Assembler Language
"Boot Camp"
Part 5 - Decimal and Logical Instructions
SHARE 117 in Orlando
Session 9214
August 11, 2011
Introduction

Who are we?

- John Ehrman, IBM Software Group
- Dan Greiner, IBM Systems & Technology Group
Introduction

Who are you?

- An applications programmer who needs to write something in mainframe assembler?
- An applications programmer who wants to understand z/Architecture so as to better understand how HLL programs work?
- A manager who needs to have a general understanding of assembler?

Our goal is to provide for professionals an introduction to the z/Architecture assembler language
Introduction

These sessions are based on notes from a course in assembler language at Northern Illinois University.

The notes are in turn based on the textbook, Assembler Language with ASSIST and ASSIST/I by Ross A Overbeek and W E Singletary, Fourth Edition, published by Macmillan.
Introduction

The original ASSIST (Assembler System for Student Instruction and Systems Teaching) was written by John Mashey at Penn State University.

ASSIST/I, the PC version of ASSIST, was written by Bob Baker, Terry Disz and John McCharen at Northern Illinois University.
Introduction

Both ASSIST and ASSIST/I are in the public domain, and are compatible with the System/370 architecture of about 1975 (fine for beginners)

Everything we discuss here works the same in z/Architecture

Both ASSIST and ASSIST/I are available at http://www.kcats.org/assist
Introduction

ASSIST-V is also available now, at http://www.kcats.org/assist-v

Other materials described in these sessions can be found at the same site, at http://www.kcats.org/share

Please keep in mind that ASSIST, ASSIST/I, and ASSIST-V are not supported by Penn State, NIU, or any of us
Other references used in the course at NIU:

- Principles of Operation (PoO)
- System/370 Reference Summary
- High Level Assembler Language Reference

Access to PoO and HLASM Ref is normally online at the IBM publications web site

Students use the S/370 "green card" booklet all the time, including during examinations (SA22-7209)
Our Agenda for the Week

- Assembler Boot Camp (ABC) Part 1: Numbers and Basic Arithmetic (Monday - 9:30 a.m.)

- ABC Part 2: Instructions and Addressing (Monday - 1:30 p.m.)

- ABC Part 3: Assembly and Execution; Branching (Tuesday - 9:30 a.m.)

- ABC Lab 1: Hands-On Assembler Lab Using ASSIST/I (Tuesday - 6:00 p.m.)
Our Agenda for the Week

- ABC Part 4: Program Structures; Arithmetic (Wednesday - 9:30 a.m.)

- ABC Lab 2: Hands-On Assembler Lab Using ASSIST/I (Wednesday - 6:00 p.m.)

- ABC Part 5: Decimal and Logical Instructions (Thursday - 9:30 a.m.)
Agenda for this Session

- The SI and SS Instruction Formats
- Decimal Arithmetic
- Instructions for Logical Operations
- Wrap Up
The SI and SS Instruction Formats
SI Instructions

- This format encodes the second operand as an "immediate" data byte within the instruction.

- The symbolic instruction format is
 \[\text{label} \quad \text{mnemonic} \quad \text{address}, \text{byte} \]

- The encoded form of an SI instruction is
 \[h_{OP} h_{OP} h_{I2} h_{I2} h_{B1} h_{D1} h_{D1} h_{D1} \]
SI Instructions

MOVE IMMEDIATE is our first SI instruction

\[
\text{label} \quad \text{MVI} \quad D_1(B_1),I_2
\]

Stores a copy of the immediate byte, \(I_2\), at the memory location given by \(D_1(B_1)\)
SI Instructions

The second operand can be specified as a decimal number or as any one-byte value valid in DC; these are equivalent forms:

- Decimal: 91
- Hexadecimal: X'5B'
- Binary: B'01011011'
- Character: C'$'

For example, to place a single blank at PLINE

```
MVI PLINE,C'$'
```
SI Instructions

The COMPARE LOGICAL IMMEDIATE instruction compares the byte in memory to the immediate data byte as unsigned binary numbers.

\[\text{label CLI } D_1(B_1),I_2 \]

CLI sets the condition code in the same way as other compare instructions.
The following code sample scans an 80-byte data area and replaces zeros with blanks

```
LA    4,CARD     Start scan here
LA    3,80       and scan 80 bytes
SCAN   CLI   0(4),C'0'  Look for char zero
       BNE   BUMP       Branch if not zero
       MVI   0(4),C' '  Change to blank
*
BUMP   LA    4,1(,4)  Move to next byte
BCT    3,SCAN      Continue for 80
...  
CARD   DS    CL80
```
SS Instructions

In this format, which occupies 6 bytes, both operands reference memory locations, and there is either one 256-byte-max length field or two 16-byte-max length fields.

The symbolic instruction format is either

\[
\text{label \ mnemonic \ addr}_1(\text{len}),\text{addr}_2 \quad \text{or} \quad \text{label \ mnemonic \ addr}_1(\text{len}_1),\text{addr}_2(\text{len}_2)
\]
SS Instructions

- Each SS instruction is defined to have one of these formats; we will see only the first for now.

- The encoded form of an SS instruction is

 \[h_{OP} h_{OP} h_L h_L \quad h_{B1} h_{D1} h_{D1} h_{D1} \quad h_{B2} h_{D2} h_{D2} h_{D2} \]

 or

 \[h_{OP} h_{OP} h_{L1} h_{L2} h_{B1} h_{D1} h_{D1} h_{D1} \quad h_{B2} h_{D2} h_{D2} h_{D2} \]

- \(h_L h_L \) and \(h_{L1} h_{L2} \) are referred to as the encoded length.
SS Instructions

Very Important: the encoded length is one less than the symbolic length (which is also the effective length); it is also referred to as the "length code"

Thus, in the first format, 1 to 256 bytes may be specified but 0 to 255 is encoded

An explicit length of 0 or 1 results in an encoded length of 0, so the effective length is 1
SS Instructions

- MOVE CHARACTERS is our first SS instruction

\[
\text{label \ MVC \ D}_1(L,B_1),D_2(B_2)
\]

Copies from 1 to 256 bytes from the second operand location to the first
SS Instructions

For example, to copy 8 bytes from the location addressed by register 1 to 14 bytes beyond the location addressed by register 12

Symbolic: MVC 14(8,12),0(1)
Encoded: D207 C00E 1000

Note the encoded length byte of 07!
SS Instructions

Implicit addresses may be used, of course, and with or without an explicit length

\[
\text{MVC FIELD1(15),FIELD2} \\
\text{MVC FIELD1,FIELD2}
\]

Both generate the same object code if \text{FIELD1} (the first operand) has a "length attribute" of 15, as in

\[
\text{FIELD1 DS CL15}
\]
SS Instructions

- Any explicit length will take precedence over the implicit length derived from the length attribute.

- So, in the previous example the following instruction will move only 8 bytes, even though FIELD1 has a length attribute of 15.

 `MVC FIELD1(8),FIELD2`

- Implicit lengths change automatically at reassembly when data lengths change.
SS Instructions

- The effect of MVC is to replace L bytes beginning at the first operand location with a copy of the L bytes beginning at the second operand location.

- The target is altered, one byte at a time, starting on the "left" (the beginning, or low, address).
SS Instructions

- This means that the fields can overlap with predictable results, and here is an historically important example.

- There is often a "print buffer" in which output lines are constructed, and after printing a line, the buffer should be cleared to blanks. The following example assumes that PLINE has a length attribute of 133, as it would if it was defined as

 PLINE DS CL133
SS Instructions

- So, we would normally clear the buffer by copying a string of blanks to it

 \[
 \text{MVC PLINE,} = \text{CL133' '}
 \]

- But by using the overlap, we can "save" 129 bytes

 \[
 \text{MVI PLINE,C'} '
 \]

 \[
 \text{MVC PLINE+1(132), PLINE}
 \]
Suppose we have

FIELD DC C'123456'

What is FIELD after

MVC FIELD+2(4),FIELD

C'121212'
SS Instructions

Another SS instruction which uses the first length format is COMPARE LOGICAL

\[
\text{label} \quad \text{CLC} \quad D_1(L,B_1),D_2(B_2)
\]

As with all compares, this just sets the condition code

The operation stops when the first unequal bytes are compared
Decimal Arithmetic

In Which We Switch to Counting on Our Fingers or Toes Instead of Our Thumbs
Thus far, the computations we've done have been with binary data.

This is not always satisfactory, especially when financial calculations are required.

For example, decimal percentages are inaccurate in binary (try long division on $1/10_{10} = 1/1010_2 = .000110011\ldots$).

This (infinite repetition) annoys auditors.
Decimal Data

- The solution is to use computers with decimal data types and instructions

- There are two decimal data formats
 - Zoned Decimal - associated with I/O operations
 - Packed Decimal - used for decimal arithmetic
A zoned decimal number is a sequence of bytes in which each byte has
1. a decimal digit 0-9 in the right digit and
2. a zone digit (hex F) in the left digit, except that the rightmost zone is the sign
Decimal Data

That is, a zoned decimal number has the format

\[ZdZdZd\ldots sd \] where

- \(Z \) is the zone and should be hex digit F
- \(d \) is a decimal digit 0-9
- \(s \) is the sign
 - C, A, F, or E means + (C is preferred)
 - D or B means - (D is preferred)

An example is \(\text{F1F2C3} \), for +123
A zoned number is very close to the EBCDIC representation of its value, except that the rightmost byte has a sign, so doesn't print as a number.

So our zoned +123 prints as 12c.
Decimal Data

- A packed decimal number has the zones removed, and in the rightmost byte the sign is switched with its digit; that is,
 \[\text{ddddd...ds} \]

- Note that there is always an odd number of digit positions in a packed decimal number

- The assembler can generate data of types Z (zoned) and P (packed)
Decimal Data

label DC mZLn'z'
- DC Z '+123' = F1F2C3
- DC ZL3'−1.2' = F0F1D2

label DC mPLn'p'
- DC P '+123' = 123C
- DC 2P'−1.2' = 012D012D
- DC PL2'1234' = 234C (!)

The decimal point is not assembled
The PACK and UNPK Instructions

Both of these are SS instructions of the second type

That is, each operand has a four-bit length field which will accommodate a length code of 0–15

So the effective lengths are 1–16 bytes
The PACK and UNPK Instructions

- Use the PACK instruction to convert a number from zoned decimal to packed decimal

- Use the UNPK instruction to convert a number from packed decimal to zoned decimal
The PACK Instruction

```
label   PACK   D₁(L₁,B₁),D₂(L₂,B₂)
```

The rightmost byte of the second operand is placed in the rightmost byte of the first operand, with zone (sign) and numeric digits reversed.

The remaining numeric digits from operand 2 are moved to operand 1, right to left, filling with zeros or ignoring extra digits.
The PACK Instruction

- PACK operates as follows when converting a 5-digit zoned number to 5 packed digits:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|}
D_5 & D_4 & D_3 & D_2 & D_1 & S & <\leftarrow & ZD_5 & ZD_4 & ZD_3 & ZD_2 & SD_1
\end{array}
\]

where each 'Z' is a zone F.

- PACK B(1), B(1) exchanges a byte's digits.
The PACK Instruction

PACK \(P(3), Z(4) \)

\[P(3) \leftarrow Z(4) \]

Before: ?? ?? ?? F5 F4 F3 D2
After: 05 43 2D F5 F4 F3 D2

PACK \(P(2), Z(4) \)

\[P(2) \leftarrow Z(4) \]

Before: ?? ?? F5 F4 F3 C2
After: 43 2C F5 F4 F3 C2
The UNPK Instruction

- **label** UNPK $D_1(L_1,B_1),D_2(L_2,B_2)$
 The rightmost byte of the second operand is placed in the rightmost byte of the first operand, with zone (sign) and numeric digits reversed

The remaining numeric digits from operand 2 are placed in the numeric digits of operand 1, and the zone digits of all but the rightmost byte of operand 1 are set to F, filling with X'F0' or ignoring extra digits
The **UNPK Instruction**

- UNPK operates as follows when converting a 5-digit packed number to 5 zoned digits:

 \[\begin{array}{c|c|c|c|c|c} \hline
 ZD_5 & ZD_4 & ZD_3 & ZD_2 & SD_1 & \leftarrow \ D_5D_4 \bigg| D_3D_2 \bigg| D_1S \bigg| \\
 \hline
 \end{array} \]

 where each 'Z' is a zone F

- UNPK B(1),B(1) exchanges a byte's digits
The UNPK Instruction

UNPK Z(5), P(3)

Before: ?? ?? ?? ?? ?? 12 34 5C
After: F1 F2 F3 F4 C5 12 34 5C

UNPK Z(4), P(2)

Before: ?? ?? ?? ?? ?? 12 3F
After: F0 F1 F2 F3 12 3F
The CVB and CVD Instructions

- These two RX instructions provide conversions between packed decimal and binary formats.

- Used with PACK and UNPK, we can now convert between zoned and binary formats.
The CVB Instruction

- **label** CVB \(R_1, D_2(X_2, B_2) \)
 - Causes the contents of \(R_1 \) to be replaced by the binary representation of the packed decimal number in the doubleword (on a doubleword boundary) addressed by operand 2

- A data exception (0007) occurs if operand 2 is not a valid packed decimal number

- A fixed-point divide exception (0009) occurs if the result is too large to fit in a 32-bit word
The CVB Instruction

For example:

\begin{verbatim}
 CVB 3, Z
 . . .
 Z DS 0D
 DC PL8 ' -2 '
\end{verbatim}

will convert 00000000000000002D at location Z (data type D has doubleword alignment) to FFFFFFFFFF in register 3.
The CVD Instruction

- **label** CVD \(R_1, D_2(X_2, B_2) \)
 - Causes the contents of the doubleword (on a doubleword boundary) addressed by operand 2 to be replaced by the packed decimal representation of the binary number in \(R_1 \)

- Note that the "data movement" is left to right (like ST)

- The exceptions which apply to CVB (0007 and 0009) do not apply to CVD
Numeric Data Conversion Summary

<table>
<thead>
<tr>
<th>Data in</th>
<th>PACK</th>
<th>Data in</th>
<th>CVB</th>
<th>Data in</th>
</tr>
</thead>
<tbody>
<tr>
<td>character</td>
<td>--></td>
<td>packed decimal</td>
<td>--></td>
<td>binary</td>
</tr>
<tr>
<td>format</td>
<td></td>
<td>format</td>
<td></td>
<td>format</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform packed arithmetic</td>
<td></td>
<td>Perform binary arithmetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results in UNPK</td>
<td>Results in CVD</td>
<td>Results in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zoned</td>
<td>packed decimal</td>
<td>binary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>format</td>
<td>format</td>
<td>format</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Getting results in nice character format, instead of just zoned, requires use of EDIT instruction.
The box on the previous slide encloses the only subject which remains to be covered: decimal arithmetic

There isn't enough time to cover the decimal arithmetic instructions in detail, but they all have the following characteristics
Decimal Arithmetic

- Two memory operands, each with its own length
- Condition code is set similar to binary equivalents
- In almost all cases (except operand 1 in ZAP), the operands must be valid packed decimal numbers, else an interrupt 0007 occurs (very popular!)
Decimal Arithmetic

Here are the available instructions

- AP - ADD DECIMAL
- CP - COMPARE DECIMAL
- DP - DIVIDE DECIMAL
- MP - MULTIPLY DECIMAL
- SRP - SHIFT AND ROUND DECIMAL
- SP - SUBTRACT DECIMAL
- ZAP - ZERO AND ADD DECIMAL

With the possible exception of SRP, these are easy to understand - see PoO
Instructions for Logical Operations

To Which We Must Say Yes or No
The Logical Operations

Consider the four possible combinations of 2 bits, a and b

\[
\begin{array}{c|ccc}
\text{a} & 0 & 0 & 1 & 1 \\
\text{b} & 0 & 1 & 0 & 1 \\
\end{array}
\]

These lead to the following binary relations

\[
\begin{array}{c|ccc}
\text{a AND b} & 0 & 0 & 0 & 1 \\
\text{a OR b} & 0 & 1 & 1 & 1 \\
\text{a XOR b} & 0 & 1 & 1 & 0 \\
\end{array}
\]
And these relations lead to the following twelve new instructions:

<table>
<thead>
<tr>
<th>Operation</th>
<th>RR Format</th>
<th>RX Format</th>
<th>SI Format</th>
<th>SS Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>NR</td>
<td>N</td>
<td>NI</td>
<td>NC</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
<td>O</td>
<td>OI</td>
<td>OC</td>
</tr>
<tr>
<td>XOR</td>
<td>XR</td>
<td>X</td>
<td>XI</td>
<td>XC</td>
</tr>
</tbody>
</table>
The Logical Operations

<table>
<thead>
<tr>
<th>anything with</th>
<th>itself</th>
<th>zero</th>
<th>one</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>It remains unchanged</td>
<td>It is changed to zero</td>
<td>It remains unchanged</td>
</tr>
<tr>
<td>OR</td>
<td>It remains unchanged</td>
<td>It remains unchanged</td>
<td>It is changed to one</td>
</tr>
<tr>
<td>XOR</td>
<td>It is changed to zero</td>
<td>It remains unchanged</td>
<td>It is inverted</td>
</tr>
</tbody>
</table>
The Logical Operations

All twelve instructions set the condition code:

- 0 - Result is zero
- 1 - Result is not zero
The Logical Operations

As an example, to change a zoned decimal number to EBCDIC, we have to force the rightmost zone to be F instead of a sign.

So, if ZNUM is a three-byte zoned number, the following instruction will make it printable (why?):

```
OI    ZNUM+2,X'F0'
...ZNUM DC    Z'123' (X'F1F2C3')
```
The Logical Operations

- To zero a register, we normally use SR, but a faster way to zero R5 (for example) is
 \[\text{XR} \ 5, 5\]

- To set bit 0 of BYTE to 1 while leaving the other bits unchanged
 \[\text{OI} \ \text{BYTE},\text{'10000000'}\]

- To set bit 0 of BYTE to 0 while leaving the other bits unchanged
 \[\text{NI} \ \text{BYTE},\text{'01111111'}\]
The Logical Operations

- To invert bit 0 of BYTE to 1 while leaving the other bits unchanged
 \[\text{XI } \text{BYTE,B}'10000000' \]

- To round the address in R7 down to the previous fullword boundary
 \[\text{N } 7,=X'FFFFFFFC' \]

- To round it up to the next fullword boundary
 \[\text{LA } 7,3(,7) \]
 \[\text{N } 7,=X'FFFFFFFC' \]
To exchange the contents of two registers without using any temporary space, use XR three times, alternating registers

XR 2,3 Exchange
XR 3,2 contents of
XR 2,3 registers 2 and 3

Memory contents can be exchanged similarly by using XC instead of XR
The Logical Operations

How does that exclusive-OR trick work?

XC A,B
Original A: 1101 0001 (X'D1', EBCDIC "J")
Original B: 1100 0101 (X'C5', EBCDIC "E")
New A: 0001 0100

XC B,A
Original B: 1100 0101
New A: 0001 0100
New B: 1101 0001 (X'D1', EBCDIC "J")

XC A,B
New A: 0001 0100
New B: 1101 0001
New-New A: 1100 0101 (X'C5', EBCDIC "E")
The TEST UNDER MASK Instruction

- **label** TM \(D_1(B_1), I_2 \)

- TM sets the condition code to reflect the value of the tested bits (those corresponding to 1-bits in the \(I_2 \) operand)
 - 0 - Selected bits all zeros, or the \(I_2 \) mask was zero
 - 1 - Selected bits mixed zeros and ones
 - 2 - --- (not set)
 - 3 - Selected bits all ones
The TEST UNDER MASK Instruction

- Note that after TM, the extended branch mnemonics are interpreted as:
 - BZ - Branch if tested bits are Zeros, or mask is zero
 - BM - Branch if tested bits are Mixed zeros and ones
 - BO - Branch if tested bits are Ones
The TEST UNDER MASK Instruction

- To determine if the first bit of BYTE is one
 \[\text{TM} \quad \text{BYTE}, \text{B}'10000000' \]

- To check if BYTE is binary zero (X'00') or blank (X'40')
 \[\text{TM} \quad \text{BYTE}, \text{B}'10111111' \]
 \[\text{BZ} \quad \text{BLKZRO} \]
Wrap Up

In Which We Learn That Only a Small Fraction of the Assembler Language Has Been Covered
Summary

- Five hours is just a start, but a good one

- The one-semester course at NIU has
 - More than 35 hours of lecture
 - A dozen programs (almost one each week)
 - Three exams

- The second course is Data Structures, and all program assignments are in assembler
 - This is good reinforcement
 - Uses HLASM rather than Assist
What Wasn't Covered

- Shift instructions, logical and arithmetic

- Frequently used, but difficult instructions
 - Edit (ED) and Edit and Mark (EDMK)
 - Execute (EX)
 - Translate (TR) and Translate and Test (TRT)

- Floating point instructions
 - Hexadecimal (the original)
 - Binary (IEEE standard, recently added)
 - Decimal (recently added)
What Wasn't Covered

- Many general instructions added over the past twenty-five years, such as
 - Relative BRANCH instructions (no base register needed)
 - Instructions which reference a halfword (immediate) operand within the instruction
 - Instructions to save and set the addressing mode (24-bit or 31-bit)
 - And, most recently, the z/Architecture instructions to deal with 64-bit registers and addresses, and long displacements
What Wasn't Covered

- Privileged instructions
- The macro language, including conditional assembly (also available outside macros)
- The USING instruction, extended to allow implicit addresses everywhere
- External subroutines and register save area linkage conventions
Nevertheless...

- You now have a basic understanding of z/Architecture
- You have seen what comprises a program written in assembler language
- And you are ready, if you wish, to begin writing programs and go on to the next step
- So, ...
Congratulations!