflInsl,Insertl Insert something in a message
MVC BuflIns2,Insert2 Insert something in a message
Buffer DS CL(BuffMapL)
Insertl DS CL12
Insert2 DS CL10

BuffMap DSECT ,

DS CL64 Offset to first insertion point
BufInsl DS CL12 First insertion field

DS CL6 Position at second insertion point
BufIns2 DS CL10 Second insertion field
BuffMapL Equ *-BuffMap Length of Buffer-mapping DSECT

e Advantages:
— No explicit lengths or offsets in the MVC instructions
— Changes localized to the DSECT

— Instructions don't need to know anything about data declarations

Upgrading Assembler Programs SHARE 117, Session 9281

Duplicated record definitions

10

e Code may contain two declarations of the same record structure
(say, 01dRec and NewRec)

New Record Declaration

NewRec DS oD

NewType DS CL10
NewID DS CL4
NewName DS CL40
NewAddr DS CL66
NewPhone DS CL12

NewYear DS F
NewDay DS F

CLC NewID,O1

01d Record Declaration

OldRec DS oD
Record type 01dType DS CL10
Record ID 01dID DS CL4
Name OldName DS CL40
Address 01dAddr DS CL66
Phone number 01dPhone DS CL12
etc. - - -
etc. - - -
Processing year OldYear DS F
Day of year 01dDay DS F
etc. - - -
dID Compare record IDs (we hope!)

e Everything addressed by current base register(s)

e Big, BIG trouble if the declarations get out of sync

Upgrading Assembler Programs

SHARE 117, Session 9281

Duplicated record definitions: a better way

11

e Better: define a single DSECT describing the record

Record DSECT ,
RecType DS CL10
RecID DS CL4
RecName DS CL40
RecAddr DS CL66
RecPhone DS CL12
RecYear DS F
RecDay DS F

RecLen Equ *—Record

NewRec DS
O1dRec DS

0D,CL(RecLen)
0D,CL(RecLen)

Record description
Record type

Record ID

Name

Address

Phone number

etc.

Processing year
Processing day of year
etc.

Record length

Area for new record
Area for old record

e Advantage: everyone can use the same record definition

— It can be in a COPY segment or generated by a macro

e Next two slides show how to utilize the Record DSECT

Upgrading Assembler Programs

SHARE 117, Session 9281

Enhanced USING Statements 12

1. With separate base registers for code and for each record instance:

e Labeled USING statements; qualifiers are 01d and New

MyProg CSECT , Resume program control section
LA 7,01dRec Base register for OldRec
LA 4 ,NewRec Base register for NewRec
01d USING Record,?7 Map the Record structure on 0ldRec
New USING Record,4 Map the Record structure on NewRec
CLC New.RecID,01d.RecID Compare record IDs
JNE NotThisOne Go do something else

MVC New.RecName,0ld.RecName Copy name field from 01d to New

e A valid complaint: | need two more base registers!

— Easily fixed, as the next slide shows

Upgrading Assembler Programs SHARE 117, Session 9281

Enhanced USING Statements ... 13

2. With existing base registers for code and each record instance

e Labeled Dependent USING statements; qualifiers are again 01d and New

— The second USING operand is relocatable, not a register number

01d Using Record,01dRec Map OldRec (labeled dependent USING)
New Using Record,NewRec Map NewRec (labeled dependent USING)

MVC New.RecName,0ld.RecName Copy name field from 01d to New

e The Record DSECT is “anchored” on each record field
e Program base register(s) address everything

e This version uses exactly the same base registers as the original

Upgrading Assembler Programs SHARE 117, Session 9281

Unreferenced code and data 14

e Stuff tends to accumulate even when it's no longer needed

— Problem: the next person may not be sure something is not needed, so leaves
it untouched

— Worse: a statement label in dead code could be an inviting branch target

e Solution: specify Assembler option XREF(SHORT,UNREFS) (the default)

Unreferenced Symbols Defined in CSECTs
Defn Symbol

674 ADDCOM <— The unreferenced symbol and the
724 ADDDIM statement where it's defined
1011 AUTORT

860 BLANKS

630 CKDIM

1038 CLOSE1l1

e |f you don't want to delete the statements, skip them:

AGo .Skip04 Skip the leftovers
- == Unreferenced odds and ends
.Skip04 ANop , Intervening statements not assembled

e Don't hide unused statements following the END statement!

