Workload Thinking for zEnterprise
Fit for Purpose!

Mike Kott
IBM
SWG WW z Client Architect Community Leader
Los Angeles, CA
mkott@us.ibm.com

August 10, 2011
Session Number: 08937
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

<table>
<thead>
<tr>
<th>Trademark</th>
<th>Trademark</th>
<th>Trademark</th>
<th>Trademark</th>
<th>Trademark</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX*</td>
<td>FICON*</td>
<td>IBM*</td>
<td>POWER*</td>
<td>VSE/ESA</td>
</tr>
<tr>
<td>BladeCenter*</td>
<td>GDPS*</td>
<td>IBM eServer</td>
<td>POWER7*</td>
<td>z/OS*</td>
</tr>
<tr>
<td>CICS*</td>
<td>HiperSockets</td>
<td>IBM (logo)*</td>
<td>PR/SM</td>
<td>WebSphere*</td>
</tr>
<tr>
<td>DataPower*</td>
<td>IBM*</td>
<td>IMS</td>
<td>System x*</td>
<td>zSeries*</td>
</tr>
<tr>
<td>DB2*</td>
<td>IBM eServer</td>
<td>Parallel Sysplex*</td>
<td>System z*</td>
<td>z9*</td>
</tr>
<tr>
<td>DFSMS</td>
<td>IBM (logo)*</td>
<td>POWER*</td>
<td>System z9*</td>
<td>z10 BC</td>
</tr>
<tr>
<td>DS8000*</td>
<td>IMS</td>
<td>POWER7*</td>
<td>System z10*</td>
<td>z10 EC</td>
</tr>
<tr>
<td>ESCON*</td>
<td>Parallel Sysplex*</td>
<td></td>
<td>System z10 Business Class</td>
<td>zEnterprise</td>
</tr>
</tbody>
</table>

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license there from.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

InfiniBand is a trademark and service mark of the InfiniBand Trade Association.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

iTIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product and services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
Agenda

- The Right Fit, Using the Right Tool
- TCA versus TCO
- Fit For Purpose – Many Factors to Consider
- Workloads & Platform Requirements
- zEnterprise Best Fit Workloads
- Recommended Next Steps
Business processes and the applications that support them are becoming more service oriented, modular in their construction, and integrated.

The components of these services are implemented on a variety of architectures and hosted on heterogeneous IT infrastructures.

Approaches to managing these infrastructures along the lines of platform architecture boundaries cannot optimize: alignment of IT with business objectives; responsiveness to change; resource utilization; business resiliency; or overall cost of ownership.

Customers need better approach: The ability to manage the IT infrastructure and Business Application as an integrated whole.
Platform Selection Is All about Using the Right Tool for the Right Job (Fit for Purpose)
All of these “tools” can very quickly move a person from one place to another. But, which one is the right tool to move one person? One hundred people? Four hundred people?
Purpose Built Appliances – Integrating with zEnterprise

- Guardium Database Protection Appliance
- IBM Workload Deployer
- IBM WebSphere Cast Iron Appliance
- DB2 for z/OS
- IBM WebSphere DataPower XI50z
- IBM Smart Analytics Optimizer
Purpose Built & Hybrid Computing

- **Purpose-Built Computing** = certain kinds of workloads and applications are more appropriate to run on certain kinds of hardware

- **Now Hybrid Computing** = certain kinds of systems can work very well together for enterprise solutions
How Do Companies Typically Select a Platform for Their Applications?

• Their first question is:
 • “Will it run there?”

• Their second question is:
 • “How much does the hardware cost?”

• They’re done!

• But this is just a TCA view…Is that all they should be thinking about?
What Did We Miss? Nonfunctional Requirements

• Shouldn’t they have asked questions about:
 • Scalability? Availability? Backup? Site disaster recovery?
 • Security? Reliability? Data integrity? Maintainability?
 • Volumes and service levels?
 • Floor space? Power? Cooling?
 • Integration? Performance and value of data proximity?

