WLM Top Ten Things That Confuse You the Most!

Glenn Anderson, IBM Technical Training

Session 10007

1. How does work get in the correct Service Class?
2. What is the EWLM subsystem all about?
3. What is the Right Number of Service Classes?
4. How Does WLM Manage Work?
5. How is Velocity calculated?
6. What are Enclaves?
7. What is Enclave Server Management?
8. What is Blocked Workload support?
9. How do the new Discretionary controls work?
10. What is the difference between IRD and Hiperdispatch?
1. How Does Work get in the Correct Service Class?

The classification process

Subsystem Types
- CICS transaction
- MQ request
- web request
- batch job
- TSO LOGON
- UNIX FTP
- J2EE application
- DB2 stored procedure

Subsystem
- Service Class
 - WLM
 - Transaction
 - Report Class

Classification

Workload Qualifiers

33.26
Service definition workload types

- tasks in APPC initiators
- WebSphere App Server Trans
- CICS transaction programs
- Sysplex parallel DB2 requests
- DB2 DDF requests
- IMS transaction programs
- HTTP server requests
- JES2, JES3 batch jobs

WORKLOAD: Identify your workload(s) and categorize them

Classification rules

Filters or qualifiers

<table>
<thead>
<tr>
<th>SERVICE CLASS</th>
<th>REPORT CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSOPRID</td>
<td>TSORPT</td>
</tr>
<tr>
<td>CICSPROD</td>
<td>MFG21</td>
</tr>
<tr>
<td>CICSTST</td>
<td>TSORP5</td>
</tr>
<tr>
<td>TSODEV</td>
<td>TSOPRD1</td>
</tr>
</tbody>
</table>
Example of batch classification rules

<table>
<thead>
<tr>
<th>Qualifier/Type</th>
<th>Name</th>
<th>Service</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC 1</td>
<td>A</td>
<td>BATCHMED</td>
<td>BATCHA</td>
</tr>
<tr>
<td>TC 1</td>
<td>D</td>
<td>BATCHHI</td>
<td>BATCHD</td>
</tr>
<tr>
<td>TC 1</td>
<td>X</td>
<td>BATCHMED</td>
<td>______</td>
</tr>
<tr>
<td>TN 2</td>
<td>PAYROLL</td>
<td>BATCHHI</td>
<td>PAYROLL</td>
</tr>
<tr>
<td>TN 2</td>
<td>PAYUPDT</td>
<td>BATCHHI</td>
<td>PAYROLL</td>
</tr>
<tr>
<td>UI 1</td>
<td>SYSPROG1</td>
<td>BATCHHI</td>
<td>______</td>
</tr>
</tbody>
</table>

Subsystem type

Subsystem defaults

Subsystem type: JES
Description: Batch classification rules

Classification rules

Optional report classes

Example of batch classification rules

ASCH LDAP MQ NETV OMVS TCP STC TSO EWLM CICS DDF DB2 IMS IWEB JES

Service definition workload types

Identify your workload(s) and categorize them

Interactive TSO users

TSO

ASCH

CB

CICS

DB2

DDF

IMS

IWEB

JES

LDAP

MQ

NETV

OMVS

TC

WORKLOAD

TSO

ASCH

CB

CICS

DB2

DDF

IMS

IWEB

JES

LDAP

MQ

NETV

OMVS

TC

STC

COMM SERVER

work

forked and spawned USS programs

NetView, system automation tasks

MQSeries Workflow operations

LDAP Server work

JES2, JES3 batch jobs

HTTP server requests

IMS transaction programs

DB2 DDF requests

Sysplex parallel DB2 requests

CICS transaction programs

WebSphere App Server Trans

Initiators

TSO

CICS transaction programs

JES2, JES3 batch jobs

LDAP Server work

JES2, JES3 batch jobs

HTTP server requests

IMS transaction programs

DB2 DDF requests

Sysplex parallel DB2 requests

CICS transaction programs

WebSphere App Server Trans

Initiators

TSO
2. What is the EWLM Subsystem All About?

- HMC is management console
- Ensemble-Wide scope of responsibility
- Hardware configuration and operational control
- Virtual server life cycle management
- Virtual network and storage provisioning
- Energy Management
- Goal-oriented performance management

zEnterprise and Unified Resource Manager

- zEnterprise Unified Resource Manager (zManager)
- HMC is management console
- Ensemble-Wide scope of responsibility
- Hardware configuration and operational control
- Virtual server life cycle management
- Virtual network and storage provisioning
- Energy Management
- Goal-oriented performance management
Managing Resources across Virtual Servers on P7 blade

- Manage resources across virtual servers to achieve workload goals
 - Detect that a virtual server is part of Workload not achieving goals
 - Determine that the virtual server performance can be improved with additional resources
 - Project impact on all effected Workloads of moving resources to virtual server
 - If good trade-off based on policy, redistribute resources
 - Initially support CPU management

Co-operative management with z/OS WLM

- z/OS provides differentiated service to PPM classified work
- Transaction coming to z/OS needs to be ARM instrumented
- WLM service definition needs to map PPM service classes to z/OS WLM service classes
- PPM service class associated with transaction is used by WLM to classify work unit to a different WLM service class.
- WLM manages the resources based on the goal assigned to this specific service class.
WLM support for Unified Resource Manager

- z/OS V1R12 introduces WLM functionality level LEVEL025 to support zManager
- zManager Service Classes can be classified to WLM service and report classes by specifying classification rules for subsystem EWLM
 - Work qualifier type ESC (EWLM service class name) is used to correlate zManager service classes with WLM service or report classes

3. What is the Right Number of Service Classes?
The Correct Question Is:

What is the right number of active (in an LPAR) Service Class periods.

(Answer: 20-35)
4. How Does WLM Manage Work?

What is a WLM Transaction?

- **A WLM transaction represents a WLM "unit of work"**
 - basic workload entity for which WLM collects a resource usage value
 - foundation for statistics presented in workload activity report
 - represents a single subsystem "work request"

- **Subsystems can implement one of three transaction types**

 - **Address Space:**
 - WLM transaction measures all resource used by a subsystem request in a single address space
 - Used by JES (a batch job), TSO (a TSO command), OMVS (a process), STC (a started task) and ASCH (single APPC program)

 - **Enclave:**
 - Enclave created and destroyed by subsystem for each work request
 - WLM transaction measures resources used by a single subsystem request across multiple address spaces and systems
 - Exploited by subsystems - Component Broker(WebSphere), DB2, DDF, IWEB, MQSeries Workflow, LDAP, NETV, TCP

 - **CICS/IMS Transactions**
 - Neither address space or enclave oriented - special type
 - WLM transaction measures resource used by a single CICS/IMS transaction program request
The WLM View

Address Spaces, and the transactions inside

Importance

- Importance is relevant when system is overloaded
- WLM uses it to decide which workload goals are most important to satisfy
- Generally importance decreases across multiple periods

<table>
<thead>
<tr>
<th>Workload Importance</th>
<th>PERIOD 1</th>
<th>PERIOD 2</th>
<th>PERIOD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM</td>
<td>DUR=800</td>
<td>DUR=3K</td>
<td>Discretionary</td>
</tr>
<tr>
<td>SYSSTC</td>
<td>R/T=0.5 sec</td>
<td>R/T=4 sec</td>
<td>IMP=1</td>
</tr>
<tr>
<td>1 - HIGHEST</td>
<td></td>
<td></td>
<td>IMP=3</td>
</tr>
<tr>
<td>2 – HIGH</td>
<td></td>
<td></td>
<td>IMP=1</td>
</tr>
<tr>
<td>3 - MED</td>
<td></td>
<td></td>
<td>IMP=1</td>
</tr>
<tr>
<td>4 - LOW</td>
<td></td>
<td></td>
<td>IMP=1</td>
</tr>
<tr>
<td>5 - LOWEST</td>
<td></td>
<td></td>
<td>IMP=1</td>
</tr>
<tr>
<td>DISCRETIONARY</td>
<td></td>
<td></td>
<td>IMP=1</td>
</tr>
<tr>
<td>SYSOTHER</td>
<td></td>
<td></td>
<td>IMP=1</td>
</tr>
</tbody>
</table>
Performance index

- Service Class misses its Goal!
- Meeting Goal
- Service Class misses its Goal!

Exceeding Goal

Not Meeting Goal

Performance Index (PI)

1

0

100

Ratio of goal performance to actual performance

- Separate PI is calculated for each service class period, across all sysplex hosts
- Different calculations produce a comparable value from different goal types

5. How Is Velocity Calculated?
Velocity goals

Transaction Flow

<table>
<thead>
<tr>
<th>CPU</th>
<th>I/O</th>
<th>DELAY</th>
<th>CPU</th>
<th>IDLE</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

- Delayed I/O requests queued by goal achievement, not DP
- I/O Using
 - Includes non-paging DASD I/O only
 - Device connect
- I/O Delay
 - IOS queue
 - Subchannel pending
 - CU queue

Velocity = \frac{(CPU\ Using + I/O\ Using) \times 100}{CPU\ Using + I/O\ Using + WLM\ Delay} = \frac{11 \times 100}{11 + 4} = 73\%

*Delay = CPU\ Delay + I/O\ Delay + Paging\ Delay + MPL\ Delay + A/S\ Delay

Response Time Distribution for Velocity Goals

RMF WLMGL Enhancement

<table>
<thead>
<tr>
<th>Report No.</th>
<th>Policy=POLICY01</th>
<th>Workload=STC</th>
<th>Service Class=STCDEF</th>
<th>Resource Group=*NONE</th>
<th>Period=1</th>
<th>Importance=5</th>
<th>Critical=None</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMF WLMGL Enhancement</td>
<td>REPORT BY: POLICY=POLICY01 WORKLOAD=STC SERVICE CLASS=STCDEF RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=5 CRITICAL=None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response Time Distribution for Velocity Goals

- Delayed I/O requests queued by goal achievement, not DP
- I/O Using
 - Includes non-paging DASD I/O only
 - Device connect
- I/O Delay
 - IOS queue
 - Subchannel pending
 - CU queue

*Delay = CPU Delay + I/O Delay + Paging Delay + MPL Delay + A/S Delay

(c) Copyright 2011 IBM Corporation
6. What are Enclaves?

An enclave is a transaction that can span multiple dispatchable units (SRBs and TCBs) in one or several address spaces and is reported on and managed as one unit. The enclave is managed separately from the address spaces it runs in:

- CPU and I/O resources associated with processing the transaction represented by the enclave are managed by the transaction’s performance goal.
- Storage (MPL level, paging) of the address space is managed to meet the goals of the enclaves it serves (if enclave server address space) or to the performance goal of the address space (if no server address space).
Enclave Characteristics

- Created by an address space (the "owner")
- One address space can own many enclaves
- One enclave can include multiple dispatchable units (SRBs/tasks) executing concurrently in multiple address spaces (the "participants")
 - Enclave SRBs are preemptible, like tasks
 - All its dispatchable units are managed as a group
- Many enclaves can have dispatchable units running in one participant address space concurrently
- RMF produces separate T72 SMF records for independent enclaves

DDF and Enclave SRBs

<table>
<thead>
<tr>
<th>Enclave SRB</th>
<th>PC-call to DBM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDF production requests</td>
<td>Create Enclave</td>
</tr>
<tr>
<td>DDF default requests</td>
<td>Schedule SRB</td>
</tr>
<tr>
<td>STC rules</td>
<td>Vel = 50% Imp=1</td>
</tr>
<tr>
<td></td>
<td>DDFPROD RT=85%, 2s Imp=1</td>
</tr>
<tr>
<td></td>
<td>DDFDEF RT=5s avg Imp=3</td>
</tr>
</tbody>
</table>
DB2 Parallel Query and Enclave SRBs

Query CP Parallelism

Host 1

Have been independent enclave SRBs to be zIIP eligible. In z/OS R11 these are now workdependent enclaves.

Complex query originates here

Portions of complex query arrive on participant systems, classified under "DB2" rules, and run in enclave SRBs, so zIIP eligible

Sysplex Query Parallelism

Host

Host

Host

DB2 Parallel Query and Enclave SRBs

PARTITIONED TABLESPACE

PARTITIONED TABLESPACE

PARTITIONED TABLESPACE

Work-Dependent Enclaves

DB2 Address Space

create

Independent Enclave
zIIP Offload = X %

create

Work-Dependent Enclave
zIIP Offload = Y %

Work-Dependent Enclave
zIIP Offload = Z %

Managed as one transaction, represented by Independent Enclave

Implement a new type of enclave named "Work-Dependent" as an extension of an Independent Enclave. A Work-Dependent enclave becomes part of the Independent Enclave’s transaction but allows to have its own set of attributes (including zIIP offload percentage)
DB2 Stored Procedures and Enclaves

Task
- Listens for requests coming from outside of the system
- Creates independent enclave
- Schedules enclave SRB

WebSphere App Server Use of Enclaves

WAS on z/OS transactions, arriving at the Control Region, each run in an enclave that is classified under the “CB” rules.
Service Class with Enclave Transactions

REPORT BY: POLICY=WLMPOL01 WORKLOAD=WAS SERVICE CLASS=WI180%01 RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=1

- TRANSACTIONS- TRANS-TIME HHH.MM.SS.TTT

AVG 1.04 ACTUAL 43
MPL 1.04 EXECUTION 41
ENDED 44604 QUEUED 1
ENDS 24.78 R/S AFFIN 0
#SWAPS 0 I NELI GIBLE 0
EXCTD 0 CONVRSI ON 0
AVG ENC 1.04 STD DEV 135
REM ENC 0.00
MS ENC 0.00

RES P - STATE SAMPLES BREAKDOWN (%) - STATE ----
SUB (%) TYP3 LOCAL SYSPL REMOT
CB BTE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CB EXE 93.6 1.5 98.3 0.0 0.0 0.3 0.0 0.0 0.0 0.0

RESPONSE TIME EX PERF AVG --EXEC USING%-- -------------- EXEC DELAYS % ----------- -USING%- --- DELAY % --- %
SYSTEM ACTUAL% VEL% ADRSP CPU AAP IIP TOP CPU AAP Q CRY CTN UNK CNT QUI
JCD 100 78.7 0.5 0.9 11 2.5 0.0 0.0 3.7 3.2 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Service Class with Enclave Transactions
7. What is Enclave Server Management?

Enclave Server Management – Today

- After enclave has been created
 1. TCB joins an enclave
 (alternatively an SRB can be schedule into the enclave and the SRB uses SYSEVENT ENCASSOC to associate the enclave with the region)
 2. An internal service class is created (unless it already exists) to associate the region with the enclave service class (this is required for storage management)
 3. The server region is moved from its external service class to the internal service class

- Result
 - All TCBs (1) which have joined an enclave are managed towards the goals of the external service class for the enclaves
 - All TCBs (4) which have not joined an enclave
 - Those are not really managed at all
 - But they inherit attributes (Dispatch Priority, I/O Priority) of the enclave service class
Enclave Server Management – Ramifications

- **Assumption (Programming Model)**
 - All work being executed within the server region is related to enclaves
 - That means there is no TCB which consumes a significant amount of resources not related to enclaves

- **What if the programming model does not hold true?**
 - What happens if there is significant work running in TCBs not associated with enclaves?
 - Example: Garbage collection for a JVM (WAS)
 - Example: Common routines which provide service for the enclave TCBs
 - Is it sufficient to manage this work in the same way as the enclaves?

- **What happens if no enclaves are running in server regions?**
 - And the address space is swapped out?
 - A mechanism exists to swap in the address space but this mechanism assumes that the swap in is only for a queue server task which wants to select a unit of work and then joins the enclave. If no enclave is joined, the address space is again swapped out
 - And even if the address space stays swapped in?
 - The TCBs running within the address space just stay with the DP and IOP from the last enclave being associated with the address space
 - No CPU or I/O adjustment is performed

Enclave Server Management – New

Specify: MANAGENONENCLAVEWORK=YES

- **After enclave has been created**
 1. TCB joins an enclave
 - (alternatively an SRB can be schedule into the enclave and the SRB uses SYSEVENT ENCASSOC to associate the enclave with the region)
 2. An internal service class is created (unless it already exists) to associate the region with the enclave service class (this is required for storage management)
 3. The server region is moved from its external service class to the internal service class
 - But the internal service class is now associated with the STC service class for the region and the enclave service class

- **Result**
 - All TCBs (1) which have joined an enclave are managed towards the goals of the external service class for the enclaves
 - All TCBs (4) which have not joined an enclave are now managed towards the goals of the STC service class for the server regions
Enclave Server Management – Summary

- When should you use MANAGENONENCLAVEWORK=YES?
 - This is really a question of priorities and what do you want to achieve in your environment!
 - For WAS environments tasks like garbage collection can consume a significant amount of CPU and they can last a significant amount of time
 - If your enclave work is too low prioritized such tasks may take longer then actually necessary and therefore may impact your productive work
 - In such cases it is worthwhile to think of using the new option and prioritize the regions high enough so that the maintenance can complete fast
 - If you ever experienced the "swapping" problem or if you are vulnerable to such a problem because your enclave work runs very infrequently
 - It is also worthwhile to use this option

- When shouldn't you use the new OPT parameter?
 - There is no reason not to use it!
 - But if your application environment exploiting enclaves fits to our original programming model (as most DB2 Stored procedure work does) there is also no reason that you have to use the new option.

8. What is Blocked Workload Support?
Blocked Workload Support

Problem
- Work competes for resources, serialized by locks and latches
 - Low import work may hold a resource and high important work may have to wait for it

WLM Blocked Workload Support
- Recognizes blocked work
 - Work which doesn't show any progress for an elongated period of time
- Allows this work to use a small amount of CPU periodically
 - With the hope to resolve existing (potential) resource contentions

Blocked Workload Support: User Interface: IEAOPT

<table>
<thead>
<tr>
<th>BLWLTRPCT</th>
<th>Percentage of the CPU capacity of the LPAR to be used for promotion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specified in units of 0.1%</td>
</tr>
<tr>
<td></td>
<td>Default is 5 (=0.5%)</td>
</tr>
<tr>
<td></td>
<td>Maximum is 200 (=20%)</td>
</tr>
<tr>
<td></td>
<td>Would only be spent when enough units of work exist which need promotion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLWLINTHD</th>
<th>Specifies threshold time interval for which a blocked address space or enclave must wait before being considered for promotion.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum is 5 seconds. Maximum is 65535 seconds.</td>
</tr>
<tr>
<td></td>
<td>Default is 20 seconds.</td>
</tr>
</tbody>
</table>
Blocked Workload Support: User Interface: RMF

- **CPU Activity**
 - Blocked Workload Analysis
 - Opt Parameters: BLWLTRPCT (%) 0.5 Promote Rate: Defined 50000 Waiters for Promote: Avg 0.001
 - BLWLINTHD 60 Used (%) 95 Peak 15

- Extensions of RMF Postprocessor CPU Activity and WLMGL reports with information about blocked workloads and the temporary promotion of their dispatching priority
- SMF record 70-1 (CPU activity) and SMF 72-3 (Workload activity)

9. How Do the New Discretionary Controls Work?
New z/OS 1.12 Discretionary Batch Improvements

- TIMESLICES=1-255 (IEAOPTxx)

- Specifies number of timeslices a CPU-intensive address space or enclave with a discretionary goal should be given before a dispatchable unit of equal importance is dispatched

- Increasing this parameter might:
 - Increase processor delay for some CPU-intensive work
 - Decrease the number of context switches between equal priority work and therefore increase the throughput of the system

- Parameter only affects discretionary work that is CPU-intensive as determined by significant mean time to wait (MTTW)
 - As controlled by the CCCSIGUR parameter

- Default: 1

New z/OS 1.12 Discretionary Batch

- CCCSIGUR=0-32767 (IEAOPTxx)

- Specifies the minimum mean-time-to-wait (MTTW) threshold value in milliseconds for heavy CPU users
 - Used to determine the range of MTTW values which are assigned to each of the ten MTTW dispatching priorities - x'CO' to x'C9'
 - Specified real time value is adjusted by relative processor speed to become SRM time to give consistent SRM control across various processors
 - Default Value: 45

- Used to differentiate Dispatch Priority of discretionary work
 - Work clumps at x'C9'
 - Appears all address spaces have short MTTW
 - CCCSIGUR is too large and should be decreased
 - Work clumps at x'CO'
 - Appears all work has large MTTW
 - CCCSIGUR is too small and should be increased

- Recommendation: start by doubling or halving the value
10. What is the Difference Between IRD and HiperDispatch?

HiperDispatch vs IRD logical processor management

- **Intelligent Resource Director (IRD) LP management**
 - Automatically adjusts the number of **online** CPs to achieve the minimum required to run the work of the partition.
 - applies to CPs only – not zAAPs or zIIPs
 - Actually varies the CPUs online/offline
 - LP shares recalculated to those online

- **HiperDispatch mode**
 - Minimizes the number of **active** LPs to achieve the partition share and the partition share of unused resources (when the unused is of value)
 - supports zAAPs and zIIPs
 - “**Parks**” unused processors. Parking is simply placing a LP in a long-term wait until it is again needed to run work.
 - WLM can park/unpark CPUs over a relatively short time scale (seconds)

- IRD LP management is disabled in HiperDispatch mode
WLM Top 10 Things You Should Now Understand!

1. How does work get in the correct Service Class?
2. What is the EWLM subsystem all about?
3. What is the Right Number of Service Classes?
4. How Does WLM Manage Work?
5. How is Velocity calculated?
6. What are Enclaves?
7. What is Enclave Server Management?
8. What is Blocked Workload support?
9. How do the new Discretionary controls work?
10. What is the difference between IRD and Hiperdispatch?

z/OS Tuning Courses from IBM Training

- **Basic z/OS Tuning Using the Workload Manager (WLM)**
 - ES545
 - 4.5 Days, Hands-on Lab Exercises

- **Advanced z/OS Performance: WLM, Sysplex, Unix Services, Web**
 - ES851
 - 4.5 Days

- ibm.com/training