Upgrading Assembler Programs SHARE 117, Session 9281

Register equates and “names” 15

e Many programs contain EQU statements to “name” registers
RO Equ O

R15 Equ 15

— ... In the belief that doing so helps you find references in the Symbol XREF
— Unfortunately, this isn't true:

LM R14,R12,0(R13) Refers to all 16 general registers!

— Only R12, R13, and R14 will appear in the XREF
e Much better: rely on the Register XREF (specify the RXREF option)

e Another problem: beginners may think register “names” are reserved
(as on Intel processors), and write

L R5,R8 Load Register 8 into Register 5 (??)

e Usually safest just to use register numbers

— If your code uses general, floating-point, and access registers:
names might help clarify which is which (but not with implicit references)

Upgrading Assembler Programs SHARE 117, Session 9281

16

Part 2: Benefiting from newer,

efficient instructions

e Nifty new easy-to-use instructions

— Reduce the costs of memory references

Upgrading Assembler Programs SHARE 117, Session 9281

Topics 17

Quick review of some z/Architecture features

e |nstructions with immediate operands
— Load and insert instructions
— Arithmetic instructions

— Logical instructions

e Address Generation
— Base and unsigned 12-bit displacement
— Base and signed 20-bit displacement

— Instruction-relative addressing

Relative addressing

Other instructions worth knowing about

Upgrading Assembler Programs SHARE 117, Session 9281

Immediate Operands

18

e We're familiar with Sl-type instructions with “immediate” operands:

opcode |,

B,

D,

— Used for instructions with logical operands, like MVI, CLI, TM, Ol, etc.

e Newer instructions with immediate-operand support

— Arithmetic (signed and unsigned)

— Logical operations (up to 32 bits)

— Branch relative (no base register required!)

Greater flexibility, many different types of operand

e Help you save memory, reduce memory references, free up registers

Upgrading Assembler Programs

SHARE 117, Session 9281

Register segments 19

e Some instructions refer to 16- or 32-bit portions of the 64-bit register:

<— High Half > < Low Half —»
High High High Low Low High Low Low
64-bit
HH HL LH LL operand
register
0 15 16 31 32 47 48 63

e Last one or two letters of many instruction mnemonics indicate which
part of the GR is involved:

HH High Half's High Half (bits 0-15)
HL High Half's Low Half (bits 16-31)
LH Low Half's High Half (bits 32-47)
LL Low Half's Low Half (bits 48-63)

H High Half (bits 0-31)
L Low Half (bits 32-63)

Upgrading Assembler Programs SHARE 117, Session 9281

Load and insert instructions with immediate operands

e Arithmetic load instructions extend the immediate-operand sign

e |ogical load instructions don't extend; set the rest of the register to zero

e |nsert-immediate instructions don't affect any part of the target register
other than bit positions where the immediate operand was inserted.

_ Operand 1 32-bit register 64-bit register
Operation : : : :
Operand 2 16 bits 32 bits 16 bits 32 bits
Arithmetic Load LHI LGHI LGF1I
LLIHH LLIHF
: LLIHL LLILF
Logical Load LLILH
LLILL
| t IILH IILF I IHH IIHF
nser TILL TTHL

Upgrading Assembler Programs

SHARE 117, Session 9281

Examples using load-immediate instructions 21

<+ sign—extended <

1
(72

32-bit register

0 T 31

LHI Instruction |s Halfword operand in LHI instruction

16 31

e Eliminate memory references and constants in storage

01d Ways Better Ways

L 1,=F'275"' LHI 1,275

LH 2,=H'-5678' LHI 2,-5678

L 3,=F'123456789" LGFI 3,123456789 (64-bit register)

IILF 3,123456789 (32-bit register)

e Eliminate unnecessary register zeroing, needless memory references

01d Way Better Way
SR 1,1
ICM 1,B'11',=C'AB' LLILL 1,C'AB'

e [aster operation, smaller programs, no base register needed

Upgrading Assembler Programs SHARE 117, Session 9281

Arithmetic instructions with immediate operands 22
_ Operand 1 32-bit register 64-bit register
Operation _ _ _ :
Operand 2 16 bits 32 bits 16 bits 32 bits
Arithmetic Add/Subtract | AHI AF1 AGHI AGF1I
: ALFI ALGFI
Logical Add/Subtract SLFI SLGFI
: : CHI CFI, CRL CGHI CGFI,
Arithmetic Compare CGERL
Logical Compare CLFI CLGFI
Multiply MHI MGHI

e |nstructions referencing 32-bit registers are immediately useful

01d Ways

A 6,=A(0ffset*4)