• Questions that lead to a more complete TCO view must be considered…
TCA versus TCO

- TCA is basically the purchase price
- TCO is the cost associated with the item purchased, the use of it, and the maintenance of it
- TCO deals with costs over time whereas TCA deals with upfront costs only

Cost categories
- Hardware, Software, People, Network, Storage, Facilities

Environment
- Production, Development, QA, Test, Disaster Recovery

Time
- Growth, Refresh (or upgrades), Events

Quality of Services
- Availability, Resiliency, Security, Manageability, Scalability, Usability, Maintainability, Extensibility
Platform Choice: Fit for Purpose

Many factors influence platform selection, making it difficult to present a simple selection matrix.

Some factors are specific to each business; others are common to all and can be generalized.
What Quality of Service Do Your Applications Require?

- What service level agreements are in place?
- What level security does the specific application implementation require?
- What response times are required?
- How much network latency can be tolerated?
- Is 24 x 7 x 365 availability required, or do systems just need to be up during business hours?
- What are business hours?
- Is the operation local or global?
- How much planned and unplanned down time can your organization tolerate?
- How much “head room” is needed for scaling, and how does related traffic or demand vary?
- Does the solution require encryption at all levels?
Choosing the Right System and O/S

Hardware Considerations

Intel UNIX System z

- Quality of service required +

- Scale of application +

- Data Intensive +

UNIX/RISC Intel System z

+ Numerically intensive -

Software/OS Considerations

Linux on System z z/OS

AIX in zBX

Linux on zBX

- Quality of service required +

+ Speed of deployment -

+ Degree of portability required -
High Level Workload Definition

- **Workloads** are a combination of:
 - **Application function**: What it does and how it does it
 - **Data structure**: Data residency, topology, access model
 - **Usage pattern**: Utilization profile over time, mix of use cases
 - **Service level**: Non-functional requirements
 - **Integration**: Interaction between application & data components

- The workload requirements will create varying demands when determining server alternatives
Workload Architectures

Shared data and work queues
- e.g. Transaction Processing and Database (OLTP)

Parallel data structures
- e.g. Analytics and High Performance

Highly threaded
- e.g. Business Applications

Small discrete applications
- e.g. Web, Collaboration, Infrastructure

Mixed

Internet Banking Front-End
- (x86, Linux, Windows)

Back-Office Banking + Internet Banking Middle-Tier
- (x86, Power, AIX, Linux, Windows)

Core Banking System + General Ledger
- (System z, Power, z/OS, Linux for System z, AIX)

Data Warehouse
Workload Characteristics and Platform Requirements

<table>
<thead>
<tr>
<th>Examples</th>
<th>Characteristics</th>
<th>Platform Considerations</th>
</tr>
</thead>
</table>
| - OLTP databases
- N-Tier transaction processing | - Thread interaction raises contention & coherence delays
- Coherency traffic increases memory & cache bus utilization
- High context switch rates | - Scale on robust SMP
- Cluster technology dependent
- Large shared caches and wide busses
- Fewer, bigger threads |
| - Structured BI
- XML parsing
- HPC applications | - Low thread interaction
- High memory bandwidth
- Low context switch rates | - Scale well on clusters
- Large private caches
- High thread count
- High memory and I/O bandwidth
- Often on dedicated machines |
| - Web app servers
- SAP app servers | - Lots of software threads
- Modest thread interaction | - Scale on large SMP
Can scale on clusters
High thread count
Large number of memory busses
Large private caches |
| - HTTP, FTP, DNS
- File and print
- Small end user apps | - Does not pressure any resource
- Requires minimal memory footprint
- Inefficient on dedicated resources
- No shared data | - Scale on almost any hardware
- Ripe for virtualization
- Can exist on low cost hardware |
| - z/OS and IBM i
- Hypervisors with virtual guests, WPAR | - Different SLAs
- Varying sizes and number of threads
- May be N-Tier or independent
- Variable context switch rates | - Scale on robust SMP
- High internal bandwidth
- Thread speed and number is workload dependent
- Large, close caches
- High memory bandwidth |
Workloads we see every day that match these characteristics

What is a workload?
The relationship between a group applications and/or systems related across several business functions to satisfy one or more business processes.

<table>
<thead>
<tr>
<th>Banking</th>
<th>Insurance</th>
<th>Retail</th>
<th>Healthcare</th>
<th>Public Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Banking</td>
<td>Internet Rate Quotes</td>
<td>On-line Catalog</td>
<td>Patient Care Systems</td>
<td>Electronic IRS</td>
</tr>
<tr>
<td>Wholesale Banking – Payments</td>
<td>Policy Sales & Management (e.g. Life, Annuity, Auto)</td>
<td>Supply Chain Management</td>
<td>On-line Claims Submission & Payments</td>
<td>Web-based Social Security</td>
</tr>
<tr>
<td>Customer Care & Insight</td>
<td>Claims Processing</td>
<td>Customer Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fit for Purpose Virtualization

IBM zEnterprise System Provisioning with IBM Workload Deployer...

IBM Workload Deployer Appliance dispenses WebSphere Application Server Hypervisor Edition Servers into a set of other machines.

Figure 9 IBM zEnterprise virtualization: real business value for today’s heterogeneous applications
Fit for Purpose: The software behind Watson can run on a variety of hardware platforms but in this instance has been deployed through an IBM POWER7 platform, which is especially well-suited to Watson. The server is optimized to handle the massive number of tasks across 2,880 high performance cores. The combination of massive parallelism, on-chip bandwidth, and memory capacity, combined with the ability to optimize application performance, makes POWER7 ideal for running complex analytics workloads.
In July 2010, the IBM zEnterprise system introduced the first hybrid computing technology enabling clients to:

- Optimize the deployment of workloads by utilizing the best fit technology and operating environment
- Deploy enterprise private clouds that are ready for mission critical applications
- Establish a common management infrastructure for both mainframe and distributed-systems
- Take actionable insight based upon real time analytics
IBM zEnterprise System – Best-in-class systems and software technologies

A “System of Systems” that unifies IT for predictable service delivery

IBM zEnterprise 196 (z196)

- Optimized to host large-scale database, transaction, and mission-critical applications
- The most efficient platform for large-scale Linux® consolidation
- Capable of massive scale-up
- New easy-to-use z/OS® V1.12

zEnterprise Unified Resource Manager

- Unifies management of resources, extending IBM System z® qualities of service end-to-end across workloads
- Provides platform, hardware and workload management

zEnterprise BladeCenter Extension (zBX)

- Selected IBM POWER7® blades and IBM System x® blades for deploying applications in a multi-tier architecture
- High-performance optimizers and appliances to accelerate time to insight and reduce cost
- Dedicated high-performance private network
What’s New: Delivering innovation and value at all levels

Central Processing Complex
- New I/O subsystem for improved system connectivity
- Security enhancements
- Clustering improvements
- New IBM zEnterprise 114 (z114) for mid-sized businesses

zEnterprise Unified Resource Manager
- Delivering APIs to enable management of Unified Resource Manager from external tools

zEnterprise BladeCenter Extension (zBX)
- Introduction of select System x blades into zBX
- Support for Linux & in the future Windows to broaden application support and integration.

1 All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represents goals and objectives only.
Introducing the IBM zEnterprise 114
Bringing hybrid computing to a broader set of businesses

IBM zEnterprise 114 (z114)
The next generation midrange mainframe delivering extensive growth options, flexibility, efficiency and improved price performance.

zEnterprise Unified Resource Manager
Centralized management of heterogeneous resources for simplification and resiliency

zEnterprise BladeCenter Extension (zBX)
Integrated IBM POWER7 blades, IBM System x blades, and High-performance optimizers and appliances

New!
zEnterprise technology designed for small and medium-sized businesses

The Value Begins At the Heart with the z114

zEnterprise 114 (z114)

2 Models: M05 & M10

- **New technology in a new package**
 - Modular 2 drawer design for lower cost of entry
 - Granularity for right-sizing your system
 - Additional Scale for consolidation and growth
 - Improved data center efficiency
 - Same Qualities of Service as the z196
 - Hybrid enabled to drive workload expansion and integration

