
z/OS Basics: Migrating from HFS to zFS
and things to watch out for
Jim Showalter
IBM

March 3, 2011
Session 9037

2

Agenda

• Why you should convert from HFS to zFS
• How to convert HFS to zFS
• Things that are different
• Things to watch out for

3

Why you should convert from HFS to zFS

• zFS is the strategic z/OS UNIX file system
• zFS is the base for future z/OS UNIX file system

development
• HFS development is stabilized
• HFS is still supported for service but support may be

removed sometime in the future

• zFS generally performs better than HFS
• Recent significant performance improvements for zFS

especially in the shared file system environment
(z/OS V1R11 and z/OS V1R13)

4

How to convert HFS to zFS

• Use the HFS to zFS migration tool (BPXWH2Z)
• It is an ISPF based tool – executed from ISPF 6 (Command)
• Documented in z/OS UNIX System Services Planning

• Use the pax command
• pax –rwvCMX –p eW /etc/fromhfsmnpt /etc/tozfsmnpt
• Documented in z/OS UNIX System Services Command

Reference

• Use the copytree command
• /samples/copytree /etc/fromhfsmnpt /etc/tozfsmnpt
• Documented in z/OS UNIX System Services Command

Reference

5

An Example of BPXWH2Z

• 4 filesystems
• USSZFS.SHARE.F1.HFS
• USSZFS.SHARE.F2.HFS
• USSZFS.SHARE.F3.HFS
• USSZFS.SHARE.FS.HFS

• USSZFS.SHARE.F1.HFS is mounted on /share and is a 14G
Multi-Volume file system spanning 2 mod 9s

• USSZFS.SHARE.F2.HFS is mounted on /share/erahs
• USSZFS.SHARE.F3.HFS is not mounted
• USSZFS.SHARE.FS.HFS is mounted on /share/nomig and we

will not be migrating it.

6

Start the tool by issuing BPXWH2Z –cv from
TSO

7

8

9

10

11

12

13

14

15

BPXWH2Z – Special Considerations

• Size of target zFS file system
• Size of target zFS file system log
• System Managed? – greater than 4GB

16

Things that are different

• HFS vs zFS (VSAM)
• zFS is a logging file system
• Growing a file system

17

HFS vs zFS (VSAM)

• HFS data set
• DD with

DSNTYPE=HFS

• zFS data set
• define VSAM Linear

Data Set (LDS)
• format with

IOEAGFMT
• (Can also use zfsadm

commands to define
and format or pfsctl
APIs)

//USERIDA JOB
//STEP1 EXEC PGM=IEFBR14
//HFS1 DD DSN=OMVS.HFS.HOME,
// SPACE=(CYL,(40,1,1)),
// DSNTYPE=HFS,
// DISP=(NEW,CATLG,DELETE),
// STORCLAS=STANDARD

//USERIDA JOB
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.ZFS1) -
VOLUMES(PRV000) -
LINEAR -
CYL(40 1) -
SHAREOPTIONS(3))

/*
//STEP2 EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.ZFS1 -compat')
//SYSPRINT DD SYSOUT=H

18

zFS is a logging file system

• zFS is a logging file system and has improved recovery
from system failures
• Metadata updates are transactional and are logged to

maintain the structural integrity of the file system

• zFS has a utility called IOEAGSLV (Salvager) that can
verify and optionally attempt to repair a zFS file system in
the unlikely event that it becomes corrupted

19

Growing a file system

• Dynamic grow
• HFS will grow when a write occurs and out of space if

• A secondary allocation size was specified when created, and
• there is space available on the volume(s)

• zFS will grow when a write occurs and out of space if
• A secondary allocation size was specified when created, and
• there is space available on the volume(s), and
• aggrgrow=on is specified in the zFS IOEFSPRM configuration

file or AGGRGROW is specified on the MOUNT PARM
NOTE: zFS R13 is changing the default from aggrgrow=off to
aggrgrow=on so zFS will act the same as HFS by default

20

Growing a file system …

• Explicit grow with a command
• HFS can be explicitly grown with the z/OS UNIX command

confighfs –x 10c pathname
• zFS can be explicitly grown with the z/OS UNIX zFS

command
zfsadm grow aggregate_name new_total_k_bytes

• Residing on the EAS (extended addressing space) portion
of an EAV (extended address volume)
• HFS is not eligible
• zFS is eligible as of z/OS V1R10

21

Things to watch out for

• Large directories
• DASD space usage
• Backup and Quiesce
• Plan to remove function
• Mount Parms
• Sysplex sharing
• Publications
• Backup slides

22

Large Directories

• zFS has a performance problem with large directories
• As you approach 100,000 entries in a zFS directory,

performance begins to suffer
• If you can,

• spread out entries among multiple directories, or
• try to remove older files to keep directory from getting too large,

or
• use HFS for this directory

• There is some guidance on this in the z/OS Distributed File
Service zSeries File System Administration book (SC24-
5989) in Chapter 4, “Minimum and maximum file system
sizes”.

23

DASD space usage

• HFS uses 4K blocks to store file data
• zFS uses 8K blocks but can store a small file (<53 bytes) in the inode
• zFS R13 does not use 1K fragments any longer

• Simplifies zFS code – making it less error prone
• Necessary to support zFS R13 Direct I/O support

• This means that, in some cases, zFS R13 will use more DASD space
than zFS R11
• The worst case is files that are less than or equal to 1K

(but larger than 52 bytes)
• 1000 1K files could take (a maximum of) 10 cylinders more space

in zFS R13 than zFS R11
• See z/OS Distributed File Service zSeries File System (SC24-5989),

Chapter 4, zFS disk space allocation for more information

24

DASD space usage …

• Fragmented files caused confusion about free space in zFS
• df can report, for example, 20K of free space
• but, if there are no free 8K blocks (that is, there are only free

fragments), then you cannot, for example, create a 14K file
• zfsadm aggrinfo aggregate_name –long shows detailed

information including the number of free 8K blocks
• See z/OS Distributed File Service zSeries File System (SC24-5989),

Chapter 4, zFS disk space allocation for more information

25

Space in a file system …

• An HFS that is multi-volume must be SMS managed
(and cataloged)

• A zFS that is > 4GB must be extended addressability in
the data class definition and therefore SMS managed
(A VSAM LDS is always cataloged)

26

Backup and Quiesce

• DFSMSdss automatically quiesces a mounted file system on backup
to ensure data integrity
• For HFS, quiesce is a BPX1QSE call

• df /hfsmntpoint displays Status of Quiesced
• D OMVS,F,N=OMVS.HFS.FS1 displays Status of QUIESCED
• D OMVS,F,E considers the HFS to be in an exception state
• Message BPXF083I THE FOLLOWING FILE SYSTEM HAS BEEN

QUIESCED FOR MORE THAN 10 MINUTES: OMVS.HFS.FS1
QUIESCING SYSTEM=DCEIMGVM JOB=SUIMGVM PID=67174418
LATCH=44.

• For zFS, quiesce is a BPX1PCT call
• Neither df, nor D OMVS,F show the ZFS to be quiesced
• zfsadm aggrinfo omvs.zfs.fs1 displays status of quiesced
• zfsadm lsaggr displays status of quiesce
• Message IOEZ00581E There are quiesced zFS aggregates.

After about 30 seconds

27

Plan to remove function

• In February 2011, IBM announced
• z/OS V1.13 is planned to be the last release to support multi-

file system zSeries File System (zFS) aggregates, including
zFS clones. Support for the zfsadm clone command and
mount support for zFS file system data sets containing a
cloned (.bak) file system will be removed. IBM recommends
that you use copy functions such as pax and DFSMSdss to
back up z/OS UNIX file systems to separate file systems.
Support for zFS compatibility mode aggregates will remain.

28

MOUNT/automount Parms

• The MOUNT PARMs for HFS and zFS are different
(the other options are the same – MOUNTPOINT, MODE, etc.)
• HFS MOUNT PARMs (MOUNT TYPE(HFS))

• PARM(‘FSFULL(threshold,increment)’)
• PARM(‘NOSPARSE’)
• PARM(‘NOWRITEPROTECT’)
• PARM(‘SYNC(sec)’)
• PARM(‘SYNCRESERVE(nn)’)

• zFS MOUNT PARMs (MOUNT TYPE(ZFS))
• PARM(‘AGGRFULL(threshold,increment)’)
• PARM(‘AGGRGROW’)
• PARM(‘NBS’)
• PARM(‘RW’)
• PARM(‘RWSHARE’)

29

MOUNT/automount Parms…

• Generic file system TYPE on MOUNT
• If you specify TYPE(HFS) and the data set is not HFS or is

not found, it is treated as ZFS (and you get a zFS reason
code)

• If you specify TYPE(ZFS) and the data set is HFS, it is
treated as HFS

• In each of these cases where the TYPE did not match the
actual data set type, THE MOUNT PARMs ARE
DISCARDED
(we don’t want the mount to fail due to invalid PARMs)

• Once you have fully migrated a file system from HFS to zFS,
you should specify TYPE(ZFS) so that MOUNT PARMs are
effective

30

MOUNT/automount …

• zFS is a logging file system (metadata is logged, not file data)
• Maintains file system consistency – log is replayed on next mount if

file system was not cleanly unmounted – requires a R/W mount
• Problem scenario can occur

1. R/O file system (for example, version root) needs to be updated
2. Remount R/O to R/W
3. Update file system
4. Before remount back to R/O, system is re-IPLd
5. Mount of R/O version root fails because log needs to be replayed

• Should always do MODIFY OMVS,SHUTDOWN before a planned
system shut down

• With R9 APAR OA20615, zFS provides new IOEFSPRM option
(romount_recovery=on)

31

Sysplex sharing

• Both HFS and zFS support read-write sharing from
multiple systems in a shared file system environment
(BPXPRMxx SYSPLEX(YES))
• HFS read-write file systems are always non-sysplex aware

(z/OS UNIX always uses function shipping to a single owning
system)

• zFS read-write file systems can be sysplex-aware or non-
sysplex aware
For sysplex-aware read-write, z/OS UNIX sends requests to
the local zFS and then
• R11 zFS uses caching to sometimes avoid sending a read

request to the owning system
• R13 zFS can do direct I/O for reading and writing

32

Sysplex sharing …

Application

z/OS UNIX

Application

z/OS UNIX

Application

z/OS UNIX

zFS zFS zFS

�

Non-sysplex aware read-write

zFS

Application

z/OS UNIX

Application

z/OS UNIX

Application

z/OS UNIX

cache
zFS zFS

cache

R11 Sysplex-aware read-write

zFS

Application

z/OS UNIX

Application

z/OS UNIX

Application

z/OS UNIX

zFS zFS

R13 Sysplex-aware read-write

�

33

Publications

• z/OS UNIX System Services Planning (GA22-7800)
General Administration of z/OS UNIX file systems

• z/OS UNIX Command Reference (SA22-7802)
confighfs command for HFS

• z/OS MVS System Messages Volume 9 (IGF-IWM) (SA22-7639)
IGWxxxt messages for HFS

• z/OS UNIX System Services Messages and Codes (SA22-7807)
z/OS UNIX return codes, z/OS UNIX reason codes, X’5Bxxrrrr’ reason codes for HFS

• z/OS Distributed File Service zSeries File System Administration (SC24-5989) – was refreshed in April 2010
zFS Concepts and zfsadm command for zFS

• z/OS Distributed File Services Messages and Codes (SC24-5917)
IOEZxxxt messages and X’EFxxrrrr’ reason codes for zFS

• z/OS Distributed File Service zSeries File System Implementation (SG24-6580)
• Redbook available (updated February 2010 to include z/OS V1R11)
• http://www.redbooks.ibm.com/abstracts/sg246580.html?Open

• z/OS Version 1 Release 8 Implementation (SG24-7265)
• Redbook available (contains zFS updates for z/OS V1R8)
• http://www.redbooks.ibm.com/abstracts/sg247265.html?Open

• z/OS DFSMSTM Access Method Services for Catalogs (SC26-7394)
IDCAMS utility

• z/OS DFSMSTM Storage Administration Reference (SC26-7402)
ADRDSSU utility for backup

34

Backup

35

File access

• File access commands and APIs for zFS are the same as HFS except
for reason codes on failures
• z/OS UNIX reason codes – X’0000rrrr’ to X’20FFrrrr’

Documented in z/OS UNIX System Services Messages and Codes
(SA22-7807) – these are common to HFS and zFS

• HFS specific reason codes – X’5Bxxrrrr’
Documented in z/OS UNIX System Services Messages and Codes
(SA22-7807)

• zFS specific reason codes – X’EFxxrrrr’
Documented in z/OS Distributed File Service Messages and Codes
(SC24-5917)

• The bpxmtext shell command can be used to display the
meaning of zFS reason codes (as of z/OS V1R8) and z/OS
UNIX reason codes

36

Directory access

• Directory access commands and APIs for zFS are the
same as HFS except for a few non-obvious situations
• HFS returns names in a directory in (some) alphabetical

order (using opendir, readdir, closedir APIs)
DO NOT BECOME DEPENDENT ON THIS ORDER
• This is not POSIX behavior
• It is not controlled by localization envars (LC_COLLATE)
• ls returns sorted names but that is because –C is the default
• The order that HFS returns names is not the same as ls

(ls -C returns uppercase characters first; HFS returns uppercase
characters last.)

• zFS returns names unsorted – as every other UNIX file system
does

37

Directory access …

• zFS directories can be read as a file; HFS directories
return 0 bytes (using open, read, close APIs)
• You can see this by using the strings command against a

directory

38

Directory access …

• zFS is limited to 64K subdirectories per directory
• HFS reports that it is limited to 64K

(but may support more?)
DO NOT CREATE MORE THAN 64K SUBDIRECTORIES
IN A DIRECTORY