CH 4,=H'-1"'

MH 2,=Y(ItemLen)
CL 9,=X"107429B3"

e [aster operation, smaller programs, no base register needed

Better Ways

AFI 6,0ffset*4

CHI 4,-1

MHI 2,ItemLen
CLFI 9,X'107429B3'

Upgrading Assembler Programs

SHARE 117, Session 9281

Immediate instructions for logical operations on registers

23

e |nstructions operate on 32 bits of a 64-bit register, or on 16-bit high or

low halves of each half

Operand 1 64-bit register
Operation 16-bit immediate | 32-bit immediate
Operand 2
operand operand
NIHH, NIHL NIHF
AND NILH, NILL NILF
OIHH, OIHL OIHF
OR OILH. OILL OILF
XIHF
XOR XILF
TMHH, TMHL
Test Under Mask TMLH, TMLL

e Underscored instructions operate within the rightmost 32 bits

— Exercise for the reader: why are the AND and OR instructions with 16-bit operands unnecessary?

Upgrading Assembler Programs

SHARE 117, Session 9281

Immediate instructions for logical operations on registers ... 24

e |solate the rightmost 6 bits of GR4.:

01d Ways Better Way
N 4,=X"'0000003F" NILL 4,X'3F'
SLL 4,26
SRL 4,26 NILL 4,X'3F'
SRDL 4,6 (lose R5 bits!)
SR 4,4
SLDL 4,6 NILL 4,X'3F'

e (Can the 31-bit-mode address in R5 refer to items below the 16M line?
01d Way Better Way
LR 0,5 TMLH 5,X'7F00"
SLL 0,1 JZz Its Safe
SRA 0,25

JZz Its Safe
e |s the integer in register 9 a multiple of 47

01d Way Better Way

LR 0,9 TMLL 9,X'0003'
N 0,=A(X"'3") JZ Mult4

JZ Mult4d

e |n each case: extra register, extra instructions, or memory reference

Upgrading Assembler Programs SHARE 117, Session 9281

Review of base-displacement address generation

25

1. With unsigned 12-bit displacement

<4 bits—> <

12 bits

base b

displacement

e Effective Address = displacement + [if (b # 0) then c(GRb)]

e Provides addressability to at most 4096 bytes per base register

And, you can't address anything preceding the generated address

2. With signed 20-bit displacement

e New instruction format:

opcode

R,

X,

B,

DL,

DH,

opcode

e Traditional unsigned 12-bit displacement field now named DL,

e High-order 8-bit signed displacement extension named DH,

Upgrading Assembler Programs

SHARE 117, Session 9281

Address generation with base and signed 20-bit displacement 26

e 20-bit signed displacement formed from DH and DL.:

— DH concatenated at high end of DL and then sign-extended to 64 bits

[instruction) b DL DH
' '
<—sign bit extended——r DH DL

signed 64-bit displacement

— Displacement range (—219,+219—1) rather than (0,4095)

e Address calculation adds base/index register contents as appropriate

— Number of significant digits depends on current addressing mode

e |f the DH field is zero, get usual 12-bit displacement

Upgrading Assembler Programs

SHARE 117, Session 9281

Benefits of 20-bit displacements 27

e Very large data structures addressable K

with a single base register

— Addresses 1MB (£ 512KB) per base
register

e Base register can now point to the

middle of a data structure ::;e o

e 12-bit displacement addresses only 4KB

Base —»
Reg

v

— Addressing 1MB could require 256 base +512K-1
registers... 256 x 4KB

e [Fewer base registers are needed to address large areas!

Upgrading Assembler Programs SHARE 117, Session 9281

Review of HLASM USING base-displacement resolution rules 28

1. Expression and USING-table entry relocatability attributes must match

2. Calculate possible displacements; choose smallest non-negative

3. If no non-negative displacements are available, use smallest negative

value

4. If more than one such smallest displacement, choose higher-numbered

register

000000 00000 00012

R:AB 00000

00000
000000 E300 B880 1208 13880
000006 E300 AFAO 0008 00FAOQ
00000C E300 BFAO FFO8 00FAOQ
000012 E300 0120 7A71 7A120
000018 E300 OEEO 8371 F83000

e DH fields are underscored

NoOoOoGihH WN =
>

*

o WO 0

Test CSECT ,

Using *,10,11

Equ *

AG 0,X+80000 Long displacement

AG 0,X+4000 R11l +96 bytes away
Drop 10

AG 0,X+4000 Negative displacement

Note absolute displacements:
LAY 0,+500000
LAY 0,-512000 AMode sensitive!

Upgrading Assembler Programs

SHARE 117, Session 9281

Relative addressing 29

e New instruction formats with 2-byte and 4-byte immediate operands

e 4-pyte instruction:

opcode | R, | op RI,

RI, range: -2 < |, < 21%5-1,0or -32/68 < |, < 32767

e 6-byte instruction:

opcode | R, | op RI,

Rl, range: —-231 < RIl, < 231-1, or —-2147483648 < RIl, < 2147483647

Upgrading Assembler Programs SHARE 117, Session 9281

Relative addressing ... 30

e Address generation:

Opcode, regs |sbbbbbbbbbbbbb| RI-type instruction

lJ Shift left 1 bit
|
< sign—extended « Isbbbbbbbbbbbbbo 64-bit signed offset
l Add to
|
address of the instruction itself (Not the IA in

Effective Address

e RI, operand is doubled because a branch target is always on an even
boundary

e No base register required; base register requirement(s) can be
minimized

Upgrading Assembler Programs SHARE 117, Session 9281

Important relative branch instructions 31

e Branch Relative on Condition:

A7 | M, | 4 RI,

The branch target can be as far as —65536 and +65534 bytes away (+ 64K)

e Branch Relative Long on Condition:

cCo |M,| 4 RI,

The distance to the branch target can be up to 4 billion bytes from the
RIL-type instruction, in either direction. (+ 4G ... enough for now?)

_ Immediate-Operand Length
Operation : _
16 bits 32 bits
Branch on Condition (Relative) BCR [JC] BCRL [JLC]

e Extended mnemonics in [square brackets] start with J (for “Jump”)

Upgrading Assembler Programs SHARE 117, Session 9281

Relative branch on condition instructions and extended mnemonics 32

Rl Mnemonics RIL Mnemonics Mask Meaning

BRC JC BRCL JLC M1 Conditional Branch

BRU J BRUL JLU 15 Unconditional Branch

BRNO JO BRNOL JLNO 14 Branch if Not Ones (T)
Branch if No Overflow (A)

BRNH JNH BRNHL JLNH 13 Branch if Not High (C)

BRNP JNP BRNPL JLNP 13 Branch if Not Plus (A)

BRNL JNL BRNLL JLNL 11 Branch if Not Low (C)

BRNM JNM BRNML JLNM 11 Branch if Not Minus (A)

Branch if Not Mixed (T)

BRE JE BREL JLE 8 Branch if Equal (C)
BRZ JZ BRZL JLZ 8 Branch if Zero(s) (A,T)
BRNZ JNZ BRNZL JLNZ 7 Branch if Not Equal (C)
BRNE JNE BRNEL JLNE 7 Branch if Not Zero (A,T)
BRL JL BRLL JLL 4 Branch if Low (C)
BRM JM BRML JLM 4 Branch if Minus (A)
Branch if Mixed (T)
BRH JH BRHL JLH 2 Branch if High (C)
BRP JP BRPL JLP 2 Branch if Plus (A)
BRO JO BROL JLO 1 Branch if Ones (T)
Branch if Overflow (A)
JNOP JLNOP 0 No Operation

e (A) = after arithmetic, (C) = after comparison, (T) = after test
— Be careful: JLxx means “Jump Long“, not “Low”

Upgrading Assembler Programs SHARE 117, Session 9281

Other useful relative-address instructions

e Loop control instructions:

Register Length

Branch on Index (Relative)

BRXLE [JXLE]

Operation : _
32 bits 64 bits
Branch on Count (Register) BCTR BCTGR
Branch on Count (Indexed) BCT BCTG
Branch on Count (Relative) BRCT [JCT] BRCTG [JCTG]
Branch on Index Eﬁll-_lE EﬁEEG
BRXH [JXH] BRXHG [JXHG]

BRXLG [JXLEG]

EXRL Execute Relative Long: no base

LARL Load Address Relative Long: no base register required (target must

be an even address)

register required

Upgrading Assembler Programs

SHARE 117, Session 9281

Other useful relative-address instructions ... 34

Branch and save instructions

_ Immediate-Operand Length
Operation) :
16 bits 32 bits
Branch and Save (Relative) BRAS [JAS] BCRL [JASL]
e Example of a local subroutine:
JAS 12,LocalSub Link to internal subroutine

e Operands can be external references! For example:

EXTRN BigSub
JAS 12,BigSub (Small Toad module or program object)

or
JASL 12,BigSub (Large Toad module or program object)

No address constants required; z/OS Binder resolves the relative offsets

Upgrading Assembler Programs SHARE 117, Session 9281

Compare and branch instructions

35

e Compare and branch instructions combine the two operations:

CRB, Compare and Branch CRJ, Compare and Branch
CGRB CGRJ Relative

CIB, Compare Immediate and C1Jd, Compare Immediate and
CGIB Branch CGIJ Branch Relative

01d Ways

CR 3,4

JNE NotSame
C 9,=F'-99'
JL TooSmall
LTR 0,0

JNM NotMinus

All instructions support extended mnemonics

The |, (comparand) operand is a signed 8-bit number

Better Ways

CRINE 3,4,NotSame
CIJL 9,-99,TooSmall

CIJNM 0,0,NotMinus
CRB, CGRB, CIB, and CGIB are based branches

e Save (several) instructions and memory references

Upgrading Assembler Programs

SHARE 117, Session 9281

What about macros that generate base-displacement instructions? 36

e Relative branches may have eliminated the need for base registers for
your code, but...

e Many IBM macros generate based instructions like BC, LA, ST
— Solution 1: Issue the SYSSTATE macro

SYSSTATE ARCHLVL=1 Enables immediate and relative ops
SYSSTATE ARCHLVL=2 Enables z/Architecture ops

— Solution 2: Create a temporary local base register:

PUSH USING Save current USING status
BASR tempreg,0 Any unused register in (2,12)
USING *,tempreg Temporary local addressability
<Macro Invocation> Expand the macro
POP USING Restores previous USING status,
* DROPs 'tempreg' automatically

e Some self-modifying macro expansions can be placed in the same area
as constants and work areas

— Or, use MF=L form for skeletons, and inline MF=E forms for execution

Upgrading Assembler Programs SHARE 117, Session 9281

Conditional load and store instructions 37

e |oad or store action depends on Condition Code setting

_ Operand length
Operation
32 bits 64 bits
Load Register LROC LROCG
Load LOC LOCG
Store STOC STOCG

— All have extended mnemonics: append E/NE, H/NH, L/NL
e Example: put larger value from registers 0 and 1 into register 2

01d Way New Way

LR 2,0 Guess c(R0)>=c(R1) LR 2,0 Guess

CR 0,1 Compare CR 0,1 Compare

JNL 0K Branch if correct LROCL 2,1 Load if c(R0O)<c(R1)
LR 2,1 No, C(R0)<c(R1)

0K —— -

e Reduces number of branch instructions and flow paths
— CPU need not do branch prediction or update Branch History Table

Upgrading Assembler Programs SHARE 117, Session 9281

High-word instructions: 16 more 32-bit work registers! 38

[I |

new ops v v v new ops v v v old ops
High Word Low Word
f f
new ops vy y old ops
Storage

e Many low-word operations available for high word
— Many high < high, high < low, and low < high operations

— 48 new instructions, plus many extended mnemonics

e Use low words for base registers, addressing; high words for busy work

e Example:
L 8,Table_Addr Base address in low half of R8 (R8L)
LFH 8,Loop Count Iteration count in high half of R8 (R8H)
LoopHead L 4,0(0,8) Get some data...
- — = Work on it
BRCTH 8, LoopHead Count down in R8H and iterate

Upgrading Assembler Programs SHARE 117, Session 9281

Distinct-operand instructions 39

e Many “traditional” instructions overwrite the initial value of the target
operand

SLL ,

2,12 Original contents of R2 changed
AR 4,

Original contents of R4 changed

N =

e New “distinct-operand” instructions add “K” to the original mnemonic

SLLK 0,2,12 Result in RO; contents of R2 unchanged
ARK 3,4,7 Sum in R3; contents of R4 unchanged

e These instructions let you preserve a value without first copying it:

01d Way New Way
LR 3.4 ARK 3,4,7
AR 3,7

Upgrading Assembler Programs SHARE 117, Session 9281

40

Part 3: Enhancing awareness of

CPU behavior

e These items can be important for CPU-intensive
or frequently-executed programs

Upgrading Assembler Programs SHARE 117, Session 9281

Processor evolution 41

e Conceptual CPU behavior (the way we learned it):
1. Fetch the instruction from memory
2. Decode it and get the operands

3. Execute the instruction and put away the results

—»| FETCH —| DECODE —»| EXECUTE —»
|
|
|

— You can still think of it that way, but...

e Modern CPUs overlap each of those three steps (and split them into
many additional stages) in a “pipeline”

— Anything that affects pipeline flow will slow execution

— There are many conditions that affect performance at the instruction level

Upgrading Assembler Programs SHARE 117, Session 9281

Memory Caches 42

e |t's important to understand how your code can affect cache behavior
e Memory speed is very slow compared to CPU speed

e |nstructions and data are therefore “cached” in processor-controlled
high-speed buffers, for faster access

— Cache elements are usually called “lines”; typically 256 bytes

e Cache is to main storage as (virtual) main storage is to paging storage

” 11

— The concepts of “thrashing”, “working set”, and “locality of reference” apply
also to the cache

e Operand alignment can be very important!

— The CPU handles misaligned operands; but if the data spans a doubleword
boundary, cache line, or page, the operation can be much slower

— Try not to cross doubleword boundaries if possible

— Source operands should be on or within a doubleword boundary

Upgrading Assembler Programs SHARE 117, Session 9281

Mixing code and work areas: a poor practice 43

e QOccasionally programs will mix instructions and read/write work areas:

CVD 3,DWork Convert to decimal

UNPK DWork+4(4),Temp(7) Unpack to EBCDIC

0I Temp+6,X'F0’ Set correct zone on last digit

J NextTask Go do something useful with it
DWork DS D Work area, mixed with code!
Temp DS CL7 EBCDIC result

NextTask DC OH
MVC Somewhere(L'Temp),Temp Move the result

e Serious impact on performance
— New systems have separate instruction and data caches

— CPU must flush and reload the instruction cache if anything is stored into the
cache line

— And maybe the next one, if it has prefetched instructions far enough ahead

— Unfortunately many standard macro expansions mix code and data

— Use List and Execute forms if performance is important

Upgrading Assembler Programs SHARE 117, Session 9281

Interlocks 44

1. Address-generation interlock (AGI): waiting for an operand address

01d Way New Way

LA 3,1(,3) Bump pointer IC 0,1(,3)

IC 0,0(,3) Get a byte (wait!) LA 3,1(,3)

L 7.=A(Data) L 7.=A(Data)

L 1,0(,7) Get a value (wait!) - — - Unrelated instructions

- - - Other instructions - — =
_ L 1,0(,7) Get a value

e AGI also affects based branch instructions

2. Instruction-fetch interlock (IFI): don't modify code! CPU must flush the
entire instruction cache and pipeline, and start up again

01d Way
BC 0,InitDone Skip initialization
0I *-3,X'FO' Make a branch

e Better: set a flag bit in a work area

SHARE 117, Session 9281

Upgrading Assembler Programs

Interlocks ... 45

3. Operand store compare: CPU waits for a result to arrive in memory,
only to fetch it again

01d Way New Way

ST 2,Result ST 2,Result

CLC Result,01dValue CL 2,01dValue

MVC WorkArea(8),Data MVC WorkArea(8),Data
CLI WorkArea+7,C'A' CLI Datat+7,C'A’

4. Instruction decoding continues (including possible branch paths)
ahead of currently executing instruction

e CPU tries to predict the next instruction path(s)

— Some instructions are predicted to always branch:
BC 15, BCT/BCTG, BXLE/BXLEG

e Always try to arrange branches so the “fall-through” case is most likely

LTR 15,15 Check for error
JNZ Error_27 Branch only on unusual condition
- - = Continue normal processing

Upgrading Assembler Programs SHARE 117, Session 9281

Incrementing addresses 46

e AHI vs. LA
L 0,0(,6) Load GRO
LA 6,4(,6) Increment pointer

may be slightly faster than
L 090(36) Load GRO
6,4

AHI . Increment pointer

— For address incrementation, it's usually better to use LA rather than AHI

— Special hardware for expediting LA

e Be very careful if you use LA, LAY for arithmetic: the results depend on
the current addressing mode

Upgrading Assembler Programs SHARE 117, Session 9281

Guidelines for Part 3 47

e Keep data correctly aligned, to avoid cache (and page) thrashing
e Address data sequentially rather than randomly

e Don't mix code and read/write data areas

— Keep them as far apart as you (reasonably) can

e Keep data frequently read (but infrequently updated) separate from data
frequently updated

— Keep serialized objects on separate cache lines
e Keep referenced data close in memory and in time
e Keep your code compact, and avoid unnecessary branches

e Strenuously avoid modifying instructions, and don't construct them to be
executed (or inserted into the instruction stream)

e Keep execute targets very close to the EXecuting instruction (EX, EXRL)
e Use long-displacement instructions judiciously

e Start critical loops on a doubleword (or stricter) boundary

e Use QSAM for I/O: it has been highly optimized

Upgrading Assembler Programs SHARE 117, Session 9281

48

Part 4: Improving program

structure and maintainability

e Ways to cope with ever-expanding programs

Upgrading Assembler Programs SHARE 117, Session 9281

49

CEJECT for improved listing readability

e Listings don't always keep related chunks of code together

e Use CEJECT (“Conditional Eject”) to keep them grouped

CEject 12

{ - — } 12 statements kept on one page

{ - — — } 5 statements kept on one page

— CEJECT counts lines remaining on the page, ejects if not enough

e |mproved readability improves understanding

Upgrading Assembler Programs

SHARE 117, Session 9281

The incredibly useful and powerful LOCTR assembler instruction

50

e |LOCTR keeps groups of related statements together in the source code

— They need not be together in the object code!

MyProg CSect ,

a...b...c

Code LOCTR ,
c...e...f

Data LOCTR ,
p...q...r

Literals LOCTR ,

LTORG ,

Code LOCTR ,
g...h...j

Data LOCTR ,
S...t...u

Control section owning everything
Statements starting at MyProg

Declare a LOCTR group for instructions
Some instructions

Declare a LOCTR group for data
Data, constants, etc.

Declare a LOCTR group for literals
Your Titerals

Resume the CODE LOCTR group
More instructions

Resume the DATA LOCTR group
More data, constants

— HLASM sorts the groups in order of declaration, so the object code looks like:

MyProg
a...b...c

Code A1l items in the 'Code' LOCTR group
d...e...f... .J

Data A1l items in t ta' LOCTR group
pP...q...r...s...t...u

Literals | A1l items in the 'Literals' LOCTR group

Upgrading Assembler Programs

SHARE 117, Session 9281

The incredibly useful and powerful LOCTR assembler instruction ... 51

e Example:

Code LOCTR ,
MVC WorkBuff(L'Message5),Message5 Move message to buffer
Messages LOCTR ,
Message5 DC C'What can you possibly be doing?’
WorkArea LOCTR ,

WorkBuff DS CL(BuffLen) Define the message buffer

Code LOCTR ,
LAY 0,L'Message5 Set up length for write subroutine
LAY 1,Messageb Set address for write subroutine
JAS 14,MsgWrite Call message—writer subroutine

0I BugBit,L'BugBit Set a flag indicating this error
WorkArea LOCTR

DS X Define a byte for some flag bits
BugBit Equ *-1,X'40' Define the error—indicator flag bit
EOFBit Equ *-1,X'08' Define an end—of-file flag bit...

Code LOCTR ,

e Shows how you can keep related statements together in the source file

Upgrading Assembler Programs SHARE 117, Session 9281

Minimizing base register requirements 52

goile ‘IiOCTR - 1. Use LOCTR to group related items at
ntry ar the start of the CSECT

Consts LOCTR ,)
2. Use only relative branches among

— — — Constants — — - _ _ _
instructions in the program area
Lits LOCTR e Use EXRL for any EXecute instructions
— — — Literals - — - in the code
e So there's no need for “code base”
Work LOCTR , registers
— — — Work Area — — — _
(if not reenterable) 3. When appropriate, use LAY and LARL
Code LOCTR . to referencg constants, literals, and
Start LR 12,15 work area items

Using Entry,12 _
- - - Base register(s) are needed only for

remainder of program, constants, literals, and the work area!
using relative branch
instructions and NO

code—base registers

* * * X

Upgrading Assembler Programs SHARE 117, Session 9281

The HLASM Toolkit's Structured Programming Macros 53

e Powerful tools for improving program structure
e Provide uniformity and standardization

e Reduce the number of different constructs used in a program

Better tools for thinking about programs

Enhance program readability and maintainability

— Eliminate GOTO statements, extraneous labels, out-of-line logic paths

— Statement labels represent “unstructured” exposures; each label is a tempting
branch target

— Easier to understand program flow without tedious inspection

— Far less “spaghetti code”

— Some users report SP macros reduce maintenance costs by over 50%
e No more effort to use the SP macros than in a HLL with GOTOs

e The macros support standard structured-programming forms:
If-Then-Else, Do, Do-While, Do-Until, Case, Select, Search

— All may be fully nested, with multi-level exits

Upgrading Assembler Programs SHARE 117, Session 9281

The HLASM Toolkit’s Structured Programming Macros ... 54

e Converting unstructured code

— You can mix structured and unstructured code
— Start small, and work from the “inside out’
— If-Then-Else, Do-EndDo are very easy to get started with

— Small changes are quick and easy; programs gradually gain structure

— Add structure incrementally, leave old code alone if it's too much bother

— “Spaghetti code” is harder to restructure
— Use constructs that will make it easy to add new cases in the future
— Major rewrites or new programs represent structuring opportunities

— You can get rid of almost all statement labels: a good thing!
e Remember! Conversion is never required!

e You can customize the macro names to local standards by editing the
ASMMNAME copy file

Upgrading Assembler Programs SHARE 117, Session 9281

Advice from experienced (and very successful!l) programmers 55

e A consistent overall style of program organization is valuable
— Use comments generously

— Naming conventions should make it easy to identify modules, files, records,
fields, statement labels, macros, subroutines, etc.

— Use subroutines frequently
— With consistent conventions for linkage, argument passing, and addressability

— Any subroutine should be able to call any other

— Keep routines to manageable size (1-3 pages max?)

e |mportant guidelines:
— Don't use EQU for statement-label creation

— Do use extended mnemonics (except when there isn't one; then, use
meaningful EQUated symbols for the mask values)

— Never use label offsets (like X+6 or *+8), especially for branches

— Don't write explicit lengths when they're the same as length attributes
e Anything that degrades program understandability is bad

e Gains in simplicity greatly outweigh any apparent performance cost

Upgrading Assembler Programs SHARE 117, Session 9281

56

Summary

Upgrading Assembler Programs

SHARE 117, Session 9281

Things worth remembering 57

1. Never count things yourself; let HLASM do the work for you

e This includes the “length” operands of SS-type instructions
e |f anything changes, you won't have to find the old counts

2. Memory references are increasingly expensive

e Use instructions with immediate operands wherever possible

3. Closely mixing instructions and data is expensive

e Modifying nearby instructions is very expensive (especially if they are
executed repeatedly)

4. Group constants and literals together; same for work areas
e [ocality of reference helps performance

5. Look for opportunities to use new instructions

6. Anything that improves understandability is a good thing

7. Don't be too clever!

e You may not remember why you did it that way three months from now
e Pity the poor programmer who has to figure out what you did to fix it

Upgrading Assembler Programs SHARE 117, Session 9281

Subscribing to ASSEMBLER and IBM-MAIN Discussion Groups

58

These two lists are monitored by experienced, helpful people

ASSEMBLER-LIST
— Send e-mail to

LISTSERVEGLISTSERV.UGA.EDU

with no subject line, and a single-line message saying

SUBSCRIBE ASSEMBLER-LIST <your name>

IBM-MAIN
— Send e-mail to

LISTSERVGUA1VM.UA.EDU

with no subject line, and a single-line message saying

SUBSCRIBE IBM-MAIN <your name>

You'll receive a confirmation message with more info.

Upgrading Assembler Programs

SHARE 117, Session 9281

Useful references

59

“How Do You Do What You Do When You're a CPU? Two.”
SHARE Feb. 2005, Session 2835

“User Experience — Tuning Old Assembler Code to Exploit

z/Architecture”. SHARE Feb. 2007, Session 8185

“A ‘Quick Start’ Approach to Training Anyone to Write Assembler
Language”. SHARE Mar. 2009, Session 8144

“Structured Assembler Language Programming Using HLASM: Not Your
Father's Assembler Language”. SHARE Aug. 2009, Session 8133

“Reducing Base Register Utilization: How to ‘Jumpify’ Your Programs”.
SHARE Feb. 2011, Session 8548

“How to Benefit From HLASM's Most Powerful Features”.

SHARE Aug. 2011, Session 9223

IBM documentation:

High Level Assembler Language Reference SC26-4940
High Level Assembler Programmer's Guide SC26-4941
z/Architecture Principles of Operation SA22-7832
z/Architecture Reference Summary SA22-7871

Upgrading Assembler Programs © IBM Corp. 2011. All rights reserved.
S117UP Rev. 2011 Jul 13, 1150

59
Fmt. 13 Jul 2011, 1151

