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z196 Continues the Mainframe Heritage
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• CPU (core)

• cycle time

• pipeline, execution order

• branch prediction

• hardware vs. millicode

• Memory subsystem

• high speed buffers (caches)
•  on chip, on book

•  private, shared

•  coherency required

• Buses
•  number

•  Bandwidth

• limits
•  distance + speed of light

•  space
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z196 Processor Design Basics



z196 vs. z10 hardware comparison

• z10 EC

• CPU
• 4.4 Ghz

• Caches
• L1 private 64k instr, 128k data

• L1.5 private 3 MiB

• L2 shared 48 MiB / book

• book interconnect: star

• z196

• CPU
• 5.2 Ghz

• Out-of-Order execution

• Caches
• L1 private 64k instr, 128k data

• L2 private 1.5 MiB

• L3 shared 24 MiB / chip

• L4 shared 192 MiB / book

• book interconnect: star
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z196 PU core features I

• Super-scalar with six execution units
• 2 fixed point (integer), 2 load/store, 1 binary floating point,

1 decimal floating point

• Up to five instructions/operations executed per cycle
(vs. 2 in z10)
• Only the *fp units are mutually exclusive
• Cracking helps to utilize as much units as possible

• Up to three instructions decoded per cycle (vs. 2 in z10)



z196 PU core features II

• 211 complex instructions cracked into multiple
internal operations
• Allows simpler and optimized inner data flow
• Faster execution than a single complex op by the chance to 

utilize multiple units
• 246 of the most complex z/Architecture instructions are 

implemented via millicode

• Execution can occur out of (program) order



z196 New Instruction Set Architecture

• Re-compiled code gains further performance through 110+ new 
instructions
• High-Word Facility (30 new instructions)

• Independent addressing to high word of 64-bit GPRs

• Interlocked-Access Facility (12 new instructions) 
• Interlocked (atomic) load, value update and store operation in a single 

instruction

• Load/Store-on-Condition Facility (6 new instructions)
• Load or store; conditionally executed based on condition code

• Distinct-Operands Facility (22 new instructions)
• Independent specification of result register

(different than either source register)

• Integer to/from Floating point converts (21 new instructions)

• Population-Count Facility (1 new instruction)
• Hardware implementation of bit counting ~5x faster



• Significant performance benefits for compute intensive applications through

• reordering, so that stalled instructions don't block following independent ones

• Mitigation of stalls due to result dependencies

• Mitigation of stalls due to storage access

• Increase the execution unit utilization

• Maintains good performance growth for traditional apps

z196 Out of Order (OOO) Value 
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z10 vs z196 comparison Environment

• Hardware
• z196: 2817-718 M49
• z10  : 2097-726 E26
• z9    : 2094-718 S18

• Linux distribution with recent kernel
• SLES11 SP1: 2.6.32.13
• Linux in LPAR
• Shared processors
• Other LPARs deactivated

Source: If applicable, describe source origin



File server benchmark description

• dbench 3
• Emulation of Netbench benchmark
• Generates file system load on the Linux VFS
• Does the same I/O calls like the smbd server in Samba 

(without networking calls)
• Mixed file operations workload for each process: create, 

write, read, append, delete
• Measures throughput of transferred data

• Configuration
• 2 GiB memory, mainly memory operations
• Scaling processors 1, 2, 4, 8, 16
• For each processor configuration scaling

processes 1, 4, 8, 12, 16, 20, 26, 32, 40



dbench

• dbench as scaling example improves on average by 40%
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• Improvement z10 versus z9
• Average improvement with 8 CPUs was 50%
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Java benchmark description

• Java server benchmark

• Evaluates the performance of server side Java

• Exercises 
•  Java Virtual Machine (JVM)
•  Just-In-Time compiler (JIT)
•  Garbage collection

•  Multiple threads
•  Simulates real-world applications including XML processing or floating point 

operations

• Can be used to measure performance of CPUs, memory hierarchy and 
scalability

• Configurations

• 8 processors, 2 GiB memory, 1 JVM

• 16 processors, 8 GiB memory, 4 JVMs

• Java Version 6 SR7



SpecJBB 

• Business operation throughput improved by 45%
• 2 GiB, 8CPU, 1 JVM → +44%

• 8 GiB, 16 CPU, 4 JVM → + 45%

• Further Service Releases since that:
• Java Release SR8/9 (2010/11) added 2-4% (z196 toleration)
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SpecJBB 

• In 2008 the message was +60%
• With full z10 exploitation it eventually

had up to +80%
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CPU-intensive benchmark suite

• Stressing a system's processor, memory subsystem and 
compiler

• Workloads developed from real user applications
• Exercising integer and floating point in C, C++, and Fortran 

programs
• Can be used to evaluate compile options
• Can be used to optimize the compiler's code generation for 

a given target system

• Configuration
• 1 CPU, 2 GiB memory, Executing one test case at a time
• N CPUs, executing N same test cases at a time



Compiler
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• Linux: Internal driver, kernel 2.6.29, gcc 4.5, glibc 2.9.3
• Floating Point suite improves by 86%
• Integer suite improves by 76%
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z10 versus z9
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• Overall improvement about 90%
• Older benchmark suite with other test cases

2008



Complex application workload

• Upgrade to IBM zEnterprise 196 provides
• improvements of throughput
• reduction of CPU load.

• This improves the throughput driven per CPU by 45%
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SpecINT2006, 456.hmmer

• Search for patterns in a gene sequence database
• Use of Profile Hidden Markov Models
• Programming Language: C (57 source files)

Function Profile:

%Total Function

  95.6 P7Viterbi        

   1.9 sre_random         

   1.8 FChoose      



456.hmmer, major part of the hotloop

• Key elements:
• (Address-)Calculations in blue
• Expressions based on these calculations in green
• Assignments if the expression evaluates to true in red

for (k = 1; k <= M; k++) {

    mc[k] = mpp[k-1]   + tpmm[k-1]; 

    if ((sc = ip[k-1]  + tpim[k-1]) > mc[k])  mc[k] = sc; 

    if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])  mc[k] = sc; 

    if ((sc = xmb  + bp[k])         > mc[k])  mc[k] = sc; 

    [...]

Example line



456.hmmer, hotloop,
code generated for z10

• Example source code line
if ((sc = xmb  + bp[k]) > mc[k])  mc[k] = sc;

• GCC generated z10 assembler
01: LR GPR3,GPR4

02: LR GPR4,GPR6

03: LG GPR8,176(,GPR15)

04: A  GPR4,4(GPR8,GPR1) Problem I Address Generation Interlock on GPR8

05: CR GPR4,GPR3      Note: OOO could help for other non dep. instr.

06: BHRC *+272      Problem II Branch Misprediction

[…]      (non patterned, but frequent change)

11: ST GPR4,4(GPR1,GPR2)

12: BRC *-270



LOCR, Load on Condition

    'B9F2'         M3     /  /  /  /    R1    R2
0 16 20 24 28 31

LOCR   R1,R2,M3         RRF-c

The second operand is placed unchanged at the first operand 
location if the condition code has one of the values specified by 
M3; otherwise, the first operand remains unchanged.



456.hmmer, hotloop,
code generated for z196

• Example source code line
if ((sc = xmb  + bp[k]) > mc[k])  mc[k] = sc; 

• GCC generated z196 assembler
[…] A simplified code flow, freed up registers

01: A       GPR10,0(,GPR6) → No Address generation interlock forced

02: CR      GPR1,GPR10

03: LOCRNHE GPR1,GPR10 No branch, no misprediction

04: ST      GPR1,4(,GPR2)

• ~70% more throughput for this new code running on z196

• Conditional store would be even better (currently worked on)
• Free up one more register

• prevent the memory from getting written in every loop
(be aware of coherency needs)



Summary

• z196  performance advantages
• Higher clock speed

• More cache

• OOO processing

• New instructions

• More processors

• Processor scalability

• Some exemplary Performance gains with Linux workloads
• Up to 45% for Java and complex database

• Up to 86% for single threaded CPU intense

• About 40% when scaling processors and/or processes



Questions

• Further information is at
• Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

• Live Virtual Classes for z/VM and Linux
http://www.vm.ibm.com/education/lvc/
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