Getting Started in (z/OS) Capacity Planning (Topics in Capacity Planning) Part II

Ray Wicks
561-236-5846
RayWicks@us.ibm.com
CPS Tools Group, Gaithersburg, MD
CPSTools@us.ibm.com

Bibliography

Ray has spent most of his career at IBM in the performance analysis and capacity planning end of the business in Poughkeepsie, London, and now at the Washington Systems Center. He is the major contributor to IBM’s internal PA & CP tool zCP3000. This tool is used extensively by the IBM services and technical support staff world wide to analyze existing zSeries configurations (Processor, storage, and I/O) and make projections for capacity expectations.

Ray has given classes and lectures worldwide. He was a visiting scholar at the University of Maryland where he taught part time at the Honors College.

He won the prestigious Computer Measurement Group’s A.A. Michelson award in 2000. His recent virtual sessions “Getting Started in Performance Analysis & Capacity Planning” workshop held for attendees in China and India was well accepted.
Trade Marks, Copyrights & Stuff

Many terms are trademarks of different companies and are owned by them.

On foils that appear in this presentation are not in the handout. This is to prevent you from looking ahead and spoiling my jokes and surprises.

Abstract

This tutorial is a two part introductory level session designed to introduce the student to the concepts required for Performance Analysis and Capacity Planning.

Emphasis is placed on large processor systems and examples will be largely drawn from z/OS but the concepts apply to all operating systems and hardware. The tutorial is organized to review the architecture where appropriate (albeit briefly). Topics:
- Conceptual and Perceptual structures for performance analysis and capacity planning,
- Using the Forced Flow law in PA & CP
- Performance Analysis queries for capacity planning,
- Processor performance data (ITRRs & MIPS),
- Resource Metrics for use in the Balance System model,
- Sample selection,
- Data preparation in z/OS,
- Using the utilization growth process in capacity planning,
Establish Power value in MIPS?

Processor Power: zPCR

Configuration Input
- Manual
- RMF Listing
- EDF file (CP3KEXTR)

Partition Detail Report

<table>
<thead>
<tr>
<th>Partition Id</th>
<th>Total</th>
<th>Capacity</th>
<th>Capacity</th>
<th>Capacity</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For specific configuration details, consult the IBM documentation for a 3% margin of error.
Processor Power: zPCR

<table>
<thead>
<tr>
<th>Partition Configuration</th>
<th>Partition Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCPs</td>
<td>Weight</td>
</tr>
<tr>
<td>12</td>
<td>392</td>
</tr>
<tr>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>301</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>392</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
</tr>
<tr>
<td>1</td>
<td>451</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>206</td>
</tr>
</tbody>
</table>

Maximum: MIPS available if other partitions are idle given logical configuration.

Minimum: MIPS entitled to if other partitions are demanding their fair share (Weight) given the logical configuration.

2097-E56 summary with this logical configuration

ITRRs Reality? A Fuzzy Patch?

8717 MIPS

<table>
<thead>
<tr>
<th>MIPS</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>701</td>
<td>702</td>
</tr>
<tr>
<td>703</td>
<td>704</td>
</tr>
<tr>
<td>705</td>
<td>706</td>
</tr>
<tr>
<td>707</td>
<td>708</td>
</tr>
<tr>
<td>709</td>
<td>710</td>
</tr>
</tbody>
</table>

© 2010 IBM Corporation
ITRRs Reality? A Fuzzy Patch?

Comparing Fuzzy Numbers
Summary: In a CPC Migration
Some Fiction, Some Truth

- New_CPU% = Old_CPU% x Old_Power/New_Power
- Migrating to a CPC twice as fast: would 50% old = 25% new?
- The Workload stays the same.
- The Workload changes
 - The number of transactions changes
 - Response time changes impact user behavior
 - Latent demand can rear its ugly head
 - Different workloads are impacted differently
- The Software Changes
- The Memory Changes
- The I/O Changes

I/O Intensity

Intensity = Rate * Response_Time (Note Little’s Law N = \lambda^T)
Traffic = Rate * Service_Time

Who’s using the I/O? And When?
Workload Contention Analysis

(Latent Demand?)

OCPU1 = % of time AINR >= 1 +#CPs where AINR = Average in and Ready

Is someone not getting it? Who?

CPU Delay By Workload

Ah the low priority is not getting it. So? How about Single Task Multi thread?
CPU Delay = F(CPU\%)

Does this look like a Queuing theory graph? But who is being delayed? This is a nice graph because of the stable environment.

I/O Delay by Workload
4 Typical Tasks

Guess who gets all they want? How much do we, the little people, get if there's one server? Two servers? Four servers? What's best?

4 Typical Tasks on the Ready Queue
(Latent Demand)

- What happens when you migrate from 2 slow servers to 1 fast server?
- Who complains?
- How can you anticipate the result?
How busy is this system? Pick an interval to model.

How busy is this system? If discretionary work is excluded, it peaks around 92%. Otherwise it peaks at 100%.
Workload Profile (NFU, BU)

- SMF Data Groupings RMF (70s)
 - Performance Groups
 - Service Classes
- SMF Data (30s, 42s, etc)
 - Job Name
 - Program Name
 - Dept. Name
 - RACF ID
 - ...

Resource Demands at Modeled Service Centers
- Homogeneous?
- Heterogeneous?
- Grouped?

Resource Description
- CPU Time
- I/O Rate
- I/O Devices, Data Sets, Rate, Resp
- Storage (MB)
- Transaction Rate
- Transaction Resp
- Sysplex

Growth Laws

Moore's Law describes an important trend in the history of computer hardware: that the number of transistors that can be inexpensively placed on an Integrated circuit is increasing exponentially, doubling approximately every two years.

Gates' Law says that the speed of software halves every 18 months.

- Maintenance adds path length → MIPS per Transaction goes up.
- User transactions increase in complexity → MIPS per Transaction go up.
Growth Laws

Moore's Law
Gates Law
Behind

11% 21% 29% 37%

Capacity Planning

Starting from a single point at t_0, we project growth until some threshold is reached – a Service level Objective or Agreement (SLO, SLA). Then we take action.
SLO or SLA for a Workload Group

- **Interactive**
 - For some number of users
 - At some threshold transaction rate
 - At some threshold Response Time
 - At some amount of power & I/O

- **Batch**
 - For some number of Jobs
 - At some rate
 - At some amount of power & I/O
 - At some turn-around threshold

Capacity Planning Actions

- Upgrade Hardware
 - Add CPs (PUs)
 - New Model
 - Add Another CPC
- Move Workload to another image
- Split Workload and move a piece
- Tune it?
- Continue to Suffer
How Accurate Is It?

Starting from an initial point of maybe dubious accuracy, we apply a growth rate (also dubious) and then recommend actions costing lots of money.

Accuracy

Accuracy is found in values that are close to the expected curve. This closeness implies an expected bound or variation in reality. So a thicker line makes sense.
At time t, is the prediction a precise point p or a fuzzy patch?

- **Fuzzy Factors**
 - Basis for prediction is a single sample taken from a set of samples with some distribution.
 - Growth Factor applied may be just better than fiction.
 - Prediction compounds the fuzz and is itself fuzzy.
 - Niels Bohr: “Prediction is very hard to do. Especially about the future.”
Modeling Interval Selection

- **Overall Usage**
 - By pool: GCPs, zIIPs, zAAPs, IFLs, ICFs
 - Percentile selection: 90th, 95th, or Peak? What does your SLA say?
- **Filter by**
 - Date (avoid weekends and holidays)
 - Time (shift or business period)
 - Target CPC(s)
 - Target partitions
 - Target workloads (by importance)

Interval Selection Step 1

Eliminate unwanted days (weekend) and hours (just prime shift)
Interval Selection Step 2

Select interval for business partitions. Peak? 90th percentile?

GCPs by Sample Interval

Remember: Logical configuration determines MIPS.

Selected interval 4/11, 14:00
Just Growth Utilization Analysis at 40% GCP Pool

Saturation Design Point = 90%

Potential zAAP MIPS (GCP MIPS) Added to zAAP MIPS.
Logical GCP Workload View

Adjusted Workload Data

Remove SYSTEM workloads, adjust capture ratios. Delete BATLO and add back 5% for BATLOW1.
Logical Projection

Physical Projection

Physical CPU% * Growth Factor. Include other partitions.
What Really Happens

After CPC reaches 100%, CPU% is distributed by weight. Within SYSTEMK, the CPU% is distributed by priority (importance). Lower priority work gets squeezed.

Storage Projection

What you need?? What you may have (RMF).
Storage = F(CPU%)?

Who is Using Storage?

Who is Using CPU?

Expectations for Batch

y = 1.9425x + 37.949

R² = 0.6681
Expectations for DB/DC

\[y = 2.1054x + 2383.7 \]

\[R^2 = 0.0119 \]

Note: \(R^2 \) doesn't change whereas perception does.

DB/DC Scaled to 0

\[y = 2.1054x + 2383.7 \]

\[R^2 = 0.0119 \]
Storage Growth

- Size depends upon the number of address spaces
- If growth → More Address Spaces → more storage

Some applications storage requirements grow as the load grows. Typically it's those applications where growth means more address spaces (TSO, batch). DB/DC often has workload growth without an increase in storage. Only after the number of address spaces increase does the storage change.
RMF Partition Report

CENTRAL STORAGE

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVAILABLE</td>
<td>1450630</td>
<td>1917651</td>
<td>1638857</td>
</tr>
<tr>
<td>SQA</td>
<td>17,478</td>
<td>18,443</td>
<td>17,840</td>
</tr>
<tr>
<td>LPA</td>
<td>9,842</td>
<td>9,842</td>
<td>9,842</td>
</tr>
<tr>
<td>CSA</td>
<td>43,884</td>
<td>43,946</td>
<td>43,913</td>
</tr>
<tr>
<td>LSQA</td>
<td>178,761</td>
<td>180,850</td>
<td>179,946</td>
</tr>
<tr>
<td>REGIONS+SWA</td>
<td>4379708</td>
<td>4845902</td>
<td>4658493</td>
</tr>
<tr>
<td>TOTAL FRAMES</td>
<td>6553600</td>
<td>6553600</td>
<td>6553600</td>
</tr>
</tbody>
</table>

FIXED FRAMES

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUCLEUS</td>
<td>2,629</td>
<td>2,629</td>
<td>2,629</td>
</tr>
<tr>
<td>SQA</td>
<td>15,528</td>
<td>16,493</td>
<td>15,890</td>
</tr>
<tr>
<td>LPA</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>CSA</td>
<td>12,187</td>
<td>12,187</td>
<td>12,187</td>
</tr>
<tr>
<td>LSQA</td>
<td>65,380</td>
<td>67,270</td>
<td>66,451</td>
</tr>
<tr>
<td>REGIONS+SWA</td>
<td>60,380</td>
<td>73,810</td>
<td>61,791</td>
</tr>
<tr>
<td>BELOW 16 MB</td>
<td>76</td>
<td>98</td>
<td>88</td>
</tr>
<tr>
<td>BETWEEN 16M-2G</td>
<td>38,193</td>
<td>39,699</td>
<td>39,097</td>
</tr>
<tr>
<td>TOTAL FRAMES</td>
<td>157,643</td>
<td>170,842</td>
<td>159,039</td>
</tr>
</tbody>
</table>

Sample Partitions

- **PS filtered**
- **MIPS**

(c)Ray Wicks 2011
Projection: Approach 1

Use and exponential function:

\[CS = 4000 + 0.04 \times (MIPS_{Used})^D \]

Known Known

Projection Approach 1

CS = 25600, MIPS = 2689
IF 25600 = 4000 + 0.04 \times (2689)^D
Then D = \log(((25600-4000)/0.04),10)/\log(2689,10)
D = 1.671451
Apply 30% per annum growth to MIPS
Use formula CS = 4000 + 0.04 \times (MIPS)^{1.671451} for future MIPS to project CS.
Projection Approach 2

Use ratio CS/MIPS
CS=25600, MIPS=2689; CS/MIPS = 9.52
CS/MIPS metric is [10%, 50%, 90%] = [6.77, 14.06, 37.31]
CS = 9.52 * MIPS

Result

Quarter	CS	MIPS	Ratio	Proj CS D Ratio	Proj CS/MIPS Ratio	S	CS/MIPS	
---------	-----	------	-------	-----------------	-------------------			
Input	0	25600	2689	25600	25600		1.671451	9.520268
1	2872	1.068	28111	1.098	27341		1.068	
2	3067	1.068	30913	1.100	29200		1.068	
3	3276	1.068	34041	1.101	31186		1.068	
4	3496	1.068	37533	1.103	33306		1.068	
5	3736	1.068	41431	1.104	35571		1.068	
6	3990	1.068	45782	1.105	37990		1.068	
7	4262	1.068	50638	1.106	40573		1.068	
8	4552	1.068	56059	1.107	43332		1.068	

Note 6.8% quarterly growth is 30% per annum.
CP Alternatives

Accuracy

Benchmark

Simulation

Analytic Modeling

Trending

ROTs

Difficulty (Time) & Cost ($$$)

Rules of Thumb

- ROTs (thresholds) are often quite adequate for CP

- Useful for Health Check
Rules of Thumb

- Honor your Father & Mother
- Do unto others as you would have them do unto you.
- Do unto others before they do unto you.
- Keep your CPU%<90%
- Don’t swim soon after eating.
- It is better to give than receive.

Philosophical Remark

\[\forall x \Phi x \equiv \neg \exists y \neg \Phi y \]

All swans are white \(\equiv \) There does not exist a swan which is not white

We understand a Rule by trying to break it.
Or
Learn the rules so you know how to break them correctly.
MIPS used, memory used, I/O used should be in some proportion.

The resource ratio is shown as a bar. If the bar is above the 90%ile line, it means that the value was in the top 10% of the samples reviewed. Similarly, if the bar is below the 10%ile line, the value is in the bottom 10%. Neither is good or bad; it's an flag to examine the amount of resource available.
Trending

- Trending predicts the future if the future looks like the past.
- Time Series Trending is complicated.
- Trending can answers overall CP questions.

Analytic Modeling

- Pre-built packages can be fast to solve and relatively easy to use.
- Flow is statistically driven and usually predefined.
- Accuracy?
 - Utilization within 5%
 - Response times within 30%
- Data acquisition is key.
- Calibration can be tough.
- Custom analytic models are really tough.
- Requires technical staff.
- Services are Available.
The relationship between Utilization and Server Response is sensitive to the priority of the workload. Utilization in Response time is “perceived utilization”. Watch out for: Logical vs physical utilization and single task workloads.

Simulation
- Pre-built packages are slower to solve and can be relatively easy to use.
- Flow is statistically driven and usually predefined but can be customized. (Application modeling.)
- Accuracy?
 - Utilization within 5%
 - Response times within 30%
- Data acquisition is key.
- Calibration can be tough.
- Custom models are build from service center building blocks.
- Simulation languages do exist.
- Specialized staff.
- Services exist.
Benchmark

- A lot of work in preparation
 - Hardware/Software
 - Workload
 - Lot’s of time.
- It does mimic the running environment the best.
- Software flow & queuing
- Software usage
- It's expensive.
- Variations limited by resources.
- Given the resources the benchmark can be complicated.
- **Tests the environment** - does it work?

CP Alternatives

- What questions do you have?
- What questions must you answer?
- Cost of the answer?
- Cost of getting it wrong?
- Time line?
- What happens if you get it wrong?
Things to Remember

- Be aware of the exceptions to the rule.
- A framework helps but it can make you see things that just aren't there.
- Impeccable mathematics does not replace knowledge of the facts.
- Protect yourself.
- Business decisions can override technical issues.
- Sometimes being understood is more important than being very accurate.
- Being "very" accurate may be a luxury of the idle.
- Other than the technicalities, there may be a hidden agenda.

Bibliography - I

The Art of Computer Systems Performance Analysis, by Raj Jain, Wiley. I like this one. It is thorough and complete. A very good reference.

Probability, Statistics, and Queuing Theory, by Arnold O. Allen, Academic Press Inc. This is the classic in queuing theory.

Exploring IBM S/390 Computers, by Jim Hoskins and George Coleman, Maximum Press. A general introduction to S/390 hardware and architecture. (with IBM G326-3006-06)

Bibliography - II

GC28-1761 MVS™ Planning: Workload Management. A guide to WLM.
SG24-5975 IBM zSeries 900 Technical Guide. A good hardware architecture and implementation Red Book.
LY28-1042 RMF™ Support for LPAR Management Time. Want to know how LPAR works?
SC28-1187 Large Systems Performance Reference by John Fitch. John goes into detail about the LSPR data.
SG24-4356 System/390® MVS Parallel Sysplex Performance. A good Red Book on Parallel Sysplex RMF reports and data.
SG24-4680 System/390 MVS Parallel Sysplex Capacity Planning. A good Red Book on the function and capacity of Parallel Sysplex.

A great URL for z/Series documents in general:
RMF in particular:
For zPCR,
search www.ibm.com for “zPCR” & “SoftCap”

Bibliography - III

EXCEL:

Applied Statistics For Engineers and Scientists Using Excel and MINITAB, by David Levine, Patricia Ramsey, Robert Smidt, Prentice Hall. This comes with a CD containing handy Excel Add-Ins.

Other Good Stuff:

The Black Swan: The Impact of the Highly Improbable, by Nassim Nicholas Taleb, Random House. This is an informative and entertaining approach to statistical analysis among other things.

Ray Wicks' Monographs

CPS document for this presentation and other interesting monographs can be obtained from your favorite IBMer. Goto:
Look for: Getting Started In CP.
These have been published in cmg.org/measureit.