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Topics Topics 

• Extended displacements
– Many instructions allow for increased range of base register 

• Reduced and enhanced memory access
– Load, Store, and Insert Immediate Instructions
– Boolean Immediate Instructions
– Halfword-register operations 
– Reversed operand access 

• Register comparison and testing 
– Registers, storage, swap, sign conversion

• Testing register operands Under Mask: register halfword-immediate
• Arithmetic instructions: 64-bit arithmetic, carry/borrow processing
• High-word instructions (“more registers”)
• “Distinct-operand” and “load/store on condition” instructions
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Terminology: all machine generationsTerminology: all machine generations

Byte 8 bits

Halfword 2 Bytes (16 Bits)

Fullword (Word) 4 Bytes (32 Bits)

Doubleword 8 Bytes (64 Bits)

Quadword 16 Bytes (128 Bits)

•   Notation: 64-bit based [32-bit based]

• 64-bit based (Doubleword)

•  32-bit based (Fullword)

•   Positions: 

• “High Order” refers to the low numbered bits

•  “Low Order” refers to the high numbered bits  
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Extended displacementsExtended displacements

• Traditional 12- bit displacements
– Maximum +4K bytes from origin (base address)
– Previously, all instructions that use base-displacement addressing

• Range limits supported by HLASM 
– e.g.   USING (FROM,TO),register list

• Extended 20-bit signed displacements
– ±0.5M bytes from origin (base address)

• 8 additional bits appended to the left of 12 bit displacement
– Illustrated on next slide

• HLASM range limits apply only to “short” displacements
– Some old, many new instructions support 20 bit displacements

• Initial z/OS instructions that had reserved fields in instruction format
– Examples: LG, OG, …

• Specifically-enhanced “old” instructions
– Mnemonics suffixed with “Y”
– Examples: LY, MVIY, … 

• Consult Principles of Operation; most are very easy to use
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Extended displacement: operationExtended displacement: operation

• Signed 20-bit value
– Internal image
– Effective value

• Assembler resolution:
– Priority is to the smallest 

positive displacement

 12 Bits      8 Bits

S 7 Bits    12 Bits

TEST3    CSECT ,         
TEST3    AMODE 31        
TEST3    CSECT ANY       
         J     START     
PROGRAM  DC    CL8'TEST3'
START    DS    0H        
         BAKR  14,0      
         BASR  11,0      
         USING *,11,10   
         LA    11,0(,11) 
         LR    10,11     
         AHI   10,4096   
         LAY   2,FARX
         LAY   3,PROGRAM (neg. offset!)
         PR    ,         
         DS    XL4096    
FARX     DC    CL4'XYZA' 

         END   , 

″Traditional″

(Base Register R10)

Extended
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Register layout and notation for Register layout and notation for 
register-immediate instructionsregister-immediate instructions

32-bit Register

Notes:   

1 – Sign Bit

2 – Last Bit

Byte4   Byte5   Byte6  Byte7Byte0   Byte1   Byte2  Byte3

Byte0   Byte1   Byte2  Byte3

Bit 01       Bit 8       Bit 16      Bit 24      Bit 312 

High (H) Low (L)

Bit 01       Bit 8       Bit 16      Bit 24     Bit 32[0]   Bit 40[8]   Bit 48[16]  Bit 56[24]  Bit 63[31]2 
   

Low High (LH) Low Low (LL)High High (HH) High Low (HL)

64-bit Register

High Fullword (HF) Low Fullword (LF)
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Instruction mnemonic usageInstruction mnemonic usage

Mnemonic Name Instruction 
Examples

Additional Remarks

LL???? Load Logical LLGT, LLGC, LLGH, … Loads specific bytes of a register, fills remainder with 
zeroes.  

??G?? Grande Register LGR, AG, LTGR,  … Applies to full 64-Bit register as target or target and 
source; may widen value with or without sign 
propagation. 

??F?? Fullword
 (“traditional register”)

LGF, LGFR, ALGF, … Applies to 32-bit word as source; value is widened when 
target is a 64-bit register.

??T?? Thirty-One Bit LLGTR, LLGT Applies to source as the lower 31 bits: bit 33[1] to bit 63
[31] 

??H?? Halfword (2 bytes) LGH, AGH, ... Applies to a halfword (a pair of specified bytes) of a 64 
bit register. 

??H?? High word of a 64-bit register LMH, STMH Applies to the high word, bits 0 to 31, of a 64 bit register

????LL,
????LH,
????HL,
????HH

Low-Low
Low-High
High-Low
High-High

TMLL, LLIHH, … Specfied halfwords of a 64-bit register, or low and high 
halves of a 64-bit register

II???? Insert-Immediate IILL, IILH, … Load specific bytes of a register, leaving remainder 
alone.
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Store/Load (Multiple) high halves of Store/Load (Multiple) high halves of 
registersregisters

• Store/Load High Half of “Grande” Registers
– Only high word’s 32 bits saved

• Format RSY (extended displacement) 
– STMH R1,R3,D2(B2)

– LMH  R1,R3,D2(B2))

• Analogous to STM and LM
– Acts on range of registers 

• No Store or Load instructions for high half of a single 
register

• Use multiple-type instruction with R1 = R3

EB R1 R3 B2 DL2…  DH2  26

EB R1 R3 B2 DL2…  DH2   96
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Store/Load 64-bit registers Store/Load 64-bit registers 

• STG and LG
– Store and Load single 64-bit register
– Analogous to ST (STY) and L (LY)
– Format RXY:

• STG R1,D2(X2,B2)  

• LG  R1,D2(X2,B2)

• STMG and LMG
– Store and Load multiple 64-bit registers
– Analogous to STM (STMY) and LM (LMY)
– Format RSY:

• STMG R1,R3,D2(B2)

• LMG  R1,R3,D2(B2)

E3 R1 X2 B2 DL2…  DH2   24

E3 R1 X2 B2 DL2…  DH2   04

EB R1 R3 B2 DL2…  DH2   04

EB R1 R3 B2 DL2…  DH2   24
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Load Multiple DisjointLoad Multiple Disjoint

• LMD  R1,R3,D2(B2),D4(B4)
– Format SS:
– Loads range of full 64-bit registers
– Uses two different locations

• High half registers loaded from Arg2 

• Low half registers loaded from Arg4

• Equivalent to doing a LMH and LM in one instruction!
• Allows AMODE=64 code to load saved “Grande” registers from 

two different save areas (high and low words)
– Prevents register corruption on needed addresses

• Notes:
– For performance, use sparingly: 

• Use LMH and LM or LMG if possible 
– There is no “Store Multiple Disjoint”

EF R1 R3 B2 D2  B4  D4  

*        Example of LMD

         STMH R2,R5,HIREGS

         STM  R2,R5,LOWREGS 

         . . .

         LMD  R2,R5,HIREGS,LOWREGS

         . . .

HIREGS   DS 4F   Save High Half   

LOWREGS  DS 4F   Save Low Half
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Load and Store PairLoad and Store Pair

• Load Register Pair from Storage
– LPQ R1,D2(X2,B2)  [RXY-Format]
– R1 represents an even/odd 64-bit register pair
– D2(X2,B2) addresses 16 bytes of quadword-aligned storage
– Process similar to: 

• LG  R1, D2(X2,B2) and LG  R1+1, D2+8(X2,B2) 
• Store Register Pair into Storage

– STPQ R1,D2(X2,B2)  [RXY-Format]
– R1 represents an even/odd 64-bit register pair
– D2(X2,B2) addresses 16 bytes of quadword-aligned storage 
– Process similar to: 

• STG  R1, D2(X2,B2) and STG  R1+1, D2+8(X2,B2)

• Storage accesses are serialized
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Data-reversing instructionsData-reversing instructions

• Load and Store Reversed
– Destination bytes are set in reverse order of the source

• Source bytes from left to right set destination bytes right to left

– Both source and destination use the same number of bytes
• Possibly only the low order bytes in a destination register may be 

used
• No sign bit propagation
• Unused bytes in destination are untouched

– The bit order in the bytes remains unchanged 
• Load Reversed instructions

– Register to Register: LRVR, LRVGR
– Storage to Register: LRVH, LRV, LRVG 

• Store Reversed instructions: STRVH, STRV, STRVG



AJA-13

Reverse instructions: examplesReverse instructions: examples

* c(R2) = X'ABCDEF12'
LRVR R3,R2 Register to Register Reverse

* c(R3) = X'12EFCDAB' 

* c(R4) = X'01020304' (BEFORE)
LRVH R4,HALFWORD Storage to Register Reverse

* c(R4) = X'0102D2C1' (AFTER)
HALFWORD DC XL2'C1D2'

* c(G5) = X'0011223344556677'
STRVG G5,DBLWORD Register to Storage Reverse

* c(DBLWORD) = XL8'7766554433221100'  
DBLWORD DS D
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Register comparison and testingRegister comparison and testing

• Register Comparison with possible widening
– Register to Register (Similar to CR and CLR)

• CGR, CGFR, CLGR, CLGFR
– Register to Storage (Similar to C and CL)

• CY, CG, CGF, CLY, CLG, CLGF 
– Compare and Swap (Similar to CS and CDS)

• CSY, CDSY, CSG, CDSG 
– Compare Logical Characters (Similar to CLM)

• CLMY, CLMH 
• Register Testing with possible widening 

– Load and Test (Similar to LTR)
• LTGR, LTGFR

• Register Sign Conversion with possible widening
– Load Complement (Similar to LCR)

• LCGR, LCGFR
– Load Positive (Similar to LPR)

• LPGR, LPGFR
– Load Negative (Similar to LNR)

• LNGR, LNGFR 

For “Compare Logical 
Grande with Fullword,” 
widening is with zeroes

All other “Grande with 
Fullword” compare and/
or test, widening is with 

sign extension
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Test Under Mask for register operands

• Test bit settings in registers
– Similar to the TM instruction
– Except:

• Test bits in a register (R1) directly, not storage
• Mask field maps a halfword (I2), not a byte
• Condition code for mixed!! (Different from TM!)

– Left most bit tested is zero sets CC = 1
– Left most bit tested is one sets CC = 2

• Each instruction acts on a specific halfword
– Four different instructions

• TMHH R1,I2
– Test Under Mask High High (bits 0 to 15)

• TMHL R1,I2
– Test Under Mask High Low (bits 16 to 31)

• TMLH R1,I2 or  TMH R1,I2

– Test Under Mask Low High (bits 32[0] to 47[15]) 
• TMLL R1,I2 or  TML R1,I2 

– Test Under Mask Low Low (bits 48[16] to 63[31])

Hwd1 Hwd2 Hwd3 Hwd4
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Test Under Mask in registers: examples

* Example #1:
TMHH R1,X'8000'
JO BRANCH 

* R1 = X'F000000000000' will branch 
* R1 = X'7000000000000' will not branch 

* Example #2: 
TMLH R1,X'F000'
BRC 8,ONES CC = 0 (JO)
BRC 4,MIXED1 CC = 1 
BRC 2,MIXED2 CC = 2
BRC 1,ZEROES CC = 3 (JZ)

* R1 = X'00000000F0000000' will branch to ONES
* R1 = X'0000000070000000' will branch to MIXED1
* R1 = X'0000000080000000' will branch to MIXED2
* R1 = X'0000000000000000' will branch to ZEROES

* Example #3: (Set the Condition Code to 2)
LGHI R1,2
TMLL R1,X'0003‘        Leftmost tested bit = 1
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Fullword register-immediate 
instructions (1)

• Similar to Halfword Immediate Instructions
– 64 bit registers considered as two fullwords

• xxHF (high): Bits 0 to 31
• xxLF (low): Bits 32 to 63

• Use them to eliminate literals (and storage references)
– IIxF – Insert Fullword Immediate High or Low

• Places fullword into high or low fullword of register 
• Remainder of register is unchanged
• Condition Code is unchanged

– LLxF – Load Logical Immediate High or Low
• Places fullword into high or low fullword of register 
• Remainder of register is set to 0 
• Condition Code is unchanged

  High Fullword  Low Fullword

0                 31 32                 63
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Fullword register-immediate 
instructions (2)

• Load Immediate
– Sign bit extended (if necessary for 64-bit operation)
– Condition code remains unchanged
– LGFI (64 bits) and LFI (32 bits)

• Arithmetic Immediate
– Sign bit extended (if necessary for 64-bit operation)
– Condition code set arithmetically
– Arithmetic: AGFI and AFI
– Comparison: CGFI and CFI

• Logical Immediate
– No sign extension, zero filled (if necessary for 64-bit operation)
– Condition code set logically 
– Arithmetic: ALGFI, ALFI, SLGFI and SLFI
– Comparison: CLGFI and CLFI
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Load Logical instructions

• Load Logical
– Loads specified part of a 32 or 64 bit target register 

• Source comes from register, storage or immediate operand
– Remainder of the target register is zero filled, not sign extended!

• Instruction Types
– Byte to 64 bit register 

• LLGC
– Halfword to 64 bit register

• LLGH, LLIHH, LLIHL, LLILH, LLILL
– Fullword to 64 bit register

• LLGFR, LLGF

00 00 00 FF00 00 00 00

Example: LLGC 
R1,=X'FF'   

R1 C1 C2 00 0000 00 00 00

Example: LLILH R1,X'C1C2'

R1
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Register-processing instructions

• Load and Test in a single instruction!
– Load register from storage

• LTG, LT and LTGF

– Load register from register
• LTGR, LTGFR

– Same as Load, except condition code is set
• 0 – Result is zero
• 1 – Result is less than zero
• 2 – Result is greater than zero
• 3 – Unused 

• Fullword-Immediate instructions
– Six-byte instructions 
– Four-byte immediate operand
– Similar to Halfword-Immediate 
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Handy Dandy LLGT and LLGTR

• Load Logical “Grande” Thirty One Bits
– LLGT R1,D2(X2,B2)

• RXY Format:

– LLGTR R1,R2

• RRE Format:

• Source (Register or Storage)
– Fullword, 32 bits (Arg2)

• Target Register (R1)
– Doubleword, 64 bits

• High word set to all zeroes
• Low order word copied from source
• Low order word’s high bit 32[0] set to 0  

E3 R1 X2 B2 DL2…  DH2   17

B9 17 // R1 R2

FF FF FF FF

7F FF FF FF00 00 00 00
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Operand-widening instructions (1)

• Properties
– Storage or low part of source register to full register
– No Condition Code set

• From Character (unsigned byte) without sign extension
– Storage to register: 

• LLC R1,RX and LLGC R1,RX

– Register to Register: 
• LLCR R1,R2 and LLGCR R1,R2

• From signed Byte, with sign extension
– LGBR R1,R2  and LBR R1,R2  

• From halfword with sign extension
– LGHR R1,R2 and LHR R1,R2
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Insert-Immediate instructions

• Insert Immediate halfwords into a register
– IIHH, IIHL, IILH and IILL
– Places halfword into specified register position
– Remainder of register is unchanged
– Condition Code is unchanged

00 FF 00 FF00 FF AB CD

Example: IIHL R1,X'ABCD'   

R1 C1 C2 00 FF00 FF 00 FF

Example: IILH R1,X'C1C2'

R1

00 FF 00 FF00 FF 00 FF

Register R1 Before

R1
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Boolean-immediate instructions

• Perform Boolean operation on selected register fullword component.
• Properties

– Only designated halfword or fullword of a “Grande” register is operated 
on

– Condition code is set as with other boolean operations
• Instructions operating on fullwords

– And Immediate:  
• NIHF  R1,I2

• NILF  R1,I2

– Exclusive OR Immediate:
• XIHF  R1,I2

• XILF  R1,I2

– OR Immediate:
• OIHF  R1,I2

• OILF  R1,I2
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Boolean-immediate halfword operations

• NIxx, OIxx (but no XIxx instructions for halfwords!)
– xx = HH, HL, LH or LL

• Performs halfword boolean operation into specific 
register location

• Remainder of register is unchanged
• Sets condition code based on the halfword result

00 FF 00 FF00 FF AB FF

Example: 0IHL R1,X’ABCD’   

R1 00 C2 00 FF00 FF 00 FF

Example: NILH R1,X'C1C2'

R1

00 FF 00 FF00 FF 00 FF

Register R1 Before

R1
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Load-arithmetic instructions: 
operand widening (2)

• Load full 32 or 64 bit register 
– Source comes from register, storage or immediate operand 
– Sign extension
– Widening: byte, halfword, or fullword to 64-bit register 

• Instruction types
– Byte to 32- or 64-bit register

• LB, LGB
– Halfword to 64-bit register

• LGHI, LGH
– Fullword to 64-bit register

• LGF, LGFR  

FF FF FF A0FF FF FF FF

Example: LGB R1,=X’A0' 
  

R1 00 00 00 0A00 00 00 00 

Example: LGF R1,=F'10' 
  

R1
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64-bit arithmetic instructions

• Full 64-bit signed addition and subtraction
– Analogous to 32-bit arithmetic

• AG, AGR, SG, SGR, ALG, ALGR, SLG, SLGR 
– Widening from halfword or word to doubleword 

• Sign extension: AGF, AGFR, SGF, SGFR
• Zero extension: ALGF, ALGFR, SLGF, SLGFR

• Single-register Processing
– Reduces the need for even/odd register pairs
– Operand widening in certain cases with sign extension

• MSG, MSGF, MSGFR, MSGR
• DSG, DSGF, DSGFR, DSGR do require register pairs for quotient/remainder!

• Logical Arithmetic on even/odd pairs
– Allows for 64- or 128-bit unsigned product or quotient
– Unsigned values treated similarly as used with AL, ALR, etc. instructions

• ML, MLG, MLR, MLGR
• DL, DLG, DLGR, DLR  (also require register pairs!)

Note: Instruction(s) in Bold are for 32-bit register pairs only
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64-bit arithmetic: examples

* Example #1:
AGF R1,=F′3′    Note: same as AG R1,=FD′3′ 

* Before: R1 = X'0000000000000001' 
* After: R1 = X'0000000000000004'

* Example #2:
MSGF R1,=F′3′ Note: same as MSG R1,=FD′3′ 

* Before: R1 = X'0000000000000002' 
* After: R1 = X'0000000000000006'

* Example #3: 
DSGF R2,=F′3′ Note: same as DSG R2,=FD′3′ 

* Before: R2 = ?
* Before: R3 = X'0000000000000005' 
* After: R2 = X'0000000000000002'
* After: R3 = X'0000000000000001' 
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Logical-arithmetic instructions with 
Carry and Borrow feature

• New Logical Arithmetic Instructions
– Performs logical addition or subtraction

• Similar to the “traditional” ALx and SLx type instructions

– Carry or borrow is indicated by the Condition Code
• Set by previous logical arithmetic statement, as usual
• Continues to propagate carry or borrow

– Intermediate instructions must not alter the CC!

• Instructions use 32- or 64-bit registers
– Addition 

• ALC, ALCR, ALCG,  ALCGR

– Subtraction
• SLB, SLBR, SLBG, SLBGR

Note: Instruction(s) in Bold are for 32-bit registers only
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Logical Arithmetic Instructions with 
Carry and Borrow Feature

• Allows easy addition or subtraction of large binary numbers
– No need to code branches around carry or borrow

• Condition codes 2 or 3 for add logical
• Condition code 1 for subtract logical

– No need to include special instructions for adding or subtracting 
the carry or borrow

• Process
– Arithmetic proceeds right to left 
– First instruction is the traditional logical addition or subtraction

• Be careful to preserve the condition code!
– Remaining instructions are Add With Carry or Subtract With 

Borrow
• Propagates the condition code for each successive operation 
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Logical-arithmetic instructions with 
Carry and Borrow: example

* Old Style
STCK CLOCK
LM R2,R3,CLOCK
LM R4,R5,FACTOR
SRDL R2,12

* Addition
ALR R3,R5    Add Low 

  BC 12,*+8   Carry ?
AL R2,ONE   Yes!!!
ALR R2,R4    Add High

* Subtraction
SLR R3,R5    Subtract Low
BC 3,*+8    Borrow ?
SL R2,ONE   Yes!!!
SLR R2,R4    Subtract High

CLOCK DS D
FACTOR DC FD'nnnnn' 
ONE DC F'1'

 

* New Style
STCK CLOCK
LM R2,R3,CLOCK
LM R4,R5,FACTOR
SRDL R2,12

* Addition

ALR R3,R5    Add Low 
  ALCR R2,R4    Add High

* Subtraction
SLR R3,R5    Subtract Low
SLBR R2,R4    Subtract High

CLOCK DS D
FACTOR DC FD'nnnnn' 

 



AJA-32

High-word instructions (z196)High-word instructions (z196)

• High 32 bits of a 64-bit register
• 16 more 32-bit registers!

– Add/subtract (signed, logical, 
immediate)

– Comparison (signed, logical, 
immediate) 

– Load/Store (byte, character, halfword, 
word; register and memory)

– Logical operations (AND, OR, XOR)

– Logical shifts
– Branch Relative on Count

• Many instructions use high- and low-
half 32-bit operands

• Add/subtract can be non-destructive

• Examples:

• AHHLR  R1,R2,R3

– R1 = High-half for sum

– R2 = High-half operand

– R3 = Low-half  operand

– Possible use:
• Accumulate subtotals in 32-bit low-

half  of a register
• Accumulate grand total in 32-bit 

high-half of the register

• BRCTH  R1,I2

– Use it for loop counts to free up 
low-half registers for addressing
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High-word instructions: summaryHigh-word instructions: summary

• Mnemonics look complex, but 
make sense after a while 

• Add:  AHHHR, AHHLR, AIH
– Logical: ALHHHR, ALHHLR, 

ALSIH, ALSIHN (CC not set!)

• Subtract:  SHHHR, SHHLR 
– Logical: SLHHHR, SLHHLR

• Compare: CHHR, CHLR, CIH

– Logical: CLHHR, CLHLR, CLIH

• Memory load: LBH, LHH, LFH
– Logical: LLCH, LLHH

• Store: STCH, STHH, STFH
• Load Immediate: LLIHF (not new 

with z196)

• Register Logical load 
– 32-bit:  LHHR, LHLR, LLHFR
– 16-bit:  LLHHHR, LLHHLR, 

LLHLHR

– 8-bit:    LLCHHR, LLCHLR, 
LLCLHR

• Logical operations   xxxx  R1,R2

– AND: NHHR, NHLR, NLHR

– OR:    OHHR, OHLR, OLHR

– XOR:  XHHR, XHLR, XLHR

• Logical Shifts   xxxx  R1,R2,I3  (!)

– SLLHH, SLLLH, SRLHH, 
SRLLH
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Distinct-operand  and load/store on Distinct-operand  and load/store on 
condition instructionscondition instructions

• Many common instructions destroy 
the target operand

– A, AR, SLL, XR, etc.

• Some new (familiar) 3-operand 
instructions let you preserve it
– Target register distinct from 

operand register(s)
– Mnemonics suffixed with K

– Example:  ARK  R
1
,R

2
,R

3      

– c(R
1
)  = c(R

2
)+c(R

3
)

• Add/subtract arithmetic and logical
• AND, OR, XOR

• Single-length logical and arithmetic 
shifts

• Load on condition:
– LOC, LOCG, LOCR, LOCGR

– Format: xxx R
1
,Op

2
,M

3

– Example: Max of  R1,R2 in R1
Old way:     New way:   
CR  1,2      CR   1,2    
JL  *+6      LROC 1,2,4  
LR  1,2      

• Store on condition:
– STOC, STOCG

– Example: Load R1 if contents = 0    
Old way:     New way:   
LTR 1,1      LTR  1,1    
JNZ *+8      LOC  1,X,8  
L   1,X        


