
Assembler University 207:
Powerful New z/Architecture Instructions

That Don't Require AMODE(64), Part 2

SHARE 116 in Anaheim, Session 8983

Avri J. Adleman, IBM
adleman@us.ibm.com

(Presented by John Ehrman, IBM)
March 3, 2011

AJA-2

TopicsTopics

• Shifting Instructions
– 64-bit shifting
– Rotate

• Packed Decimal Instructions
– Test Packed
– CVB and CVD enhanced instructions
– Pack and Unpack ASCII

• Translate (and Test) Instructions
– TRTR
– TRE and TRxx
– TRTE and TRTRE

AJA-3

Terminology: all machine generationsTerminology: all machine generations

Byte 8 bits

Halfword 2 Bytes (16 Bits)

Fullword (Word) 4 Bytes (32 Bits)

Doubleword 8 Bytes (64 Bits)

Quadword 16 Bytes (128 Bits)

• Notation: 64-bit based [32-bit based]

• 64-bit based (Doubleword)
• 32-bit based (Fullword)

• Positions:
• “High Order” refers to the low numbered bits
• “Low Order” refers to the high numbered bits

AJA-4

Register LayoutRegister Layout

32 Bit Register

Notes:

1 – Sign Bit

2 – Last Bit

Byte4 Byte5 Byte6 Byte7Byte0 Byte1 Byte2 Byte3

Byte0 Byte1 Byte2 Byte3

Bit 01 Bit 8 Bit 16 Bit 24 Bit 312

High (H) Low (L)

Bit 01 Bit 8 Bit 16 Bit 24 Bit 32[0] Bit 40[8] Bit 48[16] Bit 56[24] Bit 63[31]2

Low High (LH) Low Low (LL)High High (HH) High Low (HL)

64 Bit Register

High Fullword (HF) Low Fullword (LF)

AJA-5

Instruction mnemonic usageInstruction mnemonic usage

Mnemonic Name Instruction
Examples

Additional Remarks

LL???? Load Logical LLGT, LLGC, LLGH, … Loads specific bytes of a register, fills remainder with
zeroes.

??G?? Grande Register LGR, AG, LTGR, … Applies to full 64-Bit register as target or target and
source; may widen value with or without sign
propagation.

??F?? Fullword
 (“traditional register”)

LGF, LGFR, ALGF, … Applies to 32-bit word as source; value is widened when
target is a 64-bit register.

??T?? Thirty-One Bit LLGTR, LLGT Applies to source as the lower 31 bits: bit 33[1] to bit 63
[31]

??H?? Halfword (2 bytes) LGH, AGH, ... Applies to a halfword (a pair of specified bytes) of a 64
bit register.

??H?? High word of a 64-bit register LMH, STMH Applies to the high word, bits 0 to 31, of a 64 bit register

????LL,
????LH,
????HL,
????HH

Low-Low
Low-High
High-Low
High-High

TMLL, LLIHH, … Specfied halfwords of a 64-bit register

II???? Insert-Immediate IILL, IILH, … Load specific bytes of a register, leaving remainder alone.

AJA-6

64-bit “Grande” shift instructions64-bit “Grande” shift instructions

• Allowable shifts
– Right vs. Left
– Arithmetic (CC set) vs. Logical (CC unchanged)
– Shift amount determined by the six bit effective address

• 0 to 63 bits
• No double (even/odd pair, 128-bit) shifting of 64-bit register pairs

• Entire 64-bit register partakes in the shifting
– Allows different target and source registers

• SxyG R1,R3,D2(B2)
– R1 is target, R3 is source

• Enables retention of original operand value
• Instructions

– SLLG, SRLG, SLAG, SRAG

AJA-7

Shifting examplesShifting examples

* Example #1:

SLLG R2,R1,4
* Before: R1 = X'000000FFFFFFFFFF'

* Before: R2 = ?

* After: R1 = X'000000FFFFFFFFFF'

* After: R2 = X'00000FFFFFFFFFF0'

* Example #2:

SRAG R1,R1,5
JM WILLBRNH

* Before: R1 = X'8000000000000000'

* After: R1 = X'FC00000000000000'

AJA-8

Rotate bits in a registerRotate bits in a register

• Rotate Left Single Logical
– Also known as circular shift
– Instructions (R1 is the target and R3 is the source)

• RLL R1,R3,D2(B2)
– 32 bit register shift

• RLLG R1,R3,D2(B2)
– 64 bit register shift

• Process
– Similar to shift left logical

• Shifting to the left
• Shift amount determined by base and displacement: D2(B2)
• No condition code change, overflow not recognized

– Carry-out bits are shifted back into the low order bits
• No loss of bits

– Target register of shift can differ from source register
• Special Notes:

– No Rotate Right Single Logical Instruction
• Use shift factor of 32 or 64 minus shift amount on RLL or RLLG instruction

64- or 32-bit Register

Bit Flow

AJA-9

Rotate examplesRotate examples

* Example #1:
RLLG R2,R1,4

* Before: R1 = X'F000000000000000'
* Before: R2 = ?
* After: R1 = X'F000000000000000'
* After: R2 = X'000000000000000F'

* Example #2:

RLLG R1,R1,32
* Before: R1 = X'FFFFFFFF00000000'
* After: R1 = X'00000000FFFFFFFF'

* Example #3:
RLL R1,R1,1

* Before: R1 = X'AABBCCDD80000000'
* After: R1 = X'AABBCCDD00000001'

AJA-10

FLOGR InstructionFLOGR Instruction

• FLOGR R1,R2 [RRE]

– Find Leftmost One Bit “Grande” Register (FLOGR)
• Register R1 must be an even-odd pair
• Register R2 any single 64-bit register

• Scan 64-bit register (R2) left to right to find first one bit
– If found:

• Set register (R1) with 0 based bit index (0 to 63) of first one bit in (R2)
• R2 is copied into R1+1 with found bit set to 0
• Condition Code set to 0

– If not found:
• Set register (R1) to 64
• Set register R1+1 to 0
• Condition Code set to 2

AJA-11

Test Packed (Decimal)Test Packed (Decimal)

• Test Decimal Instruction
– TP D1,(L1,B1)

• RSL format
– D1 and B1 are the base and displacement of the testing value
– L1 represents the length of the field ranging from 1 to 16

– Extended Translation Facility 2
• Tests argument for a valid packed number format

– No need to use complex coding such as:
• Scanning digits and sign via looping
• Setting ESTAE and/or ESPIE exits

• Sets the condition code
– CC = 0: All digits and sign codes are valid
– CC = 1: Sign is invalid
– CC = 2: At least one digit code is invalid
– CC = 3: Sign invalid and at least one digit is invalid

* Test Decimal Example

 TP PACKED

 JNZ INVALID

 . . .

INVALID DS 0H

 . . .

PACKED DC P'nnnn'

EB L1 //// B1 D1… //////// C0

AJA-12

Binary and Packed extended Binary and Packed extended
conversionconversion

• Convert to Binary Extensions
– CVBY R1,DBLWRD

• Same as CVB, but with extended displacement
– R1 is a 32 bit register
– DBLWRD is eight bytes with RXY storage and packed data

– CVBG R1,QUADWRD
• Similar to CVB

– R1 is a 64 bit register
– QUADWRD is sixteen bytes with RXY storage and packed data

• Supports extended displacement
• Convert to Decimal Extensions

– CVDY R1,DBLWRD
• Same as CVD, but with extended displacement

– R1 is a 32 bit register
– DBLWRD is eight bytes with RXY storage and packed data

– CVDG R1,QUADWRD
• Similar to CVB

– R1 is a 64 bit register
– QUADWRD is sixteen bytes with RXY storage and packed data

• Supports extended displacement

AJA-13

Pack ASCIIPack ASCII

• PKA D1(B1),D2(L2,B2) [SS format]
– Similar to the PACK instruction

• Target (Arg1) has zone data removed from source (Arg2)
• Numeric field of source transferred byte to digit
• Implied positive sign is placed in rightmost hex digit of target

– ASCII, with a binary value of 1100

– Note exceptions:
• First argument D1(B1)

– Length always 16
– Zero filled if necessary

• Second argument D2(L2,B2) has variable length
– Ranges 1 to 32 in length

• Greater than 32 is an exception
• Equal to 32 is allowed, but leftmost byte is ignored

AJA-14

Unpack ASCIIUnpack ASCII

• UNPKA D1(L1,B1),D2(B2) [SS format]
– Similar to the UNPK instruction

• Expands packed BCD digits in source (Arg2) into ASCII
numeric characters (X'30' to X'39') in target (Arg1)

– Note exceptions:
• No transfer of sign

– Instead the condition code is set based on sign:
• 0 = plus, 1 = minus, 3 = invalid packed decimal sign

• First Argument D1(L1,B1)
– Ranges in length from 1 to 32 bytes

• Greater than 32 is an exception
• If length is too small, leftmost digits truncated

• Second Argument D2(B2) length is always 16

AJA-15

More on PKA and UNPKAMore on PKA and UNPKA

• Usage with EBCDIC
– Instructions do not raise a data exception
– PKA can be used on EBCDIC or non-ASCII data

• Source need not contain valid numeric characters

– UNPKA can be used on EBCDIC
• Requires translation of destination zone fields

– Example: OC or TR type operations

AJA-16

PKA and UNPKA ExamplesPKA and UNPKA Examples

PKA TARGET1,SOURCE1

* TARGET1 -> XL16'000000000012345C'

TARGET1 DS XL16

SOURCE1 DC CL08'00012345' EBCDIC -OR-

SOURCE1 DC XL08'3030303132333435' ASCII

UNPKA TARGET2,TARGET1

* TARGET2 -> XL06'303132333435'

TARGET2 DS XL06

Packed Number Sign

Unpacked Number

(NO SIGN!)

AJA-17

TRTR instructionTRTR instruction

• Translate and Test Reversed
– Opcode X'D0'
– TRTR D1(L1,B1),D2(B2) [SS-Format]

• TRTR processes the same as the TRT instruction
– Including:

• Setting the condition code
• Register 1 optionally updated
• Register 2 optionally updated
• D2(B2) references a 256 byte search table, as usual

– Except:
• D1(L1,B1) (Arg1) references the rightmost byte

• Process proceeds right to left

AJA-18

TRTR exampleTRTR example

* Find the last non-blank character in a string

XR R2,R2
TRTR STRING+L'STRING-1(L'STRING),TABLE

* R2 = X'000000FF'
* R1 -> Address of the letter 'D'

STRING DC CL40' HELLO WORLD '
TABLE DC 256XL1'FF'

ORG TABLE+C' '
DC XL1'00'
ORG ,

AJA-19

TRE instruction (1)TRE instruction (1)

• Translate Extended
– TRE R1,R2 [RRE-Format]

• Opcode X'B2A5'
• R1 represents an even/odd pair of registers

– R1 contains the address of the field to translate
– R1+1 contains the length of the field to translate

• R2 points to a 256 byte translation table
– Same use as Arg2 of the TR instruction

• General purpose register 0 contains a test byte
– Low order byte (bits 56-63)
– Remainder of register is ignored

• Sets a condition code (see next slide)
• Super translate instruction!

– Not limited to 256 bytes
• Operates on implementation defined section at a time

– Includes required termination (test) byte

AJA-20

TRE instruction (2)TRE instruction (2)

• Processes bytes left to right (length > 0)
– Until a condition code (see below) is set, bytes are

translated similar to the TR instruction

Event R1 R1+1 Condition Code

All bytes processed
(i.e. Bytes R1+1)

R1 points to the end of the
string +1

R1+1 is set to 0 0

Test byte (i.e. low order
byte of GPR 0) matched in
source

R1 points to the location
of the matched test byte
from (GPR 0).

R1+1 contains the residual
length from the location
of the test byte match

1

CPU-determined number
of bytes processed

The CPU-determined
number of bytes is added
to R1.

The CPU-determined
number of bytes is
subtracted from R1+1

3

AJA-21

TRE exampleTRE example

* Translate ASCII to EBCDIC

XR R0,R0 Test byte = x'00'

LA R2,FIELD R2 -> Field

LHI R3,L'FIELD R3 = Length

LARL R4,ATETAB R4 -> Translate Table

LOOP DS 0H Over all Bytes . . .

TRE R2,R4 Translate

JO LOOP More to go (CC = 3)?

JZ DONE Done (CC = 0)?

LA R2,1(,R2) Bump past null (CC=1)

JCT R3,LOOP Any left ?, continue

DONE DS 0H Process complete

. . .
FIELD DS XL1000 String to convert
ATETAB DC 0XL256 Translation table
 DC XL16'00010203372D2E2F1605250B0C0D0E0F'
 . . . Remainder of table

AJA-22

Special translation instructions (1)Special translation instructions (1)

• Four special translation instructions:
– TROO – Translate One to One

• Opcode x'B993'

– TROT – Translate One to Two
• Opcode x'B992'

– TRTO – Translate Two to One
• Opcode x'B991'

– TRTT – Translate Two to Two
• Opcode x'B990'

AJA-23

Special translation functions (2)Special translation functions (2)

• Trxx R1,R2 [RRE-Format]

– R1 represents an even/odd pair of registers
• R1 has the address of the destination

• R1+1 has the length of the source

– R2 is a single register
• R2 has the address of the source

– General Purpose Register 0
• Contains test character(s) (similar to the TRE instruction)
• Bits 48 to 63 (TRTO,TRTT) or bits 56 to 63 (TROO,TROT)

– General Purpose Register 1
• Contains the address of a translation table
• Must be on a doubleword (originally, page) boundary

AJA-24

Special translation instructions (3)Special translation instructions (3)

• Process similar to TRE
– Checking test character(s)
– Setting condition code

• Except:
– Different source and destination
– Test character’s size
– Table size and alignment (* ETF-2 relaxes restrictions on page alignment;

see slide 26)

Instruction Source Destination Test Character(s) Table

TROO One Byte One Byte One Byte (bits 56 to 63) 256 bytes (doubleword
boundary)

TROT One Byte Two Bytes One Byte (bits 56 to 63) 512 bytes (doubleword
boundary)

TRTO Two Bytes One Byte Two Bytes (bits 48 to 63) 64K bytes (page boundary)*

TRTT Two Bytes Two Bytes Two Bytes (bits 48 to 63) 128K bytes (page boundary) *

AJA-25

TROO exampleTROO example

* Translate ASCII to EBCDIC using TROO (Field2 <- Field1)

XR R0,R0 Test byte = x'00'
LARL R1,ATETAB R1 -> Translate Table

LA R2,FIELD2 R2 -> Field (Destination)

LHI R3,L'FIELD1 R3 = Length (Source)

LA R4,FIELD1 R4 -> Field (Source)

LOOP DS 0H Overall Bytes . . .

TROO R2,R4 Translate

JO LOOP More to go (CC = 3)?

JZ DONE Done (CC = 0)?

MVC 0(1,R2),0(R4) Copy source to destination

LA R2,1(,R2) Bump past null, dest. (CC=1)

LA R4,1(,R4) Bump past null, source

JCT R3,LOOP Any left ?, continue

DONE DS 0H Process complete

. . .
FIELD1 DS XL1000 Source String to convert
FIELD2 DS XL1000 Destination String

DC 0D'0' Align
ATETAB DC 0XL256 Translation table
 DC XL16'00010203372D2E2F1605250B0C0D0E0F'
 . . . Remainder of table

AJA-26

Special translation instructions Special translation instructions
(ETF-2 Enhancement Facility)(ETF-2 Enhancement Facility)

• TROO, TROT, TRTO and TRTT optional processing
– Trxx R1,R2,[M3]

– R1 and R2 same as before
– M3 optional 4-bit mask

• Currently bits 0, 1 and 2 must be zero
• Bit 3 of mask (Test Character-Comparison Control)

– 0 – Operate as before
– 1 – Do not perform character comparison

• Only translation is performed
• M3 Ignored if ETF-2 Enhancement Facility not installed

• Translation-table alignment restriction relaxed:
– TROO and TROT: as before, are on a doubleword boundary
– TRTO and TRTT: new boundary conditions

• No ETF-2: 4K boundary
• With ETF-2: doubleword boundary

AJA-27

Translate and Test Extended Translate and Test Extended
Facility (zSeries 10.0 Enhancement)Facility (zSeries 10.0 Enhancement)

• Instructions
– TRTE R1,R2[,M3]

• Translate and Test Extended
• Enhanced TRT

– TRTRE R1,R2[,M3]
• Translate and Test Reverse Extended
• Enhanced TRTR

• Enhancements:
– Removes 256 byte length limit: uses length in R1+1
– Removes GPR R2 restriction: uses R2

– Optional Modifier (M3) controls interpretation
• Size and value of translate scan entity - (addressed by R1)
• Size of translate table - (addressed by GPR R1)

