
®

Introduction to
WebSphere MQ Clients

Morag Hughson
 IBM Hursley

 hughson@uk.ibm.com

Agenda

What are the MQ clients ?

The MQ client and how it works

How to connect a client to a server

• Channel Table Configuration

What facilities are available to clients
• Transactions

• Global Transactions

• Security

• Exits

What is a client ?

Allows access to messaging API on a
different machine than the queue manager
• Simpler administration

• Same programming capabilities (almost)

• Cheaper
• Free in most cases

However.....

MQ
Queue

Manager

MQ
Queue

Manager

MQ ClientMQ Client

ApplicationApplicationNo network – No messaging.No network – No messaging.

4

N

O

T

E

S

What is a client ?

In this world of client/server architectures, thin-clients, thick-clients and network
clients the word client is a much overused word which means different things to
different people.

For the purposes of this presentation a ‘client’ is merely an application which is
issuing messaging APIs but there is a network connection between it and the queues
and/or destinations.

In most cases this means the client application is on a different physical machine that
the server hosting the queues/destinations but this is by no means mandatory. It is
perfectly legal, and sometimes necessary, to run a client application on the same
machine as the queue manager server.

The advantages of using a client architecture is that there is no requirement to have
servers defined and managed on all the outlying machines. An enterprise may well
have thousands of applications wishing to do messaging but using clients the
administration can be limited to a few well controlled machines. The disadvantage is
that if the network is down for any reason the applications will not be able to connect
to the servers and do any messaging. It should also be noted that messaging in a
client applications is generally slower than in a locally connected application.

Messaging Clients

WebSphere
Platform

Messaging

WebSphere
Platform

Messaging

Direct IP &
Multicast

C++ Java
.NET

MQI
C, COBOL, PL/1, RPG

etc
JMS

WMQEXMS
C C++ C# (.NET)

WebSphere
MQ

WebSphere
MQ

WBI
Event Broker

Message Broker

WBI
Event Broker

Message Broker
WMQEWMQE

6

N

O

T

E

S

Messaging Clients

There are a number of messaging clients designed to suit different
environments, different programming languages and different programming
languages.

In the MQ world there are essentially two programming models.
• MQI

• JMS (for non-Java languages use XMS)

These programming models are available in a number of languages
• C

• C++

• C#

• Java

• COBOL

• Etc..

Which client to use

Power of MQI vs Portability of JMS

• JMS does not tie you to a provider (99% portable)

• JMS available for non-JAVA languages in XMS
• XMS is IBM specific though

Multiple backend servers required ?

• Choose JMS/XMS to talk to both WMQ and WPM

Communications Protocol

• SNA, SPX and NetBIOS only support by MQ C Client

How important is speed ?

• C tends to be faster than Java

• MQI tends to be faster than JMS/XMS

8

N

O

T

E

S

Which client to use

For the majority of cases the same application can be written using any of the
clients. There are a few exceptions to this where there is a particular function
available in only one client

• For example MQ supports the notion of message grouping whereas JMS doesn’t.

The decision as to which client to use often comes down to which one fits in best
with the current application environment. For example, if an enterprise codes all of
its applications in Java then clearly choosing one of the Java clients would be
sensible rather than using JNI to call the C client.

The other major decision is what programming model should be used. This comes
down to choosing between the MQI and JMS. The MQI is particular to WebSphere
MQ and while it is extremely common and powerful it is not provided by any other
messaging provider. As a consequence porting an application written to the MQI to
another provider would require considerable effort. JMS is the standard way of doing
messaging in a Java environment and, as such, applications written to JMS should
port easily to another provider. Note, however, than a JMS application on one
provider can not necessarily communicate with a JMS application on another
provider.

ApplicationServer
Model

MQ Server
Library

MQ
Server

Network
Communications

Client
Model

MQ
Server

Inter process
Communications

local or bindings mode

Application

MQ Client
Library

What is an MQ Client ?

10

N

O

T

E

S

What is an MQ Client ?

The WebSphere MQ Client support is part of the WebSphere MQ product
that can be installed and used separately from the MQ server. It provides a
set of libraries which can be linked with your applications to provide access
to WebSphere MQ queues without requiring the application to run on the
same machine as the queues.

Generally speaking an application is linked either with the client libraries or
with the server libraries (often called ‘local’ or ‘bindings’ mode). In bindings
mode the application communicates with the Queue Manager via an inter-
process communications link of some kind. In client mode the application
communicates via a network connection. However, as can be seen from the
diagram, the two models are logically equivalent. For this reason the
functionality provided at the client is almost identical to that provided by
local applications.

For further explanation please see Chapter 1. Overview of WebSphere MQ
clients in the WebSphere MQ Clients manual. This presentation contains
references to further chapters in the Clients manual.

MQ Client
Library

MQCONN MQCONNX MQDISC
MQOPEN MQCLOSE MQSUB
MQPUT MQPUT1 MQGET
MQCB MQCTL
MQINQ MQSET
MQCMIT MQBACK

MQI Channel

How does a client work ?

Application

MQ Server

MQI Calls

• Requires network access
• Each MQI Call shipped to server
• Response returned to application

12

N

O

T

E

S

How does a client work ?

An application that you want to run in a WebSphere MQ client enviroment
must first be linked with the relevant client library.

All the standard MQI functions, except MQBEGIN, are available to clients.
The key MQI call at this point is clearly MQCONN(X). It is this call which
determines either directly or indirectly which Queue Manager the application
will try to connect to. We’ll cover this in more detail later – let’s assume that
we manage to connect to a Queue Manager somewhere.

As the application issues each MQI call, MQ client code directs the request
to the queue manager over the communication link. The MQI request is
essentially serialised, sent over the communications link. The server
receives the request and issues the request on behalf of the client
application. It then send back a reply to the client.

The surrogate application issuing these requests on behalf of the client is a
running channel of type SVRCONN. Each remotely connected client will
have a SVRCONN channel running on its behalf. It is possible to have many
thousands of these channels running into a single Queue Manager.

1. Install a MQ client and MQ server system
Install MQ server using the SERVER CD ROM
Install the MQ client using the CLIENT CD ROM

2. Install MQ client and server on the same machine
Install MQ server from SERVER CD ROM
and select MQ clients you wish to install

3. Install MQ client from SupportPacs site
Download SupportPac
Extract and run installation program

See WebSphere MQ Clients manual
for platform specific details

How to install a client

14

N

O

T

E

S

How to install a client

See Chapter 3. Installing client components from WebSphere MQ products and
Version 5 MQSeries products (not z/OS)

WebSphere MQ Version 5 products (not z/OS) include easy installation feature that
helps install MQSeries clients quickly.

If you're using WebSphere MQ for z/OS or another WebSphere MQ product, see
Chapter 4. Installing WebSphere MQ clients with other MQSeries products.

WebSphere MQ SupportPacs can be downloaded from
• General Index

• https://www-304.ibm.com/support/docview.wss?uid=swg27007197

• MQC7 – MQ V7 Clients

• https://www-304.ibm.com/support/docview.wss?uid=swg24019253

• MQC6 – MQ V6 Clients

• https://www-304.ibm.com/support/docview.wss?uid=swg24009961

• MQC5 – MQ Client for VSE

• https://www-304.ibm.com/support/docview.wss?uid=swg24010051

• MQC4 – MQ Client for OpenVMS

• https://www-304.ibm.com/support/docview.wss?uid=swg24009031

What about Licensing ?

Installable clients can be downloaded for
free
• Available on many platforms

Client attachment feature required
for z/OS

Extended Transactional (XA) Clients are
not free

16

N

O

T

E

S

What about Licensing ?

The Client Attachment Feature for z/OS is chargeable.
• In MQ V7 5 Administration client connections, for example for use by MQ

Explorer, are allowed for free

Extended Transactional (XA) Clients are also chargeable.

Building a client application

Compile your application as you would for local application

Make sure you link your application with CLIENT libraries

• libmqic* for "C" applications on UNIX systems

• mqic32.lib for "C" applications on Windows

• imqb23* imqc23* for "C++" applications

Take care when linking threaded programs

• e.g. libmqic_r.a for AIX

Ensure that the correct runtime libraries are available

• e.g.mqic32.dll for Windows

18

N

O

T

E

S

Building a client application

MQ Client applications are essentially the same as normal, locally bound
applications. The source and therefore the object deck is identical. The
decision as to whether to run as a client is normally made at link time
depending on whether the application is linked with the client or server
libraries.

Some applications delay this decision still further until run time. By
dynamically loading the server or client library at run time the same
application program can run either in client or server mode depending on
the environment settings at run time. It is even possible for the same
application to run both as a local application and a client at the same time !

• (an example of this is SupportPac MO71).

For further information see See Chapter 11. Building applications for
WebSphere MQ clients

Client machine Server machine

MQI Calls

Application

CLNTCONN SVRCONN

How to connect a client to a server

The client must be able to identify which channel it should use to
communicate with the queue manager

How to specify the client's connection to a queue manager:
• Explicitly on the MQCONNX verb

• MQSERVER variable

• Client channel tables

Java client programs use either the MQEnvironment Java class or
JNDI (using JMS)

20

N

O

T

E

S

How to connect a client to a server

A channel is a logical communication link (see the WebSphere MQ
Intercommunications manual). Clients communicate with a server using
channel called a client connection (CLNTCONN). On the server there must
be a server connection (SVRCONN) channel available to connect to.

The client identifies which channel should be used when the application
issues an MQCONN/MQCONNX call.

The choice about which channel to use is made by checking the following (in
this order):

• The ClientConnOffset or ClientConnPtr in the MQCNO structure (if an MQCONNX was issued).

• The MQSERVER environment variable.

• The client channel definition table. This can be found as described by the MQCHLLIB and
MQCHLTAB environment variables or using the Active Directory on Windows.

• The channel definition table found in the default path.

Java clients don't use the above method. The standard MQ java classes use
the MQEnvironment class to identify the channel, while JMS clients use the
Java Naming and Directory Interface (JNDI) to identify channels.

Environment variables can be used to configure the way the
client works:
ƒMQSERVER defines a minimal client channel

ƒMQCCSID overrides the client machines CCSID

ƒMQCHLLIB Path to the directory containing the client channel
definition table
can point to a shared drive

ƒMQCHLTAB Name of the file containing the client channel
definition table (default: amqclchl.tab)

ƒMQNAME specifies the local NetBIOS name of the client

ƒMQSSLKEYR specifies the location of an SSL key repository

Configuring the client

22

N

O

T

E

S

Configuring the client

See Chapter 9. Using the WebSphere MQ environment variables

Not all the available environment variables are listed.
See the above chapter for descriptions of variables used less often.

Using the MQSERVER variable

The easiest way to define a client channel.
• BUT has default CLNTCONN properties, eg 4Mb MAXMSGLEN

Takes precedence over channel tables
• but is superseded by the use of the MQCNO structure.

set MQSERVER=ChannelName/TransportType/ConnectionName
• In Windows: use Control Panel -> System -> Advanced ->Environment Variables
• In UNIX: export MQSERVER

Examples:
• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/127.0.0.1
• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/127.0.0.1(1415)
• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/JUPITER.SOLAR.SYSTEM.UNI
• MQSERVER=SYSTEM.DEF.SVRCONN/LU62/BOX99

24

N

O

T

E

S

Using the MQSERVER variable

See Chapter 9. Using WebSphere MQ environment variables

Using the MQSERVER has the advantage that a client channel definition does not
have to be created on a server and then the client channel table distributed as
required.

However, MQSERVER cannot be used if more advanced options are required on the
channel (such as SSL) and the variable has to be set on each client machine.

A SERVER side channel still needs to be defined (a SVRCONN channel).

Channel name is case sensitive and it names a SVRCONN type channel.

Certain channel options are assumed e.g. MAXMSGL is preset to 4MB.

Use upper case for the transport type (TCP, LU62, NETBIOS, SPX).
• If you don’t you’ll get a 2058 reason code on the connect

ConnectionName is IP address, host name or partner LU name (or destination)

Channel definition tables

A channel definition table is:

• A binary file (not editable by a user)

• Created by RUNMQSC (or other MQ mechanism) as
AMQCLCHL.TAB (by default) when client channels are defined
• Use CSQUTIL MAKECLNT function on z/OS

• Located in directory (by default):
• <mq root>\qmgrs\QMGRNAME\@ipcc (Windows)
• <mq root/qmgrs/QMGRNAME/@ipcc (UNIX)

• Read by the client if no MQSERVER variable defined and
MQCONNX options are not used

26

N

O

T

E

S

Channel definition tables

See Chapter 8. Using Channels

Never remove the channel definition table from its default location; always
copy it.

You cannot append channel definition tables together. If you want to define
multiple client connection channels then you need to define all the channels
on one of the servers.

Channel definitions can be shared by more than one client. In other words,
the client definition table can be located on a file server.

To make a client channel definition table on z/OS you use the CSQUTIL
MAKECLNT function. For details see z/OS System Administration Guide.

AMQCLCHL.TAB

RUNMQSC
def chl(...) chltype(clntconn) ….

<mq root>\qmgrs\QMGRNAME\@ipcc (Win)
<mq root>/qmgrs/QMGRNAME/@ipcc (Unix)

copy
c:\mqm\qmgrs\qmgrname\@ipcc\AMQCLCHL.TAB

to
z:\mytable.tbl

MYTABLE.TAB

How do I create and deploy a channel table ?

28

N

O

T

E

S

How do I create and deploy a channel table ?

Choose one of your MQ server machines to define all your CLNTCONN
definitions. Find the AMQCLCHL.TAB file and copy it to a location which is
accessible by the client machines. The name of the file can be changed if
required but you must use the MQCHLTAB environment variable to MQ
what you called it.

By default, the client looks for the AMQCLCHL.TAB file in
Unix : /var/mqm
Windows : \<mq data root>

Environment variables, MQCHLLIB and MQCHLTAB, can be used to
enable the clients to locate the channel table

See Chapter 12. Running applications on WebSphere MQ Clients.

mars

venus
MQCONN ("venus",hConn,cc,rc);

chl2

connected via channel chl2 to “venus"

MQ ClientAMQCLCHL.TAB

Using Channel Definition Tables: Example 1

How is the QMNAME client channel attribute used?

• def chl(chl1) chltype(clntconn) trptype(tcp) conname(host1) qmname(mars)

• def chl(chl2) chltype(clntconn) trptype(tcp) conname(host2) qmname(venus)

30

N

O

T

E

S

Using Channel Definition Tables: Example 1

In this example the user has defined two client channels.

The client searches through the client channels in alphabetical channel name order. It
looks for a channel definition with a QMNAME field which matches what the
application specified on the MQCONN call. We therefore find channel ‘chl2’. If we did
not find any channel definitions which match the application would receive a 2058
(Queue Manager name error) reason code.

The transmission protocol and associated connection are extracted from the channel
definition and an attempt is made to start the channel to the machine identified
(venus). In order for the connection to be successful clearly there must be started
listener at the remote machine and the queue manager itself must be started.

If the connection can not be established then a 2059 (Queue Manager not available)
reason code is returned to the application. If you believe the Queue Manager is
running then look in the client error log for an error message explaining the reason for
the faliure.

The error log is in <mq install path>\errors\AMQERR01.LOG

mars

venus
MQCONN ("venus",hConn,cc,rc);

chl2

connected via channel chl3 to “venus"

MQ ClientAMQCLCHL.TAB

chl3

Using Channel Definition Tables: Example 2

Multiple routes to the same Queue Manager
• def chl(chl1) ….trptype(tcp) conname(host1) qmname(mars)

• def chl(chl2) ….trptype(tcp) conname(tokenring) qmname(venus)

• def chl(chl3) ….trptype(tcp) conname(ethernet) qmname(venus)

• def chl(chl4) ….trptype(tcp) conname(dialup) qmname(venus)

32

N

O

T

E

S

Using Channel Definition Tables: Example 2

In this example there are three channels, that all connect to the same queue
manager using different connections (ethernet, tokenring and dialup). This
provides a level of redundancy.

The client has to pick one, but which one?

The client attempts to start channel 'chl2' (since the search is in alphabetical
channel name order); its QMNAME attribute matches the name in the
MQCONN. However the communication link is currently broken.

Channel 'chl3' is now started instead because QMNAME still matches what
was specified on the MQCONN call.

So the client is connected to queue manager “venus" but via ethernet.

mars

venus

MQCONN (“planet",hConn,cc,rc);

THIS DOESN’T WORK (quite!)

MQ ClientAMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example 3

How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname(planet)

• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname(planet)

• …..

• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname(planet)

34

N

O

T

E

S

Using Channel Definition Tables: Example 3

In this example the client tries to connect to a queue manager first using
"chl1" but the communication link is down.

Secondly it tries "chl2" but the queue manager is not currently running.

Finally the client tries to connect using channel "chl5". The communications
link is running and the queue manager is running.

However, the name of the queue manager "pluto" does not match the one
specified on the MQCONN call “planet” and so this connection fails.

There are no remaining client channel definitions and so the MQCONN call
fails with reason code MQRC_Q_MGR_NOT_AVAILABLE.

What we need is a way to tell MQ that we, the application, don’t really care
what the actual Queue Manager name is.

mars

venus

MQCONN (“*planet",hConn,cc,rc);

This works !
Notice the ‘*’ preceding the Queue Manager name

MQ ClientAMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example 4

How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname(planet)

• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname(planet)

• …..

• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname(planet)

36

N

O

T

E

S

Using Channel Definition Tables: Example 4

This example is only different to example 3 in that the user has specified
"*planet“ rather than just “planet”.

The * specifies that the client does not care if the actual name of the Queue
Manager does not match the name given.

mars

venus

MQCONN (“ ”,hConn,cc,rc);

This works too !

MQ ClientAMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example 5

How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname()

• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname()

• …..

• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname()

38

N

O

T

E

S

Using Channel Definition Tables: Example 5

This example shows it also possible for a client to specify a blank Queue
Manager name, in fact this is a common scenario.

In a local application this means ‘connect to the default Queue Manager’. In
a client application is means ‘connect to any of the ‘default’ Queue
Managers’. In other words, any CLNTCONN channel with a blank Queue
Manager field.

Now, since the application has not specified the name of the Queue
Manager there is no problem with whatever the target Queue Manager
happens to be. In other words, “<blank>” is equivalent to “*”.

MQCONN(*planet)

2

4

4

CLNTWGHT

PREