
Linux Performance
on IBM System z Enterprise

Christian Ehrhardt
IBM Research and Development Germany

11th August 2011
Session 10016

Agenda

• zEnterprise 196 design

• Linux performance comparison z196 and z10

• Compiler case study

0

1000

2000

3000

4000

5000

1997
G4

1998
G5

1999
G6

2000
z900

2003
z990

2005
z9 EC

2008
z10 EC

2010
z196

300
MHz

420
MHz

550
MHz

770
MHz

1.2
GHz

1.7
GHz

4.4
GHz

5.2
GHz

M
H

z

z196 Continues the Mainframe Heritage

z196 Water cooled – Under the covers
(Model M66/M80) front view

Internal
Batteries
(optional)

Power
Supplies

I/O Cards

Processor Books,
Memory, MBA and

HCA cards

 2 x Water
Cooling Units

InfiniBand I/O
Interconnects

Support
Elements

Flexible Service
Processor (FSP)

cage controller cards

I/O drawers

• CPU (core)

• cycle time

• pipeline, execution order

• branch prediction

• hardware vs. millicode

• Memory subsystem

• high speed buffers (caches)
• on chip, on book

• private, shared

• coherency required

• Buses
• number

• Bandwidth

• limits
• distance + speed of light

• space

Generic Hierarchy example

Memory

Shared Cache

Private
Cache

CPU

Private
Cache

CPU

Private
Cache

CPU…

z196 Processor Design Basics

z196 vs. z10 hardware comparison

• z10 EC

• CPU
• 4.4 Ghz

• Caches
• L1 private 64k instr, 128k data

• L1.5 private 3 MiB

• L2 shared 48 MiB / book

• book interconnect: star

• z196

• CPU
• 5.2 Ghz

• Out-of-Order execution

• Caches
• L1 private 64k instr, 128k data

• L2 private 1.5 MiB

• L3 shared 24 MiB / chip

• L4 shared 192 MiB / book

• book interconnect: star

Memory

L2 Cache

L1.5

CPU

L1.5

CPU

L1.5

CPU

…L1 L1L1

Memory

L4 Cache

L3 Cache L3 Cache…
L2

CPU 1

L2

CPU 4

L1 L1

L2

CPU 1

L2

CPU 4

L1 L1……

z196 PU core features I

• Super-scalar with six execution units
• 2 fixed point (integer), 2 load/store, 1 binary floating point,

1 decimal floating point

• Up to five instructions/operations executed per cycle
(vs. 2 in z10)
• Only the *fp units are mutually exclusive
• Cracking helps to utilize as much units as possible

• Up to three instructions decoded per cycle (vs. 2 in z10)

z196 PU core features II

• 211 complex instructions cracked into multiple
internal operations
• Allows simpler and optimized inner data flow
• Faster execution than a single complex op by the chance to

utilize multiple units
• 246 of the most complex z/Architecture instructions are

implemented via millicode

• Execution can occur out of (program) order

z196 New Instruction Set Architecture

• Re-compiled code gains further performance through 110+ new
instructions
• High-Word Facility (30 new instructions)

• Independent addressing to high word of 64-bit GPRs

• Interlocked-Access Facility (12 new instructions)
• Interlocked (atomic) load, value update and store operation in a single

instruction

• Load/Store-on-Condition Facility (6 new instructions)
• Load or store; conditionally executed based on condition code

• Distinct-Operands Facility (22 new instructions)
• Independent specification of result register

(different than either source register)

• Integer to/from Floating point converts (21 new instructions)

• Population-Count Facility (1 new instruction)
• Hardware implementation of bit counting ~5x faster

• Significant performance benefits for compute intensive applications through

• reordering, so that stalled instructions don't block following independent ones

• Mitigation of stalls due to result dependencies

• Mitigation of stalls due to storage access

• Increase the execution unit utilization

• Maintains good performance growth for traditional apps

z196 Out of Order (OOO) Value

L1 miss

Instrs

 1

 2

 3

 4

 5

Time

In-order core execution Out-of-order core execution

L1 miss

TimeExecution

Storage access

Agenda

• zEnterprise 196 design

• Linux performance comparison z196 and z10

• Compiler case study

z10 vs z196 comparison Environment

• Hardware
• z196: 2817-718 M49
• z10 : 2097-726 E26
• z9 : 2094-718 S18

• Linux distribution with recent kernel
• SLES11 SP1: 2.6.32.13
• Linux in LPAR
• Shared processors
• Other LPARs deactivated

Source: If applicable, describe source origin

File server benchmark description

• dbench 3
• Emulation of Netbench benchmark
• Generates file system load on the Linux VFS
• Does the same I/O calls like the smbd server in Samba

(without networking calls)
• Mixed file operations workload for each process: create,

write, read, append, delete
• Measures throughput of transferred data

• Configuration
• 2 GiB memory, mainly memory operations
• Scaling processors 1, 2, 4, 8, 16
• For each processor configuration scaling

processes 1, 4, 8, 12, 16, 20, 26, 32, 40

dbench

• dbench as scaling example improves on average by 40%

4 8 12 16 20 26 32 40
0

1000

2000

3000

4000

5000

6000

7000
dbench throughput [MB/s]

4 CPUs z10
8 CPUs z10
16 CPUs z10

4 CPUs z196
8 CPUs z196
16 CPUs z196

number of processes

1 4 8 12 16 20 26 32 40
0

500

1000

1500

2000

2500

3000

3500

dbench throughput [MB/s]

z9
z10

number of processes

z10 versus z9

• Improvement z10 versus z9
• Average improvement with 8 CPUs was 50%

2008

Java benchmark description

• Java server benchmark

• Evaluates the performance of server side Java

• Exercises
• Java Virtual Machine (JVM)
• Just-In-Time compiler (JIT)
• Garbage collection

• Multiple threads
• Simulates real-world applications including XML processing or floating point

operations

• Can be used to measure performance of CPUs, memory hierarchy and
scalability

• Configurations

• 8 processors, 2 GiB memory, 1 JVM

• 16 processors, 8 GiB memory, 4 JVMs

• Java Version 6 SR7

SpecJBB

• Business operation throughput improved by 45%
• 2 GiB, 8CPU, 1 JVM → +44%

• 8 GiB, 16 CPU, 4 JVM → + 45%

• Further Service Releases since that:
• Java Release SR8/9 (2010/11) added 2-4% (z196 toleration)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SLES11-SP1 results - 1 JVM

z10
z196

Number of Warehouses

T
hr

o
ug

hp
ut

SpecJBB

• In 2008 the message was +60%
• With full z10 exploitation it eventually

had up to +80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SLES10-SP2 results - 1 JVM

z9
z10

Number of Warehouses

T
hr

o
ug

hp
ut

2008

CPU-intensive benchmark suite

• Stressing a system's processor, memory subsystem and
compiler

• Workloads developed from real user applications
• Exercising integer and floating point in C, C++, and Fortran

programs
• Can be used to evaluate compile options
• Can be used to optimize the compiler's code generation for

a given target system

• Configuration
• 1 CPU, 2 GiB memory, Executing one test case at a time
• N CPUs, executing N same test cases at a time

Compiler

testcase 1
testcase 2
testcase 3
testcase 4
testcase 5
testcase 6
testcase 7
testcase 8
testcase 9

testcase 10
testcase 11
testcase 12
testcase 13
testcase 14
testcase 15
testcase 16
testcase 17

0 20 40 60 80 100 120 140 160

floating point cases z196 (march=z196) versus z10 (march=z10)

improvements [%]

