
Assembler University 206:
Powerful New z/Architecture Instructions

That Don't Require AMODE(64), Part 1

SHARE 116 in Anaheim, Session 8982

Avri J. Adleman, IBM
adleman@us.ibm.com

(Presented by John Ehrman, IBM)
March 2, 2011

AJA-2

Topics Topics

• Extended displacements
– Many instructions allow for increased range of base register

• Reduced and enhanced memory access
– Load, Store, and Insert Immediate Instructions
– Boolean Immediate Instructions
– Halfword-register operations
– Reversed operand access

• Register comparison and testing
– Registers, storage, swap, sign conversion

• Testing register operands Under Mask: register halfword-immediate
• Arithmetic instructions: 64-bit arithmetic, carry/borrow processing
• High-word instructions (“more registers”)
• “Distinct-operand” and “load/store on condition” instructions

AJA-3

Terminology: all machine generationsTerminology: all machine generations

Byte 8 bits

Halfword 2 Bytes (16 Bits)

Fullword (Word) 4 Bytes (32 Bits)

Doubleword 8 Bytes (64 Bits)

Quadword 16 Bytes (128 Bits)

• Notation: 64-bit based [32-bit based]

• 64-bit based (Doubleword)

• 32-bit based (Fullword)

• Positions:

• “High Order” refers to the low numbered bits

• “Low Order” refers to the high numbered bits

AJA-4

Extended displacementsExtended displacements

• Traditional 12- bit displacements
– Maximum +4K bytes from origin (base address)
– Previously, all instructions that use base-displacement addressing

• Range limits supported by HLASM
– e.g. USING (FROM,TO),register list

• Extended 20-bit signed displacements
– ±0.5M bytes from origin (base address)

• 8 additional bits appended to the left of 12 bit displacement
– Illustrated on next slide

• HLASM range limits apply only to “short” displacements
– Some old, many new instructions support 20 bit displacements

• Initial z/OS instructions that had reserved fields in instruction format
– Examples: LG, OG, …

• Specifically-enhanced “old” instructions
– Mnemonics suffixed with “Y”
– Examples: LY, MVIY, …

• Consult Principles of Operation; most are very easy to use

AJA-5

Extended displacement: operationExtended displacement: operation

• Signed 20-bit value
– Internal image
– Effective value

• Assembler resolution:
– Priority is to the smallest

positive displacement

 12 Bits 8 Bits

S 7 Bits 12 Bits

TEST3 CSECT ,
TEST3 AMODE 31
TEST3 CSECT ANY
 J START
PROGRAM DC CL8'TEST3'
START DS 0H
 BAKR 14,0
 BASR 11,0
 USING *,11,10
 LA 11,0(,11)
 LR 10,11
 AHI 10,4096
 LAY 2,FARX
 LAY 3,PROGRAM (neg. offset!)
 PR ,
 DS XL4096
FARX DC CL4'XYZA'

 END ,

″Traditional″

(Base Register R10)

Extended

AJA-6

Register layout and notation for Register layout and notation for
register-immediate instructionsregister-immediate instructions

32-bit Register

Notes:

1 – Sign Bit

2 – Last Bit

Byte4 Byte5 Byte6 Byte7Byte0 Byte1 Byte2 Byte3

Byte0 Byte1 Byte2 Byte3

Bit 01 Bit 8 Bit 16 Bit 24 Bit 312

High (H) Low (L)

Bit 01 Bit 8 Bit 16 Bit 24 Bit 32[0] Bit 40[8] Bit 48[16] Bit 56[24] Bit 63[31]2

Low High (LH) Low Low (LL)High High (HH) High Low (HL)

64-bit Register

High Fullword (HF) Low Fullword (LF)

AJA-7

Instruction mnemonic usageInstruction mnemonic usage

Mnemonic Name Instruction
Examples

Additional Remarks

LL???? Load Logical LLGT, LLGC, LLGH, … Loads specific bytes of a register, fills remainder with
zeroes.

??G?? Grande Register LGR, AG, LTGR, … Applies to full 64-Bit register as target or target and
source; may widen value with or without sign
propagation.

??F?? Fullword
 (“traditional register”)

LGF, LGFR, ALGF, … Applies to 32-bit word as source; value is widened when
target is a 64-bit register.

??T?? Thirty-One Bit LLGTR, LLGT Applies to source as the lower 31 bits: bit 33[1] to bit 63
[31]

??H?? Halfword (2 bytes) LGH, AGH, ... Applies to a halfword (a pair of specified bytes) of a 64
bit register.

??H?? High word of a 64-bit register LMH, STMH Applies to the high word, bits 0 to 31, of a 64 bit register

????LL,
????LH,
????HL,
????HH

Low-Low
Low-High
High-Low
High-High

TMLL, LLIHH, … Specfied halfwords of a 64-bit register, or low and high
halves of a 64-bit register

II???? Insert-Immediate IILL, IILH, … Load specific bytes of a register, leaving remainder
alone.

AJA-8

Store/Load (Multiple) high halves of Store/Load (Multiple) high halves of
registersregisters

• Store/Load High Half of “Grande” Registers
– Only high word’s 32 bits saved

• Format RSY (extended displacement)
– STMH R1,R3,D2(B2)

– LMH R1,R3,D2(B2))

• Analogous to STM and LM
– Acts on range of registers

• No Store or Load instructions for high half of a single
register

• Use multiple-type instruction with R1 = R3

EB R1 R3 B2 DL2… DH2 26

EB R1 R3 B2 DL2… DH2 96

AJA-9

Store/Load 64-bit registers Store/Load 64-bit registers

• STG and LG
– Store and Load single 64-bit register
– Analogous to ST (STY) and L (LY)
– Format RXY:

• STG R1,D2(X2,B2)

• LG R1,D2(X2,B2)

• STMG and LMG
– Store and Load multiple 64-bit registers
– Analogous to STM (STMY) and LM (LMY)
– Format RSY:

• STMG R1,R3,D2(B2)

• LMG R1,R3,D2(B2)

E3 R1 X2 B2 DL2… DH2 24

E3 R1 X2 B2 DL2… DH2 04

EB R1 R3 B2 DL2… DH2 04

EB R1 R3 B2 DL2… DH2 24

AJA-10

Load Multiple DisjointLoad Multiple Disjoint

• LMD R1,R3,D2(B2),D4(B4)
– Format SS:
– Loads range of full 64-bit registers
– Uses two different locations

• High half registers loaded from Arg2

• Low half registers loaded from Arg4

• Equivalent to doing a LMH and LM in one instruction!
• Allows AMODE=64 code to load saved “Grande” registers from

two different save areas (high and low words)
– Prevents register corruption on needed addresses

• Notes:
– For performance, use sparingly:

• Use LMH and LM or LMG if possible
– There is no “Store Multiple Disjoint”

EF R1 R3 B2 D2 B4 D4

* Example of LMD

 STMH R2,R5,HIREGS

 STM R2,R5,LOWREGS

 . . .

 LMD R2,R5,HIREGS,LOWREGS

 . . .

HIREGS DS 4F Save High Half

LOWREGS DS 4F Save Low Half

AJA-11

Load and Store PairLoad and Store Pair

• Load Register Pair from Storage
– LPQ R1,D2(X2,B2) [RXY-Format]
– R1 represents an even/odd 64-bit register pair
– D2(X2,B2) addresses 16 bytes of quadword-aligned storage
– Process similar to:

• LG R1, D2(X2,B2) and LG R1+1, D2+8(X2,B2)
• Store Register Pair into Storage

– STPQ R1,D2(X2,B2) [RXY-Format]
– R1 represents an even/odd 64-bit register pair
– D2(X2,B2) addresses 16 bytes of quadword-aligned storage
– Process similar to:

• STG R1, D2(X2,B2) and STG R1+1, D2+8(X2,B2)

• Storage accesses are serialized

AJA-12

Data-reversing instructionsData-reversing instructions

• Load and Store Reversed
– Destination bytes are set in reverse order of the source

• Source bytes from left to right set destination bytes right to left

– Both source and destination use the same number of bytes
• Possibly only the low order bytes in a destination register may be

used
• No sign bit propagation
• Unused bytes in destination are untouched

– The bit order in the bytes remains unchanged
• Load Reversed instructions

– Register to Register: LRVR, LRVGR
– Storage to Register: LRVH, LRV, LRVG

• Store Reversed instructions: STRVH, STRV, STRVG

AJA-13

Reverse instructions: examplesReverse instructions: examples

* c(R2) = X'ABCDEF12'
LRVR R3,R2 Register to Register Reverse

* c(R3) = X'12EFCDAB'

* c(R4) = X'01020304' (BEFORE)
LRVH R4,HALFWORD Storage to Register Reverse

* c(R4) = X'0102D2C1' (AFTER)
HALFWORD DC XL2'C1D2'

* c(G5) = X'0011223344556677'
STRVG G5,DBLWORD Register to Storage Reverse

* c(DBLWORD) = XL8'7766554433221100'
DBLWORD DS D

AJA-14

Register comparison and testingRegister comparison and testing

• Register Comparison with possible widening
– Register to Register (Similar to CR and CLR)

• CGR, CGFR, CLGR, CLGFR
– Register to Storage (Similar to C and CL)

• CY, CG, CGF, CLY, CLG, CLGF
– Compare and Swap (Similar to CS and CDS)

• CSY, CDSY, CSG, CDSG
– Compare Logical Characters (Similar to CLM)

• CLMY, CLMH
• Register Testing with possible widening

– Load and Test (Similar to LTR)
• LTGR, LTGFR

• Register Sign Conversion with possible widening
– Load Complement (Similar to LCR)

• LCGR, LCGFR
– Load Positive (Similar to LPR)

• LPGR, LPGFR
– Load Negative (Similar to LNR)

• LNGR, LNGFR

For “Compare Logical
Grande with Fullword,”
widening is with zeroes

All other “Grande with
Fullword” compare and/
or test, widening is with

sign extension

AJA-15

Test Under Mask for register operands

• Test bit settings in registers
– Similar to the TM instruction
– Except:

• Test bits in a register (R1) directly, not storage
• Mask field maps a halfword (I2), not a byte
• Condition code for mixed!! (Different from TM!)

– Left most bit tested is zero sets CC = 1
– Left most bit tested is one sets CC = 2

• Each instruction acts on a specific halfword
– Four different instructions

• TMHH R1,I2
– Test Under Mask High High (bits 0 to 15)

• TMHL R1,I2
– Test Under Mask High Low (bits 16 to 31)

• TMLH R1,I2 or TMH R1,I2

– Test Under Mask Low High (bits 32[0] to 47[15])
• TMLL R1,I2 or TML R1,I2

– Test Under Mask Low Low (bits 48[16] to 63[31])

Hwd1 Hwd2 Hwd3 Hwd4

AJA-16

Test Under Mask in registers: examples

* Example #1:
TMHH R1,X'8000'
JO BRANCH

* R1 = X'F000000000000' will branch
* R1 = X'7000000000000' will not branch

* Example #2:
TMLH R1,X'F000'
BRC 8,ONES CC = 0 (JO)
BRC 4,MIXED1 CC = 1
BRC 2,MIXED2 CC = 2
BRC 1,ZEROES CC = 3 (JZ)

* R1 = X'00000000F0000000' will branch to ONES
* R1 = X'0000000070000000' will branch to MIXED1
* R1 = X'0000000080000000' will branch to MIXED2
* R1 = X'0000000000000000' will branch to ZEROES

* Example #3: (Set the Condition Code to 2)
LGHI R1,2
TMLL R1,X'0003‘ Leftmost tested bit = 1

AJA-17

Fullword register-immediate
instructions (1)

• Similar to Halfword Immediate Instructions
– 64 bit registers considered as two fullwords

• xxHF (high): Bits 0 to 31
• xxLF (low): Bits 32 to 63

• Use them to eliminate literals (and storage references)
– IIxF – Insert Fullword Immediate High or Low

• Places fullword into high or low fullword of register
• Remainder of register is unchanged
• Condition Code is unchanged

– LLxF – Load Logical Immediate High or Low
• Places fullword into high or low fullword of register
• Remainder of register is set to 0
• Condition Code is unchanged

 High Fullword Low Fullword

0 31 32 63

AJA-18

Fullword register-immediate
instructions (2)

• Load Immediate
– Sign bit extended (if necessary for 64-bit operation)
– Condition code remains unchanged
– LGFI (64 bits) and LFI (32 bits)

• Arithmetic Immediate
– Sign bit extended (if necessary for 64-bit operation)
– Condition code set arithmetically
– Arithmetic: AGFI and AFI
– Comparison: CGFI and CFI

• Logical Immediate
– No sign extension, zero filled (if necessary for 64-bit operation)
– Condition code set logically
– Arithmetic: ALGFI, ALFI, SLGFI and SLFI
– Comparison: CLGFI and CLFI

AJA-19

Load Logical instructions

• Load Logical
– Loads specified part of a 32 or 64 bit target register

• Source comes from register, storage or immediate operand
– Remainder of the target register is zero filled, not sign extended!

• Instruction Types
– Byte to 64 bit register

• LLGC
– Halfword to 64 bit register

• LLGH, LLIHH, LLIHL, LLILH, LLILL
– Fullword to 64 bit register

• LLGFR, LLGF

00 00 00 FF00 00 00 00

Example: LLGC
R1,=X'FF'

R1 C1 C2 00 0000 00 00 00

Example: LLILH R1,X'C1C2'

R1

AJA-20

Register-processing instructions

• Load and Test in a single instruction!
– Load register from storage

• LTG, LT and LTGF

– Load register from register
• LTGR, LTGFR

– Same as Load, except condition code is set
• 0 – Result is zero
• 1 – Result is less than zero
• 2 – Result is greater than zero
• 3 – Unused

• Fullword-Immediate instructions
– Six-byte instructions
– Four-byte immediate operand
– Similar to Halfword-Immediate

AJA-21

Handy Dandy LLGT and LLGTR

• Load Logical “Grande” Thirty One Bits
– LLGT R1,D2(X2,B2)

• RXY Format:

– LLGTR R1,R2

• RRE Format:

• Source (Register or Storage)
– Fullword, 32 bits (Arg2)

• Target Register (R1)
– Doubleword, 64 bits

• High word set to all zeroes
• Low order word copied from source
• Low order word’s high bit 32[0] set to 0

E3 R1 X2 B2 DL2… DH2 17

B9 17 // R1 R2

FF FF FF FF

7F FF FF FF00 00 00 00

AJA-22

Operand-widening instructions (1)

• Properties
– Storage or low part of source register to full register
– No Condition Code set

• From Character (unsigned byte) without sign extension
– Storage to register:

• LLC R1,RX and LLGC R1,RX

– Register to Register:
• LLCR R1,R2 and LLGCR R1,R2

• From signed Byte, with sign extension
– LGBR R1,R2 and LBR R1,R2

• From halfword with sign extension
– LGHR R1,R2 and LHR R1,R2

AJA-23

Insert-Immediate instructions

• Insert Immediate halfwords into a register
– IIHH, IIHL, IILH and IILL
– Places halfword into specified register position
– Remainder of register is unchanged
– Condition Code is unchanged

00 FF 00 FF00 FF AB CD

Example: IIHL R1,X'ABCD'

R1 C1 C2 00 FF00 FF 00 FF

Example: IILH R1,X'C1C2'

R1

00 FF 00 FF00 FF 00 FF

Register R1 Before

R1

AJA-24

Boolean-immediate instructions

• Perform Boolean operation on selected register fullword component.
• Properties

– Only designated halfword or fullword of a “Grande” register is operated
on

– Condition code is set as with other boolean operations
• Instructions operating on fullwords

– And Immediate:
• NIHF R1,I2

• NILF R1,I2

– Exclusive OR Immediate:
• XIHF R1,I2

• XILF R1,I2

– OR Immediate:
• OIHF R1,I2

• OILF R1,I2

AJA-25

Boolean-immediate halfword operations

• NIxx, OIxx (but no XIxx instructions for halfwords!)
– xx = HH, HL, LH or LL

• Performs halfword boolean operation into specific
register location

• Remainder of register is unchanged
• Sets condition code based on the halfword result

00 FF 00 FF00 FF AB FF

Example: 0IHL R1,X’ABCD’

R1 00 C2 00 FF00 FF 00 FF

Example: NILH R1,X'C1C2'

R1

00 FF 00 FF00 FF 00 FF

Register R1 Before

R1

AJA-26

Load-arithmetic instructions:
operand widening (2)

• Load full 32 or 64 bit register
– Source comes from register, storage or immediate operand
– Sign extension
– Widening: byte, halfword, or fullword to 64-bit register

• Instruction types
– Byte to 32- or 64-bit register

• LB, LGB
– Halfword to 64-bit register

• LGHI, LGH
– Fullword to 64-bit register

• LGF, LGFR

FF FF FF A0FF FF FF FF

Example: LGB R1,=X’A0'

R1 00 00 00 0A00 00 00 00

Example: LGF R1,=F'10'

R1

AJA-27

64-bit arithmetic instructions

• Full 64-bit signed addition and subtraction
– Analogous to 32-bit arithmetic

• AG, AGR, SG, SGR, ALG, ALGR, SLG, SLGR
– Widening from halfword or word to doubleword

• Sign extension: AGF, AGFR, SGF, SGFR
• Zero extension: ALGF, ALGFR, SLGF, SLGFR

• Single-register Processing
– Reduces the need for even/odd register pairs
– Operand widening in certain cases with sign extension

• MSG, MSGF, MSGFR, MSGR
• DSG, DSGF, DSGFR, DSGR do require register pairs for quotient/remainder!

• Logical Arithmetic on even/odd pairs
– Allows for 64- or 128-bit unsigned product or quotient
– Unsigned values treated similarly as used with AL, ALR, etc. instructions

• ML, MLG, MLR, MLGR
• DL, DLG, DLGR, DLR (also require register pairs!)

Note: Instruction(s) in Bold are for 32-bit register pairs only

AJA-28

64-bit arithmetic: examples

* Example #1:
AGF R1,=F′3′ Note: same as AG R1,=FD′3′

* Before: R1 = X'0000000000000001'
* After: R1 = X'0000000000000004'

* Example #2:
MSGF R1,=F′3′ Note: same as MSG R1,=FD′3′

* Before: R1 = X'0000000000000002'
* After: R1 = X'0000000000000006'

* Example #3:
DSGF R2,=F′3′ Note: same as DSG R2,=FD′3′

* Before: R2 = ?
* Before: R3 = X'0000000000000005'
* After: R2 = X'0000000000000002'
* After: R3 = X'0000000000000001'

AJA-29

Logical-arithmetic instructions with
Carry and Borrow feature

• New Logical Arithmetic Instructions
– Performs logical addition or subtraction

• Similar to the “traditional” ALx and SLx type instructions

– Carry or borrow is indicated by the Condition Code
• Set by previous logical arithmetic statement, as usual
• Continues to propagate carry or borrow

– Intermediate instructions must not alter the CC!

• Instructions use 32- or 64-bit registers
– Addition

• ALC, ALCR, ALCG, ALCGR

– Subtraction
• SLB, SLBR, SLBG, SLBGR

Note: Instruction(s) in Bold are for 32-bit registers only

AJA-30

Logical Arithmetic Instructions with
Carry and Borrow Feature

• Allows easy addition or subtraction of large binary numbers
– No need to code branches around carry or borrow

• Condition codes 2 or 3 for add logical
• Condition code 1 for subtract logical

– No need to include special instructions for adding or subtracting
the carry or borrow

• Process
– Arithmetic proceeds right to left
– First instruction is the traditional logical addition or subtraction

• Be careful to preserve the condition code!
– Remaining instructions are Add With Carry or Subtract With

Borrow
• Propagates the condition code for each successive operation

AJA-31

Logical-arithmetic instructions with
Carry and Borrow: example

* Old Style
STCK CLOCK
LM R2,R3,CLOCK
LM R4,R5,FACTOR
SRDL R2,12

* Addition
ALR R3,R5 Add Low

 BC 12,*+8 Carry ?
AL R2,ONE Yes!!!
ALR R2,R4 Add High

* Subtraction
SLR R3,R5 Subtract Low
BC 3,*+8 Borrow ?
SL R2,ONE Yes!!!
SLR R2,R4 Subtract High

CLOCK DS D
FACTOR DC FD'nnnnn'
ONE DC F'1'

* New Style
STCK CLOCK
LM R2,R3,CLOCK
LM R4,R5,FACTOR
SRDL R2,12

* Addition

ALR R3,R5 Add Low
 ALCR R2,R4 Add High

* Subtraction
SLR R3,R5 Subtract Low
SLBR R2,R4 Subtract High

CLOCK DS D
FACTOR DC FD'nnnnn'

AJA-32

High-word instructions (z196)High-word instructions (z196)

• High 32 bits of a 64-bit register
• 16 more 32-bit registers!

– Add/subtract (signed, logical,
immediate)

– Comparison (signed, logical,
immediate)

– Load/Store (byte, character, halfword,
word; register and memory)

– Logical operations (AND, OR, XOR)

– Logical shifts
– Branch Relative on Count

• Many instructions use high- and low-
half 32-bit operands

• Add/subtract can be non-destructive

• Examples:

• AHHLR R1,R2,R3

– R1 = High-half for sum

– R2 = High-half operand

– R3 = Low-half operand

– Possible use:
• Accumulate subtotals in 32-bit low-

half of a register
• Accumulate grand total in 32-bit

high-half of the register

• BRCTH R1,I2

– Use it for loop counts to free up
low-half registers for addressing

AJA-33

High-word instructions: summaryHigh-word instructions: summary

• Mnemonics look complex, but
make sense after a while

• Add: AHHHR, AHHLR, AIH
– Logical: ALHHHR, ALHHLR,

ALSIH, ALSIHN (CC not set!)

• Subtract: SHHHR, SHHLR
– Logical: SLHHHR, SLHHLR

• Compare: CHHR, CHLR, CIH

– Logical: CLHHR, CLHLR, CLIH

• Memory load: LBH, LHH, LFH
– Logical: LLCH, LLHH

• Store: STCH, STHH, STFH
• Load Immediate: LLIHF (not new

with z196)

• Register Logical load
– 32-bit: LHHR, LHLR, LLHFR
– 16-bit: LLHHHR, LLHHLR,

LLHLHR

– 8-bit: LLCHHR, LLCHLR,
LLCLHR

• Logical operations xxxx R1,R2

– AND: NHHR, NHLR, NLHR

– OR: OHHR, OHLR, OLHR

– XOR: XHHR, XHLR, XLHR

• Logical Shifts xxxx R1,R2,I3 (!)

– SLLHH, SLLLH, SRLHH,
SRLLH

AJA-34

Distinct-operand and load/store on Distinct-operand and load/store on
condition instructionscondition instructions

• Many common instructions destroy
the target operand

– A, AR, SLL, XR, etc.

• Some new (familiar) 3-operand
instructions let you preserve it
– Target register distinct from

operand register(s)
– Mnemonics suffixed with K

– Example: ARK R
1
,R

2
,R

3

– c(R
1
) = c(R

2
)+c(R

3
)

• Add/subtract arithmetic and logical
• AND, OR, XOR

• Single-length logical and arithmetic
shifts

• Load on condition:
– LOC, LOCG, LOCR, LOCGR

– Format: xxx R
1
,Op

2
,M

3

– Example: Max of R1,R2 in R1
Old way: New way:
CR 1,2 CR 1,2
JL *+6 LROC 1,2,4
LR 1,2

• Store on condition:
– STOC, STOCG

– Example: Load R1 if contents = 0
Old way: New way:
LTR 1,1 LTR 1,1
JNZ *+8 LOC 1,X,8
L 1,X

