Integrated Intrusion Detection Services for z/OS Communications Server

SHARE Session 9254

Lin Overby
overbylh@us.ibm.com

Chris Meyer
meyerchr@us.ibm.com
z/OS Communications Server provides an integrated Intrusion Detection Services (IDS) for TCP/IP. This session will describe the Communications Server IDS and how it can be used to detect intrusion attempts against z/OS.

This session will cover the following topics:

- IDS Overview
- Intrusion events detected by z/OS IDS
- IDS Actions
 - Recording Actions
 - Defensive Actions
- IDS Reports
- Automation for IDS
- Working with IDS policy
The Intrusion Threat

- **What is an intrusion?**
 - Information Gathering
 - Network and system topology
 - Data location and contents
 - Eavesdropping / Impersonation / Theft
 - On the network / on the server
 - Base for further attacks on others
 - Amplifiers
 - Robot or zombie
 - Denial of Service
 - Attack on availability
 - **Single Packet attacks** - exploits system or application vulnerability
 - **Multi-Packet attacks** - floods systems to exclude useful work

- **Attacks can be deliberate or unintentional**
 - Deliberate: malicious intent from outside or internal bots
 - Unintentional: various forms of errors on network nodes

- **Attacks can occur from Internet or intranet**
 - Firewalls can provide some level of protection from Internet
 - Perimeter Security Strategy *alone* may not be sufficient.
 - Considerations:
 - Access permitted from Internet
 - Trust of intranet
Integrated vs. External Intrusion Detection Concepts

Integrated IDS sensor on server
- IDS adapters, IDS agents, event notification
- Applications
- Middleware
- Networking
- IDS probes and services
- IDS event data

External IDS sensor in network
- IDS adapters, IDS agents, event notification
- IDS signatures
- IDS data scanner
- IDS event data

- **Data is read by a box in-the-middle in "promiscuous" mode**
- **If data is encrypted, IDS scanner cannot detect most signature-based intrusions**

- **Data is read for processing at server**
- **Intrusions can be checked both before and after decryption**
 - IPSec
- **IDS checking is done in context**
 - Data endpoint, connection state known, statistics available

Integrated IDS on z/OS complements external IDS technologies

IDS manager, such as Tivoli Security Information and Event Manager

© Copyright International Business Machines Corporation 2011. All rights reserved.
Intrusion Detection Services Overview

Events detected
- Scans
- Attacks Against Stack
- Flooding (both TCP and UDP)

Defensive methods
- Packet discard
- Limit connections

Reporting
- Logging,
- Event messages to local console,
- IDS packet trace
- Notifications to Tivoli NetView and Tivoli Security Information and Event Manager (TSIEM)

IDS Policy
- Samples provided with Configuration Assistant for z/OS Communications Server

z/OS in-context IDS broadens overall intrusion detection coverage:
- Ability to evaluate inbound encrypted data - IDS applied after IPSec decryption on the target system
- Avoids overhead of per packet evaluation against table of known attacks - IDS policy checked after attack detected
- Detects statistical anomalies real-time - target system has stateful data / internal thresholds that are generally unavailable to external IDSs
- Policy can control prevention methods on the target, such as connection limiting and packet discard

Integrated Intrusion Detection Services under policy control to identify, alert, and document suspicious activity
New Support Added in z/OS V1R13

- Extend existing support to IPv6
- New attack types:
 - Data hiding
 - TCP Queue Size
 - Global TCP Stall
 - Enterprise Extender protections
IDS Configuration

- IDS is configured with IDS policy
 - IDS policy defines intrusion events to monitor and actions to take

- Policy definitions are stored in policy repository
 - File or data set
 - LDAP (no longer being enhanced)

- Policy Agent reads policy definitions from policy repository
 - Policy definitions are processed by Policy Agent and installed in the TCP/IP stack
Policies consist of several related objects

- Policy Rule is main object and refers to:
 - Policy Condition
 - Defines IDS conditions which must be met to execute the Policy action
 - Policy Action
 - Defines IDS actions to be performed when Policy Condition is met
Intrusion Events Types Detected

- SCAN
- ATTACK
- TRAFFIC REGULATION
Intrusion Event Types Supported

- **Scan detection and reporting**
 - Intent of scanning is to map the target of the attack
 - Subnet structure, addresses, masks, addresses in-use, system type, op-sys, application ports available, release levels

- **Attack detection, reporting, and prevention**
 - Intent is to crash or hang the system
 - Single or multiple packet

- **Traffic regulation for TCP connections and UDP receive queues**
 - Could be intended to flood system OR could be an unexpected peak in valid requests
Scanning... the prelude to the attack

■ z/OS IDS definition of a scanner
 ➤ Source host that accesses multiple unique resources (ports or interfaces) over a specified time period
 ➤ Installation can specify via policy number of unique events (Threshold) and scan time period (Interval)

■ Categories of scan detection supported
 ➤ Fast scan
 ➤ Many resources rapidly accessed in a short time period (less than 5 minutes)
 ✓ usually less than five minutes, program driven
 ➤ Slow scans
 ➤ Different resources intermittantly accessed over a longer time period (many hours)
 ✓ scanner trying to avoid detection

■ Scan event types supported
 ➤ ICMP, ICMPv6* scans
 ➤ TCP port scans
 ➤ UDP port scans

* = New in V1R13
Scan Policy Overview

Scan policy provides the ability to:

- Obtain notification and documentation of scanning activity
 - Notify the installation of a detected scan via console message or syslogd message
 - Trace potential scan packets
- Control the parameters that define a scan:
 - The time interval
 - The threshold number of scan events
- Reduce level of false positives
 - Exclude well known "legitimate scanners" via exclusion list
 - e.g. network management
 - Specify a scan sensitivity level
 - by port for UDP and TCP
 - highest priority rule for ICMP, ICMPv6*

* = New in V1R13
Scan Event Counting and Scan Sensitivity

- Each scan event is internally classified as normal, suspicious or very suspicious
 - Socket state, ICMP, ICMPv6* type affect this classification
 - Scan instance event classification by event type included in IP Configuration Guide.
- Scan sensitivity determines whether a scan event is "countable"

<table>
<thead>
<tr>
<th>Sensitivity (from policy)</th>
<th>Normal Event</th>
<th>Possibly Suspicious Event</th>
<th>Very Suspicious Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td>Count</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>Count</td>
<td>Count</td>
</tr>
<tr>
<td>High</td>
<td>Count</td>
<td>Count</td>
<td>Count</td>
</tr>
</tbody>
</table>

- Countable scan events count against an origin source IP address
 - Total number of countable events for all scan event types is compared to policy thresholds
 - If threshold exceeded for a single IP address, policy-directed notification and documentation is triggered

* = New in V1R13
Attacks Against The TCP/IP Stack

- The system already silently defends itself from many attacks against the TCP/IP stack.

- IDS adds capability to control recording of intrusion events and to provide supporting documentation.

- IDS adds controls to detect and disable uncommon or unused features which could be used in an attack.
Attack Categories (1 of 2)

- Malformed packet events
 - Detects IPv4 and IPv6* packets with incorrect or partial header information
- Inbound fragment restrictions
 - Detects fragmentation in first 88 bytes of an IPv4 datagram
- IPv4 and IPv6* protocol restrictions
 - Detects use of IP protocols you are not using that could be misused
 - Called "next header restrictions" for IPv6
- IPv4 and IPv6* option restrictions
 - Detects use of IP options you are not using that could be misused
 - Can restrict both destination and hop-by-hop options for IPv6
- UDP perpetual echo
 - Detects traffic between IPv4 and IPv6* UDP applications that unconditionally respond to every datagram received
- ICMP, ICMPv6* redirect restrictions
 - Detects receipt of ICMP redirect to modify routing tables.
- Outbound RAW socket restrictions
 - Detects z/OS IPv4 or IPv6* RAW socket application crafting invalid outbound packets
- Flood Events
 - Detects flood of SYN packets from "spoofed" IPv4 or IPv6* sources
 - Detects high percentage of packet discards on a physical IPv4 or IPv6* interface

* = New in V1R13
Attack Categories (2 of 2)

New in V1R13, for both IPv4 and IPv6...

- **Data hiding**
 - Detects attempts to pass hidden data in packet header and extension fields

- **TCP queue size**
 - Provides IDS configuration for already-existing protection of TCP queues
 - Configurable "reset connection" provided in addition to usual notification actions
 - Exclusion list can be specified

- **Global TCP stall**
 - Detects cases where large number and percentage of TCP connections are stalled
 - Configurable "reset connection" provided in addition to usual notification actions

- **Enterprise Extender-specific attacks**
 - 4 different attack types (more on this later)
 - Exclusion list can be specified for each individual type
 - Appropriate defensive action available for each type
IPv6 support for pre-V1R13 Attacks

<table>
<thead>
<tr>
<th>Existing IPv4 attack type</th>
<th>IPv6 implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Malformed packet</td>
<td>Existing IPv4 support extended to IPv6. No new configuration needed.</td>
</tr>
<tr>
<td>• ICMP redirect restrictions</td>
<td></td>
</tr>
<tr>
<td>• UDP perpetual echo</td>
<td></td>
</tr>
<tr>
<td>• Flood (both interface flood and TCP SYN flood)</td>
<td></td>
</tr>
<tr>
<td>IP protocol restrictions (specifies a list of</td>
<td>IPv6 next header restrictions (specifies a list of restricted IPv6 next header values, which may include IP protocol values)</td>
</tr>
<tr>
<td>restricted IP protocol values)</td>
<td></td>
</tr>
<tr>
<td>IP option restrictions (specifies a list of</td>
<td>• IPv6 destination option restrictions (specifies a list of restricted IPv6 destination options)</td>
</tr>
<tr>
<td>restricted IPv4 options)</td>
<td>• IPv6 hop-by-hop option restrictions (specifies a list of restricted IPv6 hop-by-hop options)</td>
</tr>
<tr>
<td>Outbound RAW (specifies a list of restricted IP</td>
<td>IPv6 outbound RAW (specifies a list of restricted IP protocols for IPv6 and imposes other restrictions)</td>
</tr>
<tr>
<td>protocols for IPv4 and imposes other restrictions)</td>
<td></td>
</tr>
</tbody>
</table>
Attack Policy Overview

Attack policy provides the ability to:

- Control attack detection for one or more attack categories independently

- Generate notification and documentation of attacks
 - Notify the installation of a detected attack via console message or syslogd message
 - Trace potential attack packets

- Generate attack statistics on time interval basis
 - Normal or Exception

- Control defensive action when attack is detected
Interface Flood Detection

- Packet discard rate by physical interface is tracked to determine if there is a potential attack
 - A high percentage of discarded packets on a physical interface may indicate the interface is under attack.

- Notification and traces provided when a possible interface flood condition is occurring (according to the discard threshold value).

- Provides information to help determine the potential cause of the interface flood
 - Narrows flood condition to a local interface so you can
 - Vary the interface offline
 - This action not controlled with IDS policy
 - Start tracing flood back to source
 - Source MAC address of the "prior hop" (for OSA QDIO and LCS devices)
 - Source IP address from the outer IPSec header if the packet had been received as IPsec tunnel mode.
 - Source IP address could be a gateway or firewall
 - Could allow source tracking closer to the source than "prior hop"
Interface Flood Detection Process

- Policy related to interface flood detection
 - Specified on Attack Flood policy
 - 2 actions attributes provided
 - IfcFloodMinDiscard (default 1000)
 - IfcFloodPercentage (default 10)

- For each interface, counts are kept for
 - The number of inbound packets that arrived over the physical interface
 - The number of these packets that are discarded

- When the specified number of discards (IfcFloodPercentage) is hit:
 - If the discards occurred within **one minute** or less:
 - the discard rate is calculated for the interval:
 - # discards during the interval / # inbound packets for the interval
 - If the discard rate equals or exceeds the specified threshold, an interface flood condition exists
 - If discards occurred during period longer than 1 minute, not a flood condition

- Once an interface flood is detected, this data is collected and evaluated for the interface at 1 minute intervals. The interface flood is considered ended if the discards for a subsequent interval:
 - Fall below the minimum discard value OR
 - Discard rate for the interval is less than or equal to 1/2 of the specified threshold
Interface Flooding Example

- Assume the IDS flood policy specifies:
 - IfcFloodMinDiscard: 2000
 - IfcFloodPercentage: 10%

- Consider the following sequence for interface X:

<table>
<thead>
<tr>
<th>time interval</th>
<th>inbound cnt</th>
<th>discard cnt</th>
<th>discard rate</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1 min</td>
<td>13,000</td>
<td>2000</td>
<td>N/A</td>
<td>took longer than a minute to see the minimum discard count, so not a flood and discard rate not calculated.</td>
</tr>
<tr>
<td>< 1 min</td>
<td>30,000</td>
<td>2000</td>
<td>6.6%</td>
<td>not a flood, rate <10%</td>
</tr>
<tr>
<td>< 1 min</td>
<td>20,000</td>
<td>2000</td>
<td>10%</td>
<td>interface flood start detected. Run 1 minute timer until flood end detected.</td>
</tr>
<tr>
<td>+1 min</td>
<td>40,000</td>
<td>3000</td>
<td>7.5%</td>
<td>flood condition still exists, reset 1 minute timer.</td>
</tr>
<tr>
<td>+1 min</td>
<td>50,000</td>
<td>2500</td>
<td>5%</td>
<td>Interface flood end detected. Discard rate <= half of policy specified rate.</td>
</tr>
</tbody>
</table>
Data Hiding Protection

- The structure of protocol headers afford the opportunity to embed "hidden data" in packets (at the source host / in the network).
- V1R13 introduces the Data Hiding attack type to protect against such hidden data.
- In addition to notifications, you can configure an optional packet discard action.
- Two forms of data hiding protection can be independently enabled.

Exploitation of ICMP and ICMPv6 Error Messages

Before processing an inbound ICMP or ICMPv6 error message, Comm Server ensures the source address of the embedded message matches the destination address of the error message.

Exploitation of IPv4 and IPv6 Option Pad

Comm Server checks padding space for non-zero data.
TCP Queue Size Protection

- Builds upon V1R11 behavior. In that release, when a queue becomes constrained...
 - Data on that queue is marked "page eligible"
 - Syslogd message is issued to indicate constraint condition for that connection
 - A manual action can be taken to reset connection (netstat drop / -d) -- NO automated reset available

V1R13 IDS TCP queue size attack protection...
- Avoids/minimizes storage constraint conditions related to amount of storage consumed for TCP queues:
 - Receive queue (protection from stalled z/OS applications)
 - Out-of-order queue (protection from misbehaved remote senders)
 - Send queue (protection from stalled or misbehaved remote receivers)

- Evaluated on a per-connection basis

- Constraint condition triggered when:
 - Data is on queue for at least 60 seconds OR
 - A configurable threshold amount of data has been on queue for at least 30 seconds
 - very short / short / long / very long
 - this data amount is a fixed internal value in V1R11

- Constraint condition ends when data amount AND age falls below threshold.

- Exclusion list for z/OS send queue available for cases where such behavior is legitimate (like a printer that's out of paper):
 - Based on IP addr and port
 - Constrained queue storage still marked as "page eligible"
Protect against DoS attack where a large number of TCP connections are created and forced to stall, thereby consuming lots of TCP/IP resources

A single connection is considered stalled when either...
- TCP send window size (which is set by the peer) < smaller of largest send window seen for this connection and Default MTU
- TCP send queue is full and data is not being retransmitted

Global TCP stall condition is entered when...
- At least 1000 TCP connections are active AND
- At least 50% of those TCP connections are in a stalled state

IDS reporting options (except IDS tracing) available
- Two levels of logging - basic and detailed
- Be careful with detailed syslogd logging - can generate 500+ messages per global stall detection

Defensive action of "reset connection" may be configured
- Resets all stalled connections when a global TCP stall condition is detected

Global TCP stall condition is exited when...
- Number of stalled connections drops to < 25% of the total OR
- Total number of connections drops to < 450
Comparing TCP queue size and TCP global stall attack types

<table>
<thead>
<tr>
<th>TCP Queue Size Attack</th>
<th>Global TCP Stall Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitors individual connection's send queue for old or excessive data.</td>
<td>Monitors individual connection's send queue to detect stall condition.</td>
</tr>
<tr>
<td>No awareness of TCP/IP stack's overall state.</td>
<td>Aware of stack's overall state -- keeps count of stalled TCP send queues.</td>
</tr>
<tr>
<td>Attack detected based on individual send queue's state.</td>
<td>Attack detected based on overall state of stack -- large number of stalled connections.</td>
</tr>
<tr>
<td>Attack detected after at least 30 or 60 seconds.</td>
<td>Attack detection not based on time - can be detected much more quickly than 30 seconds.</td>
</tr>
<tr>
<td>Able to detect when a one or a few connections are stalled.</td>
<td>Triggered only when a large number of connections stall.</td>
</tr>
</tbody>
</table>
EE Attack Types

- Four attack types:
 - **EE Malformed Packet**
 - Validates general form of LDLC packets
 - Discard and notify actions available
 - **EE LDLC Check**
 - Ensure LDLC control packets flow on EE signaling port
 - Discard and notify actions available
 - **EE Port Check**
 - Ensure source port matches destination port on inbound packets
 - Discard and notify actions available
 - **EE XID Flood**
 - Raises flood condition if too many unique XID timeouts arrive within a one minute interval (flood threshold is configurable)
 - Condition ends when number of XID timeouts fall below threshold
 - Notify actions available

- Exclusion list can be configured for each attack type
 - Some EE implementations observed to use ephemeral ports - may be exclusion candidates for LDLC, Port checks

- Usual IDS reporting options available (exception: no IDS trace for EE XID flood)

Existing IDS checks

<table>
<thead>
<tr>
<th>IP header</th>
<th>UDP header</th>
<th>Local SAP</th>
<th>Remote SAP</th>
<th>LDLC command</th>
<th>SNA data</th>
</tr>
</thead>
</table>

EE-specific IDS checks

<table>
<thead>
<tr>
<th>EE Port</th>
<th>SNA Trans Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>12000</td>
<td>Signaling</td>
</tr>
<tr>
<td>12001</td>
<td>Network</td>
</tr>
<tr>
<td>12002</td>
<td>High</td>
</tr>
<tr>
<td>12003</td>
<td>Medium</td>
</tr>
<tr>
<td>12004</td>
<td>Low</td>
</tr>
</tbody>
</table>

EE is based on UDP

Uses 5 pre-defined ports

© Copyright International Business Machines Corporation 2011. All rights reserved.
Traffic Regulation for TCP

- Allows control over number of inbound connections from a single host
 - Can be specified for specific application ports
 - Especially useful for forking applications
 - Independent policies for multiple applications on the same port
 - e.g. telnetd and TN3270

- Connection limit expressed as
 - Port limit for all connecting hosts AND
 - Individual limit for a single connecting host

- Fair share algorithm
 - Connection allowed if specified individual limit per single remote IP address does not exceed percent of available connections for the port
 - All remote hosts are allowed at least one connection as long as port limit has not been exceeded
 - QoS connection limit used as override for concentrator sources (web proxy server)
TCP connection regulation algorithm

Configured maximum allowed connections for a given port: \(N \)
In-use connections
Available connections: \(A \)

Connections from a given source IP address: IP@x: \(X \)

If a new connection request is received and \(A=0 \), the request is rejected.

If a new connection request is received and \(A>0 \) and the request is from a source that already has connections with this port number (in this example: IP@x), then:

\[
\text{If } X+1 < CP \times A \text{ then} \\
\quad \text{Allow the new connection} \\
\text{Else} \\
\quad \text{Deny the new connection}
\]

Purpose: If close to the connection limit, then a given source IP address will be allowed a lower number of the in-use connections.
Regulation algorithm example

Source IP address X attempts its fifth connection

<table>
<thead>
<tr>
<th>Total Allowed</th>
<th>Connections</th>
<th>Available</th>
<th>CP=10%</th>
<th>CP=20%</th>
<th>CP=30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20</td>
<td>80</td>
<td>8</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>60</td>
<td>6</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>20</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

If we currently have 40 connections available (A=40) and a controlling percentage (CP) of 20%, when source IP address X tries to establish its fifth connection, it will be allowed (40 * 20% = 8, so 5 connections is within the acceptable range).

If we have 20 connections available (A) and CP is again 20%, when source IP address X tries to establish its fifth connection, it will be rejected (20 * 20% = 4, so 5 would exceed the allowable number of connections).
Traffic Regulation for UDP

- Allows control over length of inbound receive queues for UDP applications
 - Specified on a per-port basis
 - Can be applied to ports of your choosing
- Before TR for UDP, UDP queue limit control was requested globally for all queues
 - UDPQueueLimit ON | OFF in TCP/IP Profile
- If neither TR UDP or UDPQueueLimit is used, a stalled application or a flood against a single UDP port could consume all available buffer storage
 - TR UDP supercedes UDPQueueLimit specification
- TR UDP queue limit expressed as abstract queue length
 - VERY SHORT
 - SHORT
 - For applications that tend to receive data faster than they can process it
 - LONG
 - VERY LONG
 - Useful for fast or high priority applications with bursty arrival rates
IDS Actions

- Recording actions
- Defensive actions
Recording Actions

- Recording options controlled by IDS policy action specification
- Possible options
 - Event logging
 - Syslogd
 - Number of events per attack subtype recorded in a five minute interval can be limited (for most attack subtypes)
 - Local Console
 - Recording suppression provided if quantity of IDS console messages reach policy-specified thresholds
 - Statistics
 - Syslogd
 - Normal and Exception conditions
 - IDS packet trace
 - Activated after attack detected
 - Number of packets traced for multipacket events are limited
 - Amount of data trace is configurable (header, full, byte count)
 - Not available for all attack types
- All IDS events recorded in syslog and console messages, and packet trace records have probeid and correlator
 - Probeid identifies the point at which the event detected
 - Correlator allows association of corresponding syslog and packet trace records
Defensive Actions by Event Type

- **Attack Events**
 - Packet discard
 - Certain attack events always result in packet discard and are **not** controlled by IDS policy action
 - malformed packets
 - flood (synflood discard)
 - Most attack types controlled by IDS policy action
 - ICMP redirect restrictions
 - IPv4 and IPv6* option restrictions
 - IPv4 and IPv6* protocol restrictions
 - IP fragment
 - outbound raw restrictions
 - perpetual echo
 - data hiding*
 - EE malformed, LDLC and port checks*
 - Reset connection*
 - TCP queue size*
 - Global TCP stall*
 - **No defensive action defined**
 - flood (interface flood detection)

- **Scan Events**
 - **No defensive action defined**

- **Traffic Regulation Events**
 - Controlled by IDS policy action
 - TCP - Connection limiting
 - UDP - Packet discard

* = New in V1R13
IDS and Defensive Filtering

- The Defense Manager component allows authorized users to dynamically install time-limited, defensive filters:
 - A local security administrator can install filters based on information received about a pending threat
 - Enables filter installation through automation based on analysis of current attack conditions
- Defensive filtering is an extension to IDS capabilities
 - Adds additional defensive actions to protect against attacks

Requires minimal IP Security configuration to enable IP packet filtering function
- Uses ipsec command to control and display defensive filters

Defense Manager
- Manages installed defensive filters in the TCP/IP stack
- Maintains record of defensive filters on DASD for availability in case of DM restart or stack start/restart

Defensive filter scope may be:
- Global - all stacks on the LPAR where DM runs
- Local - apply to a specific stack

Defensive filter are installed "in-front" of configured/default filters
- Already supports IPv6
Intrusion Detection Reports for Analysis
IDS Log Reports

trmdstat command produces reports based on IDS data recorded in syslog

- Types of reports generated for logged events
 - Overall summary reports
 - Connection and IDS
 - Event type summary reports
 - For Connection, Attack, Flood, Scan, TCP and UDP TR information
 - Event type detail reports
 - For Connection, Attack, Flood, Scan, TCP and UDP TR information

- Types of reports generated for statistics events
 - Details reports
 - Attack, Flood, TCP and UDP TR reports
Tivoli Support for IDS Events

- **Tivoli NetView** provides *local z/OS management* support for IDS
 - NetView provides ability to trap IDS messages from the system console or syslog and take predefined actions based on IDS event type such as:
 - Route IDS messages to designated NetView consoles
 - Email notifications to security administrator
 - Run trmdstst and attach output to email
 - Issue pre-defined commands

- **Tivoli Security Information and Event Manager (TSIEM)** provides *enterprise-wide management* support for IDS
 - Automated aggregation and correlation of events, logs, and vulnerabilities
 - Broad device support for multi-vendor environments, including security, network, host, and applications
 - Support includes processing for z/OS Communications Server syslog messages for IDS events
 - Automates policy and regulatory compliance
 - Policy and Regulatory based policy monitoring and reporting
Working with IDS Policy

- Controlling, displaying, and validating policy
- Defining IDS policy
- IDS policy configuration with Configuration Assistant for z/OS Communications Server example
Controlling Active IDS Policy

- Configurable policy deletion controls in Policy Agent configuration file
 - TcplImage statement
 - FLUSH | NOFLUSH {PURGE | NOPURGE}
 - FLUSH and NOFLUSH take effect at Policy Agent initialization
 - FLUSH - specifies that any active policy should be deleted
 - NOFLUSH - specifies that active policy should not be deleted
 - PURGE and NOPURGE take effect at Policy Agent termination
 - PURGE - specifies that any active policy should be deleted
 - NOPURGE - specifies that active policy should not be deleted

- Refresh Policy
 - At Interval (1800-second default) specified on TcplImage statement
 - With MODIFY PAGENT command (REFRESH option)
 - When Policy Agent configuration file (HFS only) is updated (refresh is automatic)
Displaying IDS Policy

- **pasearch command**
 - Displays IDS policy read by Policy Agent

- **netstat command**
 - Displays installed IDS policy in TCP/IP stack
 - Displays statistics by policy category

✓ **Tip:**

Restrict access to IDS policy displays using SAF SERVAUTH resources:

- EZB.PAGENT.sysname.tcpname.IDS
- EZB.NETSTAT.sysname.tcpname.IDS
Steps for Validating IDS Policy

1. Inspect configured IDS policy for correctness
2. Invoke PAGENT and TRMD
3. Issue PASEARCH and verify that the correct policy is installed
4. Keep policy in force for a trial period
5. Issue IDS netstat to view active IDS policy and statistics
6. Run TRMDSTAT reports to verify syslog messages for intrusion events
7. Adjust the policy as required
Defining IDS Policy

- GUI-based approach to configuring:
 - IDS
 - AT-TLS
 - IPSec and IP filtering
 - QoS
 - Policy-based Routing (PBR)
 - Defense Manager Daemon
- Focus on high level concepts vs. low level file syntax
- Runs under z/OSMF (strategic) or as a Windows application
- Builds and maintains
 - Policy files
 - Related configuration files
 - JCL procedures and RACF directives
- Supports import of existing policy files

Download the Windows-based Configuration Assistant at: http://tinyurl.com/cgoqsa
IDS Policy Configuration Steps with the Configuration Assistant

1. Download and install the Configuration Assistant configuration tool
 http://tinyurl.com/cgoqsa

2. Configure IDS policies
 a. Examine IDS defaults and base policy on defaults
 b. Copy IDS defaults into a new IDS requirements map
 c. Make changes to new requirements map as needed

3. Create system image and TCP/IP stack image

4. Associate new requirements map with TCP/IP stack

5. Perform policy infrastructure and application setup tasks

6. Transfer IDS policy to z/OS
Start a new IDS configuration
Create IDS policy objects

![Image of IDS Perspective with Requirement Maps highlighted]
Evaluate IDS_Default requirements map

IDS_Default provided as default requirement map

- Display details of the requirement map
- Evaluate whether they meet your requirements
Details view of IDS_Default requirements map (1 of 4)

Requirement Map: IDS_Default - IBM Supplied: Intrusion Detection Services Starter Set

Attack Protection Summary

<table>
<thead>
<tr>
<th>Enabled Attack Protection</th>
<th>Rule Name</th>
<th>Actions</th>
<th>Reports</th>
<th>Time Condition</th>
<th>Default Report Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Hiding Attack</td>
<td>DataHiding</td>
<td>Report Events</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>IPv6 Outbound Raw Attack</td>
<td>IPv6OutboundRaw</td>
<td>Report Events</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>IPv6 Destination Options Attack</td>
<td>IPv6DestinationOptions</td>
<td>Report Events</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>IPv6 Hop-by-Hop Options Attack</td>
<td>IPv6HopByHop</td>
<td>Report Events</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>IPv6 Next Header Attack</td>
<td>IPv6NextHeader</td>
<td>Report Events</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>TCP Queue Size Attack</td>
<td>TcpQueueSize</td>
<td>Report Events</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Global TCP Stall Attack</td>
<td>GlobalTCPStall</td>
<td>Report Events</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Flood Attack</td>
<td>Flood</td>
<td>Both Drop and Report</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Perpetual Echo Attack</td>
<td>Echo</td>
<td>Report Events</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Console Parameters: No

SYSLOG Parameters:
- SYSLOG: Yes
- SYSLOG Level: 4 - Warning
Details view of IDS_Default requirements map (2 of 4)

<table>
<thead>
<tr>
<th>Attack Type</th>
<th>Component</th>
<th>Parameters</th>
<th>Report Events</th>
<th>Report Settings</th>
<th>Statistics Parameters:</th>
<th>Trace Parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Options Attack</td>
<td>IPv4Option</td>
<td>Report Events</td>
<td>Use Default</td>
<td>Report Settings</td>
<td>Statistics Interval: 60 Minutes</td>
<td>None</td>
</tr>
<tr>
<td>ICMP Redirect Attack</td>
<td>ICMPRedirect</td>
<td>Report Events</td>
<td>Use Default</td>
<td>Report Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malformed Packet Attack</td>
<td>MalformedPacket</td>
<td>Both Drop and</td>
<td>Use Default</td>
<td>Report Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv4 Outbound Raw Attack</td>
<td>IPv4OutboundRaw</td>
<td>Report Events</td>
<td>Use Default</td>
<td>Report Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv4 Fragment Attack</td>
<td>IPv4Fragmentation</td>
<td>Report Events</td>
<td>Use Default</td>
<td>Report Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE Malformed Packet Attack¹</td>
<td>EEMalformedPacket</td>
<td>Report Events</td>
<td>Use Default</td>
<td>Report Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE LDLC Check Attack¹</td>
<td>EELDLCCheck</td>
<td>Report Events</td>
<td>Use Default</td>
<td>Report Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE Port Check Attack¹</td>
<td>EEPortCheck</td>
<td>Report Events</td>
<td>Use Default</td>
<td>Report Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE XID Flood Attack¹</td>
<td>EEXIDFlood</td>
<td>Report Events</td>
<td>Use Default</td>
<td>Report Settings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
1 The attack is not available for V1R12 stacks. The requirement map is configured with this attack, but if the stack is mapped to a V1R12 stack, the attack will be ignored.
Attack Protection Details

Enabled Attack Protection: Data Hiding Attack - DataHiding

<table>
<thead>
<tr>
<th>Enabled Options</th>
<th>Reports</th>
<th>Time Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking of IP option pad fields: Enabled</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td>Report Events</td>
</tr>
<tr>
<td>Checking of embedded packets within ICMP error messages: Enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The attack is not available for V1R12 stacks. The requirement map is configured with this attack, but if the stack is mapped to a V1R12 stack, the attack will be ignored.

Enabled Attack Protection: IPv6 Outbound Raw Attack - IPv6OutboundRaw

<table>
<thead>
<tr>
<th>Starting Protocol</th>
<th>Ending Protocol</th>
<th>Reports</th>
<th>Time Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td>Report Events</td>
</tr>
<tr>
<td>18</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The attack is not available for V1R12 stacks. The requirement map is configured with this attack, but if the stack is mapped to a V1R12 stack, the attack will be ignored.
Details view of IDS_Default requirements map (4 of 4)

(. . . several intervening pages...)

Enabled Attack Protection: EE Port Check
Attack - EEPortCheck

<table>
<thead>
<tr>
<th>Reports</th>
<th>Time Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Default Report Settings</td>
<td>None</td>
<td>Report Events</td>
</tr>
</tbody>
</table>

The attack is not available for V1R12 stacks. The requirement map is configured with this attack, but if the stack is mapped to a V1R12 stack, the attack will be ignored.

Enabled Attack Protection: EE XID Flood Attack - EEXIDFlood

<table>
<thead>
<tr>
<th>EE XID TimeOut</th>
<th>Reports</th>
<th>Time Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Use Default Report Settings</td>
<td>None</td>
<td>Report Events</td>
</tr>
</tbody>
</table>

The attack is not available for V1R12 stacks. The requirement map is configured with this attack, but if the stack is mapped to a V1R12 stack, the attack will be ignored.

Scan Protection Summary

No Scan Protection Configured

Traffic Regulation Summary

No Traffic Regulation Configured
Use IDS_Default as a starting point

Using IDS_Default as a base
- Copy IDS_Default
- Create new requirements map using copied IDS_Default as a base
Name new requirements map

![Copy Requirement Map Window]

Use these panels to modify the requirement map:
1. Attack protection
2. Pre-attack scan monitoring
3. Traffic regulation

Name: *IDS_policy_demo*
Description: Show how to configure IDS policy
Modify copied default requirements map
Attack protection enabled by default

![Modify Requirement Map window](image)

Steps
1. Select the action for each enabled attack type.
2. To disable protection for an attack type, select the row from the Enabled protection table and click the "Disable" button.
3. To enable protection for a specific attack type, select a row from the Attack type table and click the "Enable" button.

You will be prompted for additional details related to your attack type selection. Fill in the details and click OK.

<table>
<thead>
<tr>
<th>Attack type</th>
<th>Data Type</th>
<th>Rule Name</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Hiding Attack</td>
<td>DataHiding</td>
<td></td>
<td>Report Events</td>
</tr>
<tr>
<td>IPv6 Outbound Raw Attack</td>
<td>IPv6OutboundRaw</td>
<td></td>
<td>Report Events</td>
</tr>
<tr>
<td>IPv6 Destination Options Attack</td>
<td>IPv6DestinationOptions</td>
<td></td>
<td>Report Events</td>
</tr>
<tr>
<td>IPv6 Hop-by-Hop Options Attack</td>
<td>IPv6HopByHop</td>
<td></td>
<td>Report Events</td>
</tr>
<tr>
<td>IPv6 Next Header Attack</td>
<td>IPv6NextHeader</td>
<td></td>
<td>Report Events</td>
</tr>
<tr>
<td>TCP Queue Size Attack</td>
<td>TcpQueueSize</td>
<td></td>
<td>Report Events</td>
</tr>
<tr>
<td>Global TCP Stall Attack</td>
<td>GlobalTCPStall</td>
<td></td>
<td>Report Events</td>
</tr>
<tr>
<td>Flood Attack</td>
<td>Flood</td>
<td></td>
<td>Both Drop and Report</td>
</tr>
<tr>
<td>Perpetual Echo Attack</td>
<td>Echo</td>
<td></td>
<td>Report Events</td>
</tr>
</tbody>
</table>
Customize report settings

![Image of Report Types dialog box]

- Indicate where to report IDS events:
 - System console
 - SYSLOGD
 - IDS trace

- Indicate if you want to log statistics at predefined intervals:
 - Log statistics to SYSLOGD

Buttons:
- OK
- Cancel
- Help
Enable scan policy

Steps

1. To enable a scan for a particular traffic descriptor, select from the traffic descriptors table and click the "Enable" button.
2. Select the monitor level for each enabled scan.
3. To disable scan protection for a traffic descriptor, select the row from the Enabled scans table and click the "Disable" button.

Traffic descriptors list

- Centralized_Policy_Server
- CICS
- DNS
- EE
- FTP-Server
- FTP-Server-SSL
- ICMP-IPIPv6
- IKE
- IKE-NAT
- Kerberos
- LBA-Advisor
- LBA-Agent
- LDAP-Server
- JPN

Enabled scans

<table>
<thead>
<tr>
<th>Enabled Traffic Descriptor</th>
<th>Rule Name</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All_Well-Known_TCP</td>
<td>All_Well-Known_TCP</td>
<td>Medium</td>
</tr>
<tr>
<td>All_Well-Known_UDP</td>
<td>All_Well-Known_UDP</td>
<td>Medium</td>
</tr>
<tr>
<td>ICMP</td>
<td>ICMP</td>
<td>High</td>
</tr>
</tbody>
</table>

Buttons and Links

- Modify Requirement Map
- Traffic Descriptors...
- Default Report Settings for Scans...
- Modify Fast and Slow Scan Settings...
Modify Global Scan Settings

[Image of the Global Scan Settings window]

- **Fast scan settings**
 - Fast scan interval: *1* (minutes, 1-1440)
 - How many accesses within scan interval indicate an attack: *5* (1-64)

- **Slow scan settings**
 - Enable slow scans
 - Slow scan interval: *120* (minutes, 1-1440)
 - How many accesses within scan interval indicate an attack: *10* (1-64)
Enable traffic regulation protection

Steps:
1. To enable a traffic regulation for a particular traffic descriptor, select from the traffic descriptors table and click the "Enable" button.
2. Select the Action for each enabled traffic regulation.
3. To disable a traffic regulation for a traffic descriptor, select it from the Enabled traffic regulations table and click the "Disable" button.

Policy selections are system dependant
System capacity a consideration in setting maximum limits
Define TCP TR policy for FTP

Modify Requirement Map

- Use this panel to indicate if you want to implement traffic regulation (TR).
- Enable traffic regulation

Steps:
1. To enable a traffic regulation for a particular traffic descriptor, select from the traffic descriptors table and click the "Enable" button.
2. Select the Action for each enabled traffic regulation.
3. To disable a traffic regulation for a traffic descriptor, select it from the Enabled traffic regulations table and click the "Disable" button.

Traffic descriptors list:
- All_Well-Known_UDP
- Centralized_Policy_Server
- CICS
- DNS
- EE
- FTP-Server
- FTP-Server-SSL
- IKE
- IKE-NAT
- Kerberos
- LPD
- LBA-Advisor

Enabled traffic regulations:

next page
Set details for TR

Traffic regulation identification:
- Name: FTP-Server
- Traffic descriptor: FTP-Server
- Action: Limit and Report

Enter parameters for TCP traffic:
- Limit by total connections:
 - Maximum number of connections: 100 (0-65535)
- Limit by percentage of total connections:
 - Limit each host to the following percentage of the maximum connections:
 - 20 (percent)
- Limit by socket or by all sockets:
 - Limit scope: All sockets

Buttons:
- OK
- Cancel
- Help
Traffic regulation enabled

1. To enable a traffic regulation for a particular traffic descriptor, select from the traffic descriptors table and click the "Enable" button.
2. Select the Action for each enabled traffic regulation.
3. To disable a traffic regulation for a traffic descriptor, select it from the Enabled traffic regulations table and click the "Disable" button.
IDS_Policy_Demo
requirements map now created
Create System Image
Create TCP/IP stack
Associate TCP/IP Stack with Requirements Map

Select a requirement map to govern IDS protection for this stack.

Name	Description
IDS_Default | IBM Supplied: Intrusion Detection Services Starter Set
IDS_policy_demo | Show how to configure IDS policy

next page
Perform application setup tasks

IDS Perspective

Image Information

z/OS image name: SYSTEMA
Description: z/OS System A
z/OS release: V1R13

Application Setup Tasks for Image SYSTEMA

This panel contains tasks to enable Intrusion Detection Services for z/OS image SYSTEMA.

- Select the task and click Task Details.
- Follow the instructions on the panel.
- As you finish each task, change its status to Complete.

List of setup tasks

<table>
<thead>
<tr>
<th>Task name</th>
<th>Last completion date</th>
<th>Status</th>
<th>Cor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Location Setup</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>Policy Agent - RACF Directives</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>Policy Agent - RACF Directives for data...</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>Syslogd - RACF Directives</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>TRMD - RACF Directives</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>Policy Agent Configuration - Image SYS...</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>Syslogd - Configuration</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>Syslogd - Start Procedure</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>Policy Agent - TCPIP Sample Profile</td>
<td></td>
<td>Incomplete</td>
<td></td>
</tr>
</tbody>
</table>

- Permanently save backing store after performing these tasks

© Copyright International Business Machines Corporation 2011. All rights reserved.
Install configuration files

IDS Perspective

Image Information

z/OS image name: SYSTEMA
Description: z/OS System A
z/OS release: V1R13

Add New TCP/IP Stack...

Application Setup Tasks...
Perform initial setup tasks including RACF directives and start procedures.

Install Configuration Files...
View the produced configuration files, install the files to the z/OS system, and view a configuration summary.

next page
Show the configuration file to be installed

```
#  IDS Policy Agent Configuration file for:
#     Image: SYSTEMA
#     Stack: TCP/IPA
#
#  Created by the IBM Configuration Assistant for z/OS Communications Server
#  Version 1 Release 13
#  Backing Store = C:\Program Files\IBM\zCSCfgAssist\V1R13\saveData
#
#  End of Configuration Assistant information

IDSRule DataHiding
{
   ConditionType Attack
   IDSAttackCondition
   {
      AttackType DATA_HIDING
      OptionPadChk Enable
      IcmpEmbedFktChk Enable
   }
   IDSActionRef DataHiding
}

IDSRule IPv6OutboundRaw
{
   ConditionType Attack
   IDSAttackCondition
   {
      AttackType OUTBOUND_RAW_IPV6
      ProtocolGroupRef IpProtGroup-1
   }
   IDSActionRef IPv6OutboundRaw
}
```

Set up to transfer policy file to z/OS

List of Configuration Files for Image SYSTEMA

Tip: Not all application setup tasks are marked complete. These tasks provide instructions for setting up your environment, including RACF directives and start procedures. Click Help for more information.

List of Configuration Files for Image SYSTEMA

<table>
<thead>
<tr>
<th>Stack</th>
<th>Configuration</th>
<th>File Name (may be modified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPIPA</td>
<td>IDS Policy</td>
<td>/etc/cfgasst/v1r13/SYSTEMA/TCPIPA/idsPol</td>
</tr>
</tbody>
</table>

Show Configuration File Install Configuration Summary

☑ Permanently save backing store after install

Install Files to Remote Host

Install file:
* /etc/cfgasst/v1r13/SYSTEMA/TCPIPA/idsPol

FTP login information
- Host name: * hostname.com
- Port number: * 21
- User ID: * idsKing
- Password: * ********* ☑ Save password
 ☑ Use SSL

Data transfer mode
- Default ☐ Passive ☐ Active

Comment for the configuration file prologue (optional)
Comment:

Go Close View FTP Log Help
Features Summary
IDS Features Summary

- **IDS events detected include:**
 - Scan detection
 - Attack detection
 - Traffic Regulation
 ... for both IPv4 and IPv6 traffic

- **IDS recording options**
 - Event logging to syslogd or console
 - Statistics to syslogd
 - IDS packet trace after attack detected for offline analysis

- **Reports and event handling**
 - trmdstat produces reports from IDS syslogd records
 - Summary and detailed
 - IDS event handling by
 - Tivoli NetView
 - Tivoli Security Information and Event Manager

- **Defensive filtering**
 - Installed through ipsec command
 - Manually (by human being) or through automation (via external security event manager)
For more information ...

<table>
<thead>
<tr>
<th>URL</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.twitter.com/IBM_CommsServer</td>
<td>IBM Communications Server Twitter Feed</td>
</tr>
<tr>
<td>http://www.facebook.com/IBMCommsServer</td>
<td>IBM Communications Server Facebook Fan Page</td>
</tr>
<tr>
<td>http://www.ibm.com/systems/z/</td>
<td>IBM System z in general</td>
</tr>
<tr>
<td>http://www.ibm.com/systems/z/hardware/networking/</td>
<td>IBM Mainframe System z networking</td>
</tr>
<tr>
<td>http://www.ibm.com/software/network/commsserver/zos/</td>
<td>IBM z/OS Communications Server</td>
</tr>
<tr>
<td>http://www.ibm.com/software/network/ccl/</td>
<td>IBM Communication Controller for Linux on System z</td>
</tr>
<tr>
<td>http://www.redbooks.ibm.com</td>
<td>ITSO Redbooks</td>
</tr>
<tr>
<td>http://www.ibm.com/software/network/commsserver/zos/support/</td>
<td>IBM z/OS Communications Server technical Support – including TechNotes from service</td>
</tr>
<tr>
<td>http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs</td>
<td>Technical support documentation from Washington Systems Center (techdocs, flashes, presentations, white papers, etc.)</td>
</tr>
<tr>
<td>http://www.rfc-editor.org/rfcsearch.html</td>
<td>Request For Comments (RFC)</td>
</tr>
<tr>
<td>http://www.ibm.com/systems/z/os/zos/bkserv/</td>
<td>IBM z/OS Internet library – PDF files of all z/OS manuals including Communications Server</td>
</tr>
</tbody>
</table>