
Assembler University 303:
A Gentle Introduction to Trimodal
Programming on z/Architecture

SHARE 116 in Anaheim, Session 8981

Avri J. Adleman, IBM
adleman@us.ibm.com

(Presented by John Ehrman, IBM)
March 3, 2010

AJA-2

Historical perspectiveHistorical perspective

• Classical S360/370
– (1964) Only 24-bit addressing supported

• 370/XA
– (1981) Bimodal addressing: 24- or 31-bit addressing

• ESA/390
– (1988) Dataspaces and Access Registers

• z/Architecture
– (2001) Trimodal addressing: 24-, 31-, or 64-bit

addressing

AJA-3

Memory layoutMemory layout

• Below the 16M Line
– 24 Bit Addressing
– Code: RMODE=24
– Data: GETMAIN LOC=BELOW

• Above the 16M Line
– 31 Bit Address
– Code: RMODE=ANY

(may be below the line)

– Data: GETMAIN LOC=ANY

(may be below the line)

• Above the 2G Bar
– 64 Bit Address
– Code: None (as yet)
– Data: IARV64

0

16 Megabytes

(224 Bytes)

2 Gigabytes

(231 Bytes)

16 Exabytes

(264 Bytes)

Blackout Area (2G)

Below the 16M
Line

Data & Code

Above the 16M
Line

Data & Code

Above the 2G Bar

Data Only

System
Code and/or Data

AJA-4

Terminology: all machine generationsTerminology: all machine generations

Byte 8 bits

Halfword 2 Bytes (16 Bits)

Fullword (Word) 4 Bytes (32 Bits)

Doubleword 8 Bytes (64 Bits)

Quadword 16 Bytes (128 Bits)
• Notation: 64-bit based [32-bit based]

• 64-bit based (Doubleword)
• 32-bit based (Fullword)

• Positions:
• “High Order” refers to the low numbered bits
• “Low Order” refers to the high numbered bits

AJA-5

RegistersRegisters

• 16 General Purpose Registers
– In all generations of processors

• Pre-z/Architecture
– 32 bits in size (the “Traditional environment”)

• z/Architecture
– 64 bits in size: (sometimes called “Grande”)
– Low Order Word: same as with Pre-z/Architecture processors

• “Traditional” Instructions that use 24- and 31-bit addressing

– High Order Word: z/Architecture Extension
• New z/Architecture Instructions

– Modal and modeless
– 64 bit addressing

• Ignored by “traditional” modeless instructions

AJA-6

Address formatsAddress formats

• 24-bit addressing

• 31-bit addressing

• 64-bit addressing

8 Bits 24 bits

0,1 . . . 7,8 . . . 31

1 Bit 31 Bits

0, 1 . . . 31

 (32 Bits High Half: New) 64 Bits (32 Bits Low Half: Old)

0 . . . 31, 32 . . . 63

AJA-7

24-bit addressing in System/36024-bit addressing in System/360

• General Purpose Registers
– 32 bits

• High 8 bits (0 to 7) for user (flags, etc)
– BALR instruction (ILC, CC, Program Mask)
– DCB fields

• Low 24 bits (8 to 31) for addressing
• Special addressing-mode instructions

– None (none needed!)

AJA-8

24- and 31-bit addressing in 370/XA24- and 31-bit addressing in 370/XA

• General Purpose Registers
– 32 Bits

• High Order bit indicates addressing mode
– 0 for 24-bit addressing, 1 for 31-bit addressing

• Bits 1 to 7 depend on addressing mode
– Part of the address (31-bit addressing)
– Flags, etc. (24-bit addressing)

• Special addressing-mode instructions
– BSM (Branch and Set Mode)
– BASSM (Branch and Save and Set Mode)

• More about these two, later

AJA-9

64-, 31-, and 24-bit addressing in 64-, 31-, and 24-bit addressing in
z/Architecture z/Architecture

• General Purpose Registers: 64 Bits (Doubleword)
– 32 Bit Extension (High Order Word)

• Part of Address, Data, or Unused
– 32 Bit Original (Low Order Word)

• Retains Addressing Methodology for 24 -and 31-bit processing
• Low order Bit 63[31]

– Considered part of address -or- 64-bit addressing-mode indicator!

• Special addressing-mode instructions
– Traditional:

• BASSM, BSM
– New with z/Architecture:

• SAM24, SAM31, SAM64 and TAM

AJA-10

PSW description: 2 architecture modesPSW description: 2 architecture modes

• ESA/390 mode

• Doubleword (64 Bits)
– Bit 12 is always 1
– Bit 31 is always 0
– Instruction Address:

• Bits 33 to 63
– Addressing Mode (A)

• Bit 32 determines addressing
mode

– 0 in 24-bit mode
– 1 in 31-bit mode

• z/Architecture mode

• Quadword (128 Bits)
– Bit 12 is always 0
– Bit 31 contains the EA mode
– Instruction Address

• Bits 64 to 127
– Addressing mode

• Bit 31 (EA): Extended Addressing
Mode

• Bit 32 (BA): Basic Addressing
Mode

EA(0) EA(1)

BA(0) 24 Invalid

BA(1) 31 64

Addressing Modes

AJA-11

PSW formats: 2 architecture modesPSW formats: 2 architecture modes

• ESA/390: Doubleword (64 bits)

Instruction Address (Bits 0 to 31)

Instruction Address (Bits 32 to 63)

• z/Architecture: Quadword (128 bits)

Instruction AddressA

0 R 000 T I E Key 1 M W P AS CC Mask 0000 0000

0 R 000 T I E Key 0 M W P AS CC Mask 0000 000

Zero-Filled (Bits 33 to 63)B

E

AJA-12

Architecture-mode-dependent Architecture-mode-dependent
instructionsinstructions

• Processed differently based on Architecture Mode:
– Same code may behave differently in z/Architecture mode vs.

non- z/Architecture (ESA/390) mode
• Small (rare) number of cases

– Examples:
• BAKR and PR

– Saves/Restores 64 bit registers
• ESTA

– PSW functions
• BASSM & BSM

– We will talk more about these two …

• Differences are minimal
• They do what you would expect

AJA-13

Modeless instructionsModeless instructions

• Independent of architecture mode and addressing mode
– Function is identical

• Generally non-storage access type instructions
– Register-register type instructions
– Size of register access implied by instruction name

• General Purpose Registers
– Pre-z/Architecture instructions

• Operate only on low order word (bit 32[0] to bit 63[31])
• High order word (bits 0 to 31 of 64) ignored
• Examples: L, LR, A, AR, M, MR, SRDA, …

– z/Architecture instructions
• Operate either on 32-bit or all 64-bit registers
• Examples: LGR (64-64), AGFR (64-32), RLL (32), RLLG (64), …

AJA-14

"Regular""Regular" modal instructions (1) modal instructions (1)

• Addresses function differently based on addressing mode
– Base and Displacement are no different
– May be hybrid with modeless

• Very predictable
– No hidden surprises

• Generally the most commonly used instructions
– Examples:

• MVC – both storage operands depend on addressing mode
• Loads and Stores (hybrids)

– Arg1 (register) size is based on instruction name (e.g. L vs LG)
– Arg2 (base and displacement) depends on addressing mode

AJA-15

"Regular""Regular" modal instructions (2) modal instructions (2)

• Load Address Types
– LA, LAE, LAY: R1,D2(X2,B2)
– Modal Processing – 64-bit register

• 24-bit (high word is unchanged)
• Low order word

– Clears eight bits: 32[0] to 39[7]
– Retains all other bits

• 31-bit (high word is unchanged)
– Low order word
– Clears one bit: 32[0]
– Retains all other bits

• 64-bit
– Sets full 64 bit register

• Lengths in registers usually interpreted based on addressing modes
• Examples: CLCLE, MVCLE, TRE, … etc.
• Some do not, such as MVCL and CLCL

FF FF FF FF 00 FF FF FF

FF FF FF FF 7F FF FF FF

FF FF FF FF FF FF FF FF

AJA-16

"Irregular""Irregular" modal instructions modal instructions

• Function differently based on addressing mode
– Reference or address storage

• Base and Displacement
• Register storage reference

• Have possible “unpredictable” side effects or processing
– Visit: Principles of Operations
– Read the fine print!

• Not many cases; usually, extensive or complex instructions
– Examples:

• TRT sets GPR 1 differently depending on addressing mode
• ESTA (see code 1)

– If possible use code 4

AJA-17

Mode-switching instructionsMode-switching instructions

• Branch & Set Mode
– BSM R1,R2

• RR-Format:
– R1 = 32- or 64-bit register

• R1 ≠ 0
– Receives PSW addressing

mode bit only; rest unchanged
• R1 = 0

– No Address mode bit saved
– R2 = 32- or 64-bit register

• R2 ≠ 0
– Branch-to address
– New addressing mode

• R2 = 0
– No Branching
– No Address Mode bit saved

• Branch & Save & Set Mode
– BASSM R1,R2

• RR-Format:
– R1 = 32- or 64-bit register

• R1 any register number
– Receives current PSW

address (of next instruction)
and PSW addressing mode

– R2 = 32- or 64-bit register
• R2 ≠ 0

– Branch-to address
– New addressing mode

• R2 = 0
– No Branching
– No Address Mode bit saved

0B R1 R2 0C R1 R2

AJA-18

Register addressing-mode formats for Register addressing-mode formats for
BSM and BASSMBSM and BASSM

Bits: 0 to 31 32 33 to 39 40 to 62 63

Ignored 0 Ignored Address 0

 Ignored 1 Address 0

 Address 1

Bit Mappings

24-Bit Addressing Mode

31-Bit Addressing Mode

64-Bit Addressing Mode

Mode Setting Bit

AJA-19

BASSM & BSM addressingBASSM & BSM addressing

• Pre z/Architecture
– Always an even branch

address
– 32-bit Register Only
– High order bit mode setting

• 0 for 24-bit addressing
• 1 for 31-bit addressing

– Low order bit
• Part of instruction address

– 0: Valid
– 1: Odd instruction

address; Invalid!

• z/Architecture 64-bit
– Always an even branch

address
– 64-bit register

• Low-order bit (63)
• Not used as part of branch

address
– 0 for 24-, 31-bit addressing
– 1 for 64-bit addressing

• High/Low order bit 32[0]
– For 24-, 31-bit addressing

determines mode as in pre-
z/Architecture

– For 64-bit mode, part of
instruction address

Note !!!

AJA-20

Mode-switching examples: Mode-switching examples:
calls within a single assemblycalls within a single assembly

* Goto 24-bit mode from any mode
LA R15,GOTO24
BASSM R14,R15

* Goto 31-bit mode from any mode (1)
 L R15,GOTO31@

BASSM R14,R15
* Goto 31-bit mode from any mode (2)
 LARL R15,GOTO31
 OILH R15,X'8000'
 BASSM R14,R15

* Goto 64-bit mode from any mode
XGR R15,R15 For 24/31->64
LARL R15,GOTO64

 OILL R15,X'0001'
BASSM R14,R15

GOTO31@ DC A(GOTO31+X'80000000')

* Entry into 24-bit Mode
GOTO24 DC 0H Below the line

. . .
BSM 0,R14 Return to Caller

* Entry into 31-bit Mode
GOTO31 DC 0H Below/Above line

. . .
BSM 0,R14 Return to Caller

* Entry into 64-bit Mode
GOTO64 DC 0H Below/Above line

. . .
BSM 0,R14 Return to Caller

AJA-21

z/Architecture addressing-mode z/Architecture addressing-mode
instructionsinstructions

• SAMxx:
• Set Addressing Mode

– E-Type (2-Byte) format with Opcode X'010x'
• No registers set/modified; no register preload required
• Old mode not retained

– Types
• SAM24: Switch to 24 bit addressing mode
• SAM31: Switch to 31 bit addressing mode
• SAM64: Switch to 64 bit addressing mode

• TAM
– Test Addressing Mode
– E-Type (2-byte) format:
– Sets condition code based on current addressing mode

• CC=0 – 24-bit addressing (Branch on Zero)
• CC=1 – 31-bit addressing (Branch on Mixed)
• CC=2 – Unused
• CC=3 – 64-bit addressing (Branch on One)

– No registers set or changed
– Addressing mode is not switched

01 0B

01 0C

01 0D

01 0E

* Examples:

 SAM24 , To AMODE(24)

 . . .

 SAM31 , To AMODE(31)

 . . .

 SAM64 , To AMODE(64)

 . . .

 TAM , Test AMODE

 JZ IN24

 JO IN64

* Running in AMODE(31)

IN31 DS 0H

 . . .

* Running in AMODE(31)

IN24 DS 0H

 . . .

* Running in AMODE(64)

IN64 DS 0H

 . . .

AJA-22

BALR vs. BASRBALR vs. BASR

• BALR R1,R2

– Since S/360
– High order word

• 24-, 31-bit mode: ignored
• 64-bit mode: part of address

– Processing Modes (R1)
• 24-bit addressing contains ILC,

CC, Program Mask, 24 bit
address

• 31- and 64-bit addressing,
identical to BASR

– Deprecated now
• Use BASR for branch and link
• Use IPM instruction for CC

and Program Mask

• BASR R1,R2

– Since XA/370 (bimodal)
– High order word

• 24-, 31-bit mode: ignored
• 64-bit mode: part of address

– Processing Modes (R1)
• 24- and 31-bit addressing:

contains mode bit and address
• 64-bit addressing: contains

only the address, no mode
bit(s)

– Preferred method of branch and
link (or save) without mode
switching

• More consistent

AJA-23

Memory referencing by 64-bit addressesMemory referencing by 64-bit addresses

Blackout Area (2G)

Below the 16M
Line

Data & Code

Above the 16M
Line

Data & Code

Above the 2G Bar

Data Only

System
Code and/or Data

XX XX XX XX ?? ?? ?? ??

00 00 00 00 8? ?? ?? ??

00 00 00 00 0X ?? ?? ??

00 00 00 00 00 ?? ?? ??

XX At least one bit is not
zero among all XXs

?? Any bit combination

8? High-order bit is one, all
others any combination

0X High-order bit is zero,
seven other bits any
combination with at least
one bit set to one.

00 All bits zero

Legend

AJA-24

Special considerationsSpecial considerations

• 16M Line
– System data and code straddles the line
– Application code or data will not cross over

• GETMAIN either totally below or above the line
• Program object segment (class) will either be totally below or above the

line
• 2G Bar

– Blackout zone for MVS is first 2G above the 2G bar
• Technically, a valid addressable region!!
• Applies to a 64-bit address

– High word is all zeroes
– Low Order word has address with bit (32[0]) set to 1

• IARV64 will not allocate storage in blackout zone

AJA-25

The useful LLGT and LLGTR The useful LLGT and LLGTR
instructionsinstructions

• Load Logical “Grande” Thirty One Bits
– LLGT R1,D2(X2,B2)

• RXY Format:

– LLGTR R1,R2

• RRE Format:
• Source (Register or Storage)

– Fullword, 32 bits (Arg2)
• Target Register (R1)

– Doubleword, 64 bits
• High word set to all zeroes
• Low order word copied from source
• Low order word, High Bit 32[0] set to 0

E3 R1 X2 B2 DL2 DH2 17

B9 17 ?? R1 R2

FF FF FF FF

7F FF FF FF00 00 00 00

AJA-26

Example: Call and ReturnExample: Call and Return

TITLE ′BAD CASE′
MYPGM CSECT ,
MYPGM AMODE MY_AMODE
MYPGM RMODE MY_RMODE
AMODE EQU ... bit setting ...

. . .

L R15,YOURPGM@
BASR R14,R15
. . .

YOURPGM@ DC A(YOURPGM+AMODE)
END ,

YOURPGM CSECT ,
YOURPGM AMODE YOUR_AMODE
YOURPGM RMODE YOUR_RMODE

. . .
BSM 0,R14
END ,

TITLE ′GOOD CASE′
MYPGM CSECT ,
MYPGM AMODE MY_AMODE
MYPGM RMODE MY_RMODE
AMODE EQU ... bit setting ...

. . .
XGR R15,R15 <--Important!
L R15,YOURPGM@
BASSM R14,R15
. . .

YOURPGM@ DC A(YOURPGM+AMODE)
END ,

YOURPGM CSECT ,
YOURPGM AMODE YOUR_AMODE
YOURPGM RMODE YOUR_RMODE

. . .
BSM 0,R14
END ,

BAD CASE: Worked OK for MY_AMODE=YOUR_AMODE for 24 and 31 but fails for 64

Fails for MY_AMODE≠YOUR_AMODE

GOOD CASE: Works for all MY_AMODE and YOUR_AMODE values

AJA-27

Notes: Call and ReturnNotes: Call and Return

• Make sure CALL and RETURN types match
– BASSM with BSM
– BASR with BR

• Be sure alternatives are valid
– LINK vs. LOAD and CALL

• LINK: switches address mode as required
• LOAD and CALL: does not switch addressing mode

• Watch out for addressing-mode bits as part of address
– May have to clear address mode in register

• Especially “odd” address and AMODE 64

AJA-28

Example: The KILLER bit!Example: The KILLER bit!

TITLE ′BAD PROGRAM′

MYPGM CSECT ,

MYPGM AMODE 31
MYPGM RMODE ANY

STM R14,R12,12(R13)

BASR R11,0
USING *,R11

. . .

SAM64 ,

**

* The Next Instruction Abends!!! *

* (because BASR executed in AMODE(31)) *

**

MVC DATA1,DATA2

. . .

DATA1 DS CL10

DATA2 DC CL10′TESTING′

. . .

END ,

TITLE ′GOOD PROGRAM′

MYPGM CSECT ,

MYPGM AMODE 31
MYPGM RMODE ANY

STM R14,R12,12(R13)

BASR R11,0
USING *,R11

. . .

SAM64 ,

**

* The Next Instruction Saves the Day *

* (Removes Blackout Area Addressing) *

**

LLGTR R11,R11
MVC DATA1,DATA2

. . .

DATA1 DS CL10

DATA2 DC CL10′TESTING′

. . .

END ,

AJA-29

Linkage considerationsLinkage considerations

• New Instructions
– Save and Load 64 bit registers

• STMH, LMH, STG, LG, STMG, LMG, LMD
– More on this follows …

• Save Areas
– “Traditional” 72 byte save area

• 32-bit registers
• Standard Linkage

– New Save Area Layout
• 64-bit registers
• Standard linkage
• Transitional

AJA-30

Store/Load (Multiple) high halves of Store/Load (Multiple) high halves of
registersregisters

• Store/Load High Half of “Grande” Registers
– Only high word’s 32 bits saved

• Format RSY (extended displacement)
– STMH R1,R3,D2(B2)

– LMH R1,R3,D2(B2))

• Analogous to STM and LM
– Acts on range of registers

• No Store or Load instructions for high half of a single
register

• Use multiple-type instruction with R1 = R3

EB R1 R3 B2 DL2… DH2 26

EB R1 R3 B2 DL2… DH2 96

AJA-31

Store/Load entire 64-bit registers Store/Load entire 64-bit registers

• STG and LG
– Store and Load single 64-bit register
– Analogous to ST (STY) and L (LY)
– Format RXY:

• STG R1,D2(X2,B2)

• LG R1,D2(X2,B2)

• STMG and LMG
– Store and Load multiple 64-bit registers
– Analogous to STM (STMY) and LM (LMY)
– Format RSY:

• STMG R1,R3,D2(B2)

• LMG R1,R3,D2(B2)

E3 R1 X2 B2 DL2… DH2 24

E3 R1 X2 B2 DL2… DH2 04

EB R1 R3 B2 DL2… DH2 04

EB R1 R3 B2 DL2… DH2 24

AJA-32

Load Multiple DisjointLoad Multiple Disjoint

• LMD R1,R3,D2(B2),D4(B4)
– Format SS:
– Loads range of full 64-bit registers
– Uses two different locations

• High half registers loaded from Arg2

• Low half registers loaded from Arg4

• Equivalent to doing a LMH and LM in one instruction!
• Allows AMODE=64 code to load saved “Grande” registers from

two different save areas (high and low words)
– Prevents register corruption on needed addresses

• Notes:
– For performance, use sparingly:

• Use LMH and LM or LMG if possible
– There is no “Store Multiple Disjoint”

EF R1 R3 B2 D2 B4 D4

* Example of LMD

 STMH R2,R5,HIREGS

 STM R2,R5,LOWREGS

 . . .

 LMD R2,R5,HIREGS,LOWREGS

 . . .

HIREGS DS 4F Save High Half

LOWREGS DS 4F Save Low Half

AJA-33

Save areas: old and newSave areas: old and new

• IHASAVER macro in SYS1.MACLIB

• Types of save areas:
– “Traditional” 72 byte save area

• 32-bit register save
• Standard Linkage

– Format 4
• 64-bit register save
• Standard linkage

– Eye catcher “F4SA” at offset X'04'
– Relocates “previous” and “next” chains to offset 128 (dec) and 136 (dec)

– Format 5
• 64-bit register save like format 4
• 32-bit high register save area appended

– Used for transition from 32 to 64 bit register processing
• Standard linkage (like format 4)

– Eye catcher “F5SA” at offset X'04'
– Relocates “previous” and “next” chains to offset 128 (dec) and 136 (dec)

AJA-34

Save area layoutsSave area layouts

• Traditional • z/Architecture 64-Bit

+00 Reserved for Languages

+04 Previous Chain Pointer

+08 Next Chain Pointer

+0C Return Address (R14)

+10 Entry Address (R15)

+14 GPR R0 to R12 Saved

+00 Reserved for Languages

+04 ‘F4SA’ or ‘F5SA’

+08 Return Address (G14)

+10 Entry Address (G15)

+18 GPR G0 to G12 Saved

+80 Previous Chain Pointer

+88 Next Chain Pointer

 F5SA Extension

+90 High Half Save of

 GPR G0 to G15
Upper Half of Registers to “New” Save

Area

Lower Half of Registers to “Old” Save
Area

AJA-35

Sample programSample program

• Two routines
– Sample1

• Runs either in 24- or 31-bit mode
• Performs I/O to read and write records
• Driver for a 64-bit-mode processing routine

– RTN64
• Entered in caller’s mode (24 or 31)

– Uses F5SA save area to save registers
• Processes records in 64-bit mode

– Allocates and deletes storage above the 2G bar
• IARV64

– Accesses storage above the 2G bar
• Uses 64 bit registers