• Linux: Internal driver, kernel 2.6.29, gcc 4.5, glibc 2.9.3
• Floating Point suite improves by 86%
• Integer suite improves by 76%

testcase 1

testcase 2

testcase 3

testcase 4

testcase 5

testcase 6

testcase 7

testcase 8

testcase 9

testcase 10

testcase 11

testcase 12

0 20 40 60 80 100 120

integer cases z196 (march=z196) versus z10 (march=z10)

improvements [%]

z10 versus z9

testcase 1
testcase 2
testcase 3
testcase 4
testcase 5
testcase 6
testcase 7
testcase 8
testcase 9

testcase 10
testcase 11
testcase 12
testcase 13
testcase 14

0 20 40 60 80 100 120 140

z10 runtime improvements versus z9 [%]

• Overall improvement about 90%
• Older benchmark suite with other test cases

2008

Complex application workload

• Upgrade to IBM zEnterprise 196 provides
• improvements of throughput
• reduction of CPU load.

• This improves the throughput driven per CPU by 45%

z10 z196
0%

25%

50%

75%

100%

125%

150%

Oracle Real Application Clusters - z10 versus z196

T
ra

ns
ac

tio
n a

l T
hr

ou
gp

u t
 p

er
 C

P
U

Agenda

• zEnterprise 196 design

• Linux performance comparison z196 and z10

• Compiler case study

SpecINT2006, 456.hmmer

• Search for patterns in a gene sequence database
• Use of Profile Hidden Markov Models
• Programming Language: C (57 source files)

Function Profile:

%Total Function

 95.6 P7Viterbi

 1.9 sre_random

 1.8 FChoose

456.hmmer, major part of the hotloop

• Key elements:
• (Address-)Calculations in blue
• Expressions based on these calculations in green
• Assignments if the expression evaluates to true in red

for (k = 1; k <= M; k++) {

 mc[k] = mpp[k-1] + tpmm[k-1];

 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;

 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;

 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

 [...]

Example line

456.hmmer, hotloop,
code generated for z10

• Example source code line
if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

• GCC generated z10 assembler
01: LR GPR3,GPR4

02: LR GPR4,GPR6

03: LG GPR8,176(,GPR15)

04: A GPR4,4(GPR8,GPR1) Problem I Address Generation Interlock on GPR8

05: CR GPR4,GPR3 Note: OOO could help for other non dep. instr.

06: BHRC *+272 Problem II Branch Misprediction

[…] (non patterned, but frequent change)

11: ST GPR4,4(GPR1,GPR2)

12: BRC *-270

LOCR, Load on Condition

 'B9F2' M3 / / / / R1 R2
0 16 20 24 28 31

LOCR R1,R2,M3 RRF-c

The second operand is placed unchanged at the first operand
location if the condition code has one of the values specified by
M3; otherwise, the first operand remains unchanged.

456.hmmer, hotloop,
code generated for z196

• Example source code line
if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

• GCC generated z196 assembler
[…] A simplified code flow, freed up registers

01: A GPR10,0(,GPR6) → No Address generation interlock forced

02: CR GPR1,GPR10

03: LOCRNHE GPR1,GPR10 No branch, no misprediction

04: ST GPR1,4(,GPR2)

• ~70% more throughput for this new code running on z196

• Conditional store would be even better (currently worked on)
• Free up one more register

• prevent the memory from getting written in every loop
(be aware of coherency needs)

Summary

• z196 performance advantages
• Higher clock speed

• More cache

• OOO processing

• New instructions

• More processors

• Processor scalability

• Some exemplary Performance gains with Linux workloads
• Up to 45% for Java and complex database

• Up to 86% for single threaded CPU intense

• About 40% when scaling processors and/or processes

Questions

• Further information is at
• Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

• Live Virtual Classes for z/VM and Linux
http://www.vm.ibm.com/education/lvc/

Research & Development
Schönaicher Strasse 220
71032 Böblingen, Germany

ehrhardt@de.ibm.com

Christian Ehrhardt
Linux on System z
Performance Evaluation

http://www.vm.ibm.com/education/lvc/

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml

