
1

z/OS Basics: Migrating from HFS to zFS
and things to watch out for
Jim Showalter
IBM

March 3, 2011
Session 9037

2

2

Agenda

• Why you should convert from HFS to zFS
• How to convert HFS to zFS
• Things that are different
• Things to watch out for

3

3

Why you should convert from HFS to zFS

• zFS is the strategic z/OS UNIX file system
• zFS is the base for future z/OS UNIX file system

development
• HFS development is stabilized
• HFS is still supported for service but support may be

removed sometime in the future

• zFS generally performs better than HFS
• Recent significant performance improvements for zFS

especially in the shared file system environment
(z/OS V1R11 and z/OS V1R13)

4

4

How to convert HFS to zFS

• Use the HFS to zFS migration tool (BPXWH2Z)
• It is an ISPF based tool – executed from ISPF 6 (Command)
• Documented in z/OS UNIX System Services Planning

• Use the pax command
• pax –rwvCMX –p eW /etc/fromhfsmnpt /etc/tozfsmnpt
• Documented in z/OS UNIX System Services Command

Reference

• Use the copytree command
• /samples/copytree /etc/fromhfsmnpt /etc/tozfsmnpt
• Documented in z/OS UNIX System Services Command

Reference

5

5

An Example of BPXWH2Z

• 4 filesystems
• USSZFS.SHARE.F1.HFS
• USSZFS.SHARE.F2.HFS
• USSZFS.SHARE.F3.HFS
• USSZFS.SHARE.FS.HFS

• USSZFS.SHARE.F1.HFS is mounted on /share and is a 14G
Multi-Volume file system spanning 2 mod 9s

• USSZFS.SHARE.F2.HFS is mounted on /share/erahs
• USSZFS.SHARE.F3.HFS is not mounted
• USSZFS.SHARE.FS.HFS is mounted on /share/nomig and we

will not be migrating it.

I used this example because it shows a migration of filesystem in many different
configurations. This includes filesystems mounted below other filesystems that
are being migrated as well as the migration of filesystems that at not mounted at
all. This is done in an effort to show the flexibility of the tool.

I also used this example so that we could discuss large multi-volume filesystems.

6

6

Start the tool by issuing BPXWH2Z –cv from
TSO

•Type TSO BPXWH2Z

•The –c places summary information in a file if job run in the background. If not
specified it is written to the console.

•The –v is verbose mode to get more information while tool is processing.

•IMPORTANT any wild card you can use in ISPF you can use here

7

7

This panel just allows you to change the default volume or SMS classes. If you
want the new zFSs to have the same vol/SMS class then just press enter.

I changed my default data class because I originally defined my large (14Gig)
multi-volume HFS without the extended format attributes set. I could also have
done this on the individual filesystem. We will see this later in the example.

8

8

This just shows that the tool found the 4 filesystems that make up my example
and the zFS that we defined earlier using ISHELL. As expected it will skip the
zFS.

9

9

This just shows that it did find the 3 filesystems that I am working with and one
additional one that I do not intend to migrate at this time.

•By placing a D on the red line to the left of the FS name you can selectively
delete filesystems that you choose not to perform a migration on at this time.

10

10

•On this panel you see each of the filesystems that met the wildcard search
criteria.

•The panel indicated the name of the filesystem being migrated, the temporary
name that will be used for the zFS while the migration is in progress, and the
name that the HFS will be given so that the zFS can be named with the original
HFS name.

•With the APAR OA18196 you now have the ability to change the final zFS name
rather then take the default of the previous HFS name.

•By selecting A on the line next to the FS name you can individualize the
allocation parameters

11

11

•This is just a continuation of the panel and I am showing it so you can see that
the filesystem that is unmounted is still part of the migration process.

•From here you just type BG to get the migration started.

12

12

•This is the panel that you are given if you choose to make changes to any of the
migration attributes.

•This is also where you would specify that you have preallocated a VSAM LDS.
This is a necessary step if your filesystem spans volumes. The tool can only
handle filesystem that fit on a single volume unless you preallocate.

•APAR OA18196 removes the restriction on the tool that required you to
preallocate the zFS when it is multi-volume. This is also where you would add
the data class that defines extended format attributes if the filesystem is larger
then 4G and they were not previously defined or defaulted on the earlier panel.

13

13

•An interesting thing to note is that in the case that the filesystem that was being
migrated had a mount below it, the filesystem was unmounted, the migration
occurred, the new zfs was mounted and the HFS was mounted back on the
mountpoint. What this means is you can actually do the ROOT all the way down
at one time if you wanted to.

14

14

This just shows that even the filesystem that was not mounted goes through
migration.

15

15

BPXWH2Z – Special Considerations

• Size of target zFS file system
• Size of target zFS file system log
• System Managed? – greater than 4GB

16

16

Things that are different

• HFS vs zFS (VSAM)
• zFS is a logging file system
• Growing a file system

17

17

HFS vs zFS (VSAM)

• HFS data set
• DD with

DSNTYPE=HFS

• zFS data set
• define VSAM Linear

Data Set (LDS)
• format with

IOEAGFMT
• (Can also use zfsadm

commands to define
and format or pfsctl
APIs)

//USERIDA JOB
//STEP1 EXEC PGM=IEFBR14
//HFS1 DD DSN=OMVS.HFS.HOME,
// SPACE=(CYL,(40,1,1)),
// DSNTYPE=HFS,
// DISP=(NEW,CATLG,DELETE),
// STORCLAS=STANDARD

//USERIDA JOB
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.ZFS1) -
VOLUMES(PRV000) -
LINEAR -
CYL(40 1) -
SHAREOPTIONS(3))

/*
//STEP2 EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.ZFS1 -compat')
//SYSPRINT DD SYSOUT=H

18

18

zFS is a logging file system

• zFS is a logging file system and has improved recovery
from system failures
• Metadata updates are transactional and are logged to

maintain the structural integrity of the file system

• zFS has a utility called IOEAGSLV (Salvager) that can
verify and optionally attempt to repair a zFS file system in
the unlikely event that it becomes corrupted

19

19

Growing a file system

• Dynamic grow
• HFS will grow when a write occurs and out of space if

• A secondary allocation size was specified when created, and
• there is space available on the volume(s)

• zFS will grow when a write occurs and out of space if
• A secondary allocation size was specified when created, and
• there is space available on the volume(s), and
• aggrgrow=on is specified in the zFS IOEFSPRM configuration

file or AGGRGROW is specified on the MOUNT PARM
NOTE: zFS R13 is changing the default from aggrgrow=off to
aggrgrow=on so zFS will act the same as HFS by default

From TSO/E

MOUNT FILESYSTEM('OMVS.MNT.FS1.ZFS') TYPE(ZFS)
MODE(RDWR) MOUNTPOINT('/zfsmnt1') PARM(‘AGGRGROW’)

From the z/OS UNIX shell

/usr/sbin/mount -t ZFS -f OMVS.MNT.FS1.ZFS -o ‘AGGRGROW' /zfsmnt1

20

20

Growing a file system …

• Explicit grow with a command
• HFS can be explicitly grown with the z/OS UNIX command

confighfs –x 10c pathname
• zFS can be explicitly grown with the z/OS UNIX zFS

command
zfsadm grow aggregate_name new_total_k_bytes

• Residing on the EAS (extended addressing space) portion
of an EAV (extended address volume)
• HFS is not eligible
• zFS is eligible as of z/OS V1R10

zfsadm aggrinfo displays the current size of the aggregate in K-bytes

df –k also displays the current size of the aggregate in K-bytes

21

21

Things to watch out for

• Large directories
• DASD space usage
• Backup and Quiesce
• Plan to remove function
• Mount Parms
• Sysplex sharing
• Publications
• Backup slides

22

22

Large Directories

• zFS has a performance problem with large directories
• As you approach 100,000 entries in a zFS directory,

performance begins to suffer
• If you can,

• spread out entries among multiple directories, or
• try to remove older files to keep directory from getting too large,

or
• use HFS for this directory

• There is some guidance on this in the z/OS Distributed File
Service zSeries File System Administration book (SC24-
5989) in Chapter 4, “Minimum and maximum file system
sizes”.

23

23

DASD space usage

• HFS uses 4K blocks to store file data
• zFS uses 8K blocks but can store a small file (<53 bytes) in the inode
• zFS R13 does not use 1K fragments any longer

• Simplifies zFS code – making it less error prone
• Necessary to support zFS R13 Direct I/O support

• This means that, in some cases, zFS R13 will use more DASD space
than zFS R11
• The worst case is files that are less than or equal to 1K

(but larger than 52 bytes)
• 1000 1K files could take (a maximum of) 10 cylinders more space

in zFS R13 than zFS R11
• See z/OS Distributed File Service zSeries File System (SC24-5989),

Chapter 4, zFS disk space allocation for more information

Calculations

1000 small files uses 1000K in R11 (assuming they are perfectly packed
into 8K blocks)

1000 small files uses 8000K in R13

8000K - 1000K = 7000K extra data

7000K / 720K per cylinder = 9.7222 cyl

Note that this calculation is showing the difference between storing 1000
1K files in zFS R13 and storing 1000 1K files in zFS R11. The total
amount of space to store 1000 1K files in zFS is more than this due to
metatdata information, directory information and other fixed storage
required by zFS for the log file, the bitmap, the file system table, etc. But
this other space required is generally the same between zFS R13 and zFS
R11. So, if you already had 1000 1K files stored in zFS R11, this
calculation shows you the maximum additional storage you would need to
create those files using zFS R13.

24

24

DASD space usage …

• Fragmented files caused confusion about free space in zFS
• df can report, for example, 20K of free space
• but, if there are no free 8K blocks (that is, there are only free

fragments), then you cannot, for example, create a 14K file
• zfsadm aggrinfo aggregate_name –long shows detailed

information including the number of free 8K blocks
• See z/OS Distributed File Service zSeries File System (SC24-5989),

Chapter 4, zFS disk space allocation for more information

zfsadm aggrinfo PLEX.JMS.AGGR004.LDS0004 -long

PLEX.JMS.AGGR004.LDS0004 (R/W COMP): 500 K free out of total
12960

version 1.4

auditfid C3C6C3F0 F0F0051E 0000

55 free 8k blocks; 60 free 1K fragments

112 K log file; 24 K filesystem table

8 K bitmap file

25

25

Space in a file system …

• An HFS that is multi-volume must be SMS managed
(and cataloged)

• A zFS that is > 4GB must be extended addressability in
the data class definition and therefore SMS managed
(A VSAM LDS is always cataloged)

26

26

Backup and Quiesce

• DFSMSdss automatically quiesces a mounted file system on backup
to ensure data integrity
• For HFS, quiesce is a BPX1QSE call

• df /hfsmntpoint displays Status of Quiesced
• D OMVS,F,N=OMVS.HFS.FS1 displays Status of QUIESCED
• D OMVS,F,E considers the HFS to be in an exception state
• Message BPXF083I THE FOLLOWING FILE SYSTEM HAS BEEN

QUIESCED FOR MORE THAN 10 MINUTES: OMVS.HFS.FS1
QUIESCING SYSTEM=DCEIMGVM JOB=SUIMGVM PID=67174418
LATCH=44.

• For zFS, quiesce is a BPX1PCT call
• Neither df, nor D OMVS,F show the ZFS to be quiesced
• zfsadm aggrinfo omvs.zfs.fs1 displays status of quiesced
• zfsadm lsaggr displays status of quiesce
• Message IOEZ00581E There are quiesced zFS aggregates.

After about 30 seconds

If another sysplex member joins, an HFS (must be R/O) will not be
mounted on the joining system until the HFS is unquiesced. See z/OS
UNIX System Services Programming: Assembler Callable Services
Reference, Chapter 2, quiesce, Characteristics and Restrictions. A ZFS
will be mounted as soon as the system joins.

27

27

Plan to remove function

• In February 2011, IBM announced
• z/OS V1.13 is planned to be the last release to support multi-

file system zSeries File System (zFS) aggregates, including
zFS clones. Support for the zfsadm clone command and
mount support for zFS file system data sets containing a
cloned (.bak) file system will be removed. IBM recommends
that you use copy functions such as pax and DFSMSdss to
back up z/OS UNIX file systems to separate file systems.
Support for zFS compatibility mode aggregates will remain.

28

28

MOUNT/automount Parms

• The MOUNT PARMs for HFS and zFS are different
(the other options are the same – MOUNTPOINT, MODE, etc.)
• HFS MOUNT PARMs (MOUNT TYPE(HFS))

• PARM(‘FSFULL(threshold,increment)’)
• PARM(‘NOSPARSE’)
• PARM(‘NOWRITEPROTECT’)
• PARM(‘SYNC(sec)’)
• PARM(‘SYNCRESERVE(nn)’)

• zFS MOUNT PARMs (MOUNT TYPE(ZFS))
• PARM(‘AGGRFULL(threshold,increment)’)
• PARM(‘AGGRGROW’)
• PARM(‘NBS’)
• PARM(‘RW’)
• PARM(‘RWSHARE’)

HFS MOUNT PARMs described in z/OS MVS Initialization and Tuning
Reference (SA22-7592)

zFS MOUNT PARMs described in z/OS Distributed File Service zFS
Administration (SC24-5989)

29

29

MOUNT/automount Parms…

• Generic file system TYPE on MOUNT
• If you specify TYPE(HFS) and the data set is not HFS or is

not found, it is treated as ZFS (and you get a zFS reason
code)

• If you specify TYPE(ZFS) and the data set is HFS, it is
treated as HFS

• In each of these cases where the TYPE did not match the
actual data set type, THE MOUNT PARMs ARE
DISCARDED
(we don’t want the mount to fail due to invalid PARMs)

• Once you have fully migrated a file system from HFS to zFS,
you should specify TYPE(ZFS) so that MOUNT PARMs are
effective

30

30

MOUNT/automount …

• zFS is a logging file system (metadata is logged, not file data)
• Maintains file system consistency – log is replayed on next mount if

file system was not cleanly unmounted – requires a R/W mount
• Problem scenario can occur

1. R/O file system (for example, version root) needs to be updated
2. Remount R/O to R/W
3. Update file system
4. Before remount back to R/O, system is re-IPLd
5. Mount of R/O version root fails because log needs to be replayed

• Should always do MODIFY OMVS,SHUTDOWN before a planned
system shut down

• With R9 APAR OA20615, zFS provides new IOEFSPRM option
(romount_recovery=on)

The romount_recovery=on IOEFSPRM configuration option says that if
the log needs to be replayed and it is a R/O mount, then zFS will
temporarily mount the file system R/W, replay the log and then unmount
and mount the file system R/O. The default for romount_recovery is off.
You can also dynamically set this option with zfsadm config –
romount_recovery on .

31

31

Sysplex sharing

• Both HFS and zFS support read-write sharing from
multiple systems in a shared file system environment
(BPXPRMxx SYSPLEX(YES))
• HFS read-write file systems are always non-sysplex aware

(z/OS UNIX always uses function shipping to a single owning
system)

• zFS read-write file systems can be sysplex-aware or non-
sysplex aware
For sysplex-aware read-write, z/OS UNIX sends requests to
the local zFS and then
• R11 zFS uses caching to sometimes avoid sending a read

request to the owning system
• R13 zFS can do direct I/O for reading and writing

32

32

Sysplex sharing …

Application

z/OS UNIX

Application

z/OS UNIX

Application

z/OS UNIX

zFS zFS zFS

�

Non-sysplex aware read-write

zFS

Application

z/OS UNIX

Application

z/OS UNIX

Application

z/OS UNIX

cache
zFS zFS

cache

R11 Sysplex-aware read-write

zFS

Application

z/OS UNIX

Application

z/OS UNIX

Application

z/OS UNIX

zFS zFS

R13 Sysplex-aware read-write

�

As of z/OS V1R11, zFS running in a shared file system environment
supports sysplex-aware read-write file systems. Sysplex-aware read-write
file systems can improve performance when the file system is accessed
from multiple systems or when file systems require manual movement to
optimize access performance. The preferred method is to specify
IOEFSPRM sysplex=filesys. After all your systems are sysplex=filesys,
then choose which zFS read-write file systems you want to be sysplex-
aware and specify the RWSHARE MOUNT PARM. (sysplex=filesys
requires R11 zFS APAR OA29619). See SHARE Session 2272 from
Seattle 2010 for a full presentation on this zFS capability.

As of z/OS V1R13, zFS support for read-write sysplex-aware file systems
is enhanced to directly access zFS user data from all R13 systems.
Metadata updates are still sent to the zFS owning system.

33

33

Publications

• z/OS UNIX System Services Planning (GA22-7800)
General Administration of z/OS UNIX file systems

• z/OS UNIX Command Reference (SA22-7802)
confighfs command for HFS

• z/OS MVS System Messages Volume 9 (IGF-IWM) (SA22-7639)
IGWxxxt messages for HFS

• z/OS UNIX System Services Messages and Codes (SA22-7807)
z/OS UNIX return codes, z/OS UNIX reason codes, X’5Bxxrrrr’ reason codes for HFS

• z/OS Distributed File Service zSeries File System Administration (SC24-5989) – was refreshed in April 2010
zFS Concepts and zfsadm command for zFS

• z/OS Distributed File Services Messages and Codes (SC24-5917)
IOEZxxxt messages and X’EFxxrrrr’ reason codes for zFS

• z/OS Distributed File Service zSeries File System Implementation (SG24-6580)
• Redbook available (updated February 2010 to include z/OS V1R11)
• http://www.redbooks.ibm.com/abstracts/sg246580.html?Open

• z/OS Version 1 Release 8 Implementation (SG24-7265)
• Redbook available (contains zFS updates for z/OS V1R8)
• http://www.redbooks.ibm.com/abstracts/sg247265.html?Open

• z/OS DFSMSTM Access Method Services for Catalogs (SC26-7394)
IDCAMS utility

• z/OS DFSMSTM Storage Administration Reference (SC26-7402)
ADRDSSU utility for backup

34

34

Backup

35

35

File access

• File access commands and APIs for zFS are the same as HFS except
for reason codes on failures
• z/OS UNIX reason codes – X’0000rrrr’ to X’20FFrrrr’

Documented in z/OS UNIX System Services Messages and Codes
(SA22-7807) – these are common to HFS and zFS

• HFS specific reason codes – X’5Bxxrrrr’
Documented in z/OS UNIX System Services Messages and Codes
(SA22-7807)

• zFS specific reason codes – X’EFxxrrrr’
Documented in z/OS Distributed File Service Messages and Codes
(SC24-5917)

• The bpxmtext shell command can be used to display the
meaning of zFS reason codes (as of z/OS V1R8) and z/OS
UNIX reason codes

36

36

Directory access

• Directory access commands and APIs for zFS are the
same as HFS except for a few non-obvious situations
• HFS returns names in a directory in (some) alphabetical

order (using opendir, readdir, closedir APIs)
DO NOT BECOME DEPENDENT ON THIS ORDER
• This is not POSIX behavior
• It is not controlled by localization envars (LC_COLLATE)
• ls returns sorted names but that is because –C is the default
• The order that HFS returns names is not the same as ls

(ls -C returns uppercase characters first; HFS returns uppercase
characters last.)

• zFS returns names unsorted – as every other UNIX file system
does

37

37

Directory access …

• zFS directories can be read as a file; HFS directories
return 0 bytes (using open, read, close APIs)
• You can see this by using the strings command against a

directory

cd /zfsmnt2

df -v .
Mounted on Filesystem Avail/Total Files Status

/zfsmnt2 (PLEX.JMS.AGGR004.LDS0004) 1000/2592 0 4294967269 Available
ZFS, Read/Write, Device:27, ACLS=Y

AGGRGROW
File System Owner : DCEIMGVM Automove=Y Cli ent=N

Filetag : T=off codeset=0
Aggregate Name : PLEX.JMS.AGGR004.LDS0004

ls -a
. A abc acldir file2 go.o test1
test4.txt test6.dat test8.txt
.. ab abcd file1 file4 linkname test 3
test5.txt test7.txt testdir
strings -n 1 -t d /zfsmnt2

4 .
13 ..

23 test1
36 test3

49 test4.txt
66 test5.txt

83 test6.dat
100 test7.txt

117 test8.txt
134 testdir

149 linkname
165 A

174 ab
184 abc

195 abcd
207 acldir

221 go.o
233 file1

246 file2
259 file4

38

38

Directory access …

• zFS is limited to 64K subdirectories per directory
• HFS reports that it is limited to 64K

(but may support more?)
DO NOT CREATE MORE THAN 64K SUBDIRECTORIES
IN A DIRECTORY

df -v /zfsmnt3

Mounted on Filesystem Avail/Total Files Status

/zfsmnt3 (PLEX.JMS.AGGR005.LDS0005) 2522566/2604960
4294967274 Available

ZFS, Read/Write, Device:28, ACLS=Y

NBS,NONBS

File System Owner : DCEIMGVM Automove=Y Client=N

Filetag : T=off codeset=0

Aggregate Name : PLEX.JMS.AGGR005.LDS0005

getconf LINK_MAX /zfsmnt3

65535

df -v /

Mounted on Filesystem Avail/Total Files Status

/ (PLEX.CFCIMGVM.ROOT) 88/1440 4294967225
Available

HFS, Read/Write, Device:1, ACLS=Y

File System Owner : DCEIMGVM Automove=Y Client=N

Filetag : T=off codeset=0

getconf LINK_MAX /

65536