- **Improved Platform Economics**
 - New Software Curve
 - Lower Hardware Maintenance
 - Lower specialty engine and memory prices
 - Upgradeability for investment protection

1. Improvement for traditional z/OS workloads
2. Improvement in CPU intensive workloads via compiler enhancements

Up to 18% Improvement for traditional z/OS workloads

Up to an ADDITIONAL 25% Improvement in CPU intensive workloads via compiler enhancements

Up to 12% Total capacity improvement

Scales From 26 - 3100 MIPS

130 available capacity settings

1-10 configurable cores for client use includes CPs, IFL, zIIP, zAAP, and ICFs

0-2 IBM provided spare cores

256 GB RAIM fault tolerant memory

Fully Upgradeable from the IBM System z10 Business Class™ (z10 BC) & IBM System z9® Business Class (z9 BC); and to the z196 M15

*Relative capacity and performance compares at equal software levels as measured by IBM Large System Performance Reference (LSPR) workloads using z/OS® 1.11, Results may vary

The z114 will exhibit up to 25% increase for CPU intensive workload as provided by multiple C/C++ compiler level improvements when going from z/OS 1.09 to z/OS 1.12*
Continuing to protect your investment with two generation upgrades

Full upgradeability within each server family

Temporary or permanent growth when you need it

z114 (M10) is upgradeable to the z196 (M15 Air cooled only)
Workload harmony with zEnterprise – a “right-fit” decision

Mixed Workloads
Updates to shared data and work queues

Highly Threaded Applications

Parallel Data Structures with Analytics

Server Consolidation

Small Discrete Application Instances

Mixed workloads updating shared data or queues

Highly threaded platform

Parallel data structures with analytics

Consolidation of discrete applications

Small discrete applications

Servers are usually optimized to one of the workload types but never all.

With zEnterprise, you have multiple systems operating in a secure, private network.
European Utility Company Using SAP

The Current: z10 + p595 AIX for SAP Central Instance and Application Servers, with DB2 for z/OS database, 60K bills per hour

Client Requirement
- Achieve 200K bills per hour

Hybrid Computing Benefits:
- Over 600% improvement in current configuration
- Hardware setup: implementation of zBX Power Blades in only 2 days
- Very good linear scalability either on scale-up for DB2 on z, or scale out on pBlades on zBX
- Low latency due to the dedicated IEDN network

Provide up-to-date technology
- z196+ p770
 ✓ Results: achieved 250K bills per hour
 ✓ 70+% improvement

Provide hybrid technology
- z196+ zBX
 ✓ Results: achieved 430K bills per hour
 ✓ 600+% improvement
What Makes the Best Fit Workload for System z

- Leverage classic strengths of the System z
 - High availability
 - High i/o bandwidth capabilities
 - Flexibility to run disparate workloads concurrently
 - Requirement for excellent disaster recovery capabilities
 - Security
- Shortening end to end path length for applications
 - Collocation of applications
 - Consolidation of applications from distributed servers
 - Reduction in network traffic
 - Simplification of support model
- Consolidation Effect
 - Power requirements
 - Software costs
 - People Costs
 - Real Estate
 - Workloads requiring EXTREME Flexibility
Best Fit Workloads for System z

- OLTP
- Database
- ERP
- Batch
- CRM
- Data Warehousing/Data Mart
- Applications requiring top end disaster recovery model
- Linux on z
 - WebSphere MQ Series
 - DB2 Connect
 - CICS Transaction Gateway, IMS Connect for Java
 - SAP
 - WebSphere Portal, Process Server and JAVA applications development and hosting
 - Lotus Notes, Sametime, Quickr, Connections
 - Network Infrastructure, FTP, NFS, DNS etc.,
 - Oracle Database
 - Virtualization and Security Services
 - BI Applications, Cognos, InfoSphere, SPSS, FileNet
What Makes a Good Fit Workload for System z

• Evaluate server choices
 • Correct application availability
 • Supporting applications
 • Total Cost of Ownership (TCO)
 • Politics within the organization.
 • Porting issues

• Shortening end to end path length for applications
 • Collocation of applications
 • Consolidation of applications from distributed servers
 • Reduction in network traffic
 • Simplification of support model

• Consolidation Effect
 • Power requirements
 • Software costs
 • People Costs
 • Real Estate
 • Workloads requiring EXTREME flexibility
Good Fit Workloads for System z

- Security
- Systems Management
- Networking
- Linux on z
 - UDB LUW
 - Informix, (IDS)
 - Apache web serving
 - SAMBA
 - TIM/TAM (LDAP Services)
 - TSM
 - Existing Linux Workloads on Distributed
What Makes A Best Fit Workload for Linux on System z?

- Leverage classic strengths of the System z
 - High availability
 - High i/o bandwidth capabilities
 - Flexibility to run disparate workloads concurrently
 - Requirement for excellent disaster recovery capabilities
 - Security

- Shortening end to end path length for applications
 - Co-location of applications
 - Consolidation of applications from distributed servers
 - Reduction in network traffic
 - Simplification of support model

- Consolidation Effect
 - Power requirements
 - Software costs
 - People Costs
 - Real Estate
 - Workloads requiring EXTREME Flexibility

“Do More with Less”
What are Linux users running on System z?

Surveys indicate customers use:
- Web Serving
- Web Application Serving
- Data Services
- Systems Development

Best Fit Workloads for Linux on System z:
- **Web Application Servers**: WebSphere Application Server
- **Email and collaboration**: Domino, Web 2.0
- **Data services**: Cognos, DB2, Oracle, Informix, Information Server, Information Builders WebFOCUS
- **Business critical ISV applications**: e.g., SAP
- **Development of WebSphere and Java applications**
- **Virtualization and security services**
- **Business connectors**: WebSphere MQSeries, DB2 Connect, CICS Transaction Gateway, IMS Connect for Java
- **Network Infrastructure**: FTP, NFS, DNS, etc., and Communications Server and Communications Controller for Linux, CommuniGate Pro (VoIP)
- **Applications requiring top end disaster recovery model**

Source: 2009 IBM Market Intelligence
Numerous Total Cost of Ownership Studies

IBM Will Work with You to Determine the Most Appropriate for You

- Eagle Study
- Scorpion Study
- RacezOS Study
- Rapid Workload Optimization Assessment
- IBM Migration Factory
- Server Optimization and Integration Services
Numerous Fit for Purpose Workshops

IBM Will Work with You to Determine the Most Appropriate for You

- 1 Day F4P Workshop Summary
- Multi-Day Detailed F4P Workshop
- F4P Strategy Services
Numerous Tools & Methodologies to Measure Workload Requirements

Radar charts
Business Value Assessment Tool

Spider charts

New Capabilities

Quality of Service

Increased Efficiency

Performance

ISV Support

Virtualization

Data Integration

Security

Time to Value

Skill

TCA

ESB Integration

Business Resiliency

Service Management

Power, cooling, floor space constraints

SAMPLE
Summary of Key Points

• Many factors influence platform selection – a simple matrix does not exist
• Local factors affect platform selection
• Infrastructure size matters
• Each deployment model has its place – virtualize or centralize where possible
• There is no single platform or middleware capacity metric
• Larger servers offer virtualization advantages
• Non-functional requirements are the significant element of platform selection
• Select platforms based upon workload requirements not middleware
• An enterprise wide view provides the best optimization opportunity
• The choice of cost and value elements, along with time horizon, can dictate which platform is considered the lowest cost
• Cost models have different purposes – use the right one for the job
Recommended Next Steps

• Measure real costs of your workloads - know the difference between TCA and TCO

• Conduct a Fit for Purpose Workshop to evaluate your critical workloads

• Select specific workload and conduct a TCO Study to define true cost of ownership and Fit for Purpose platforms
Additional Information

• Visit IBM Booth at the SHARE Technology Expo to see the zEnterprise in action

• zEnterprise information on Fit for Purpose, TCO Studies, etc. on www.ibm.com

 http://www-03.ibm.com/systems/z/hardware/zenterprise/index.html

• Contact your IBM Sales Rep, or contact me to get more information on Fit for Purpose, TCO, Workshops, Studies

 mkott@us.ibm.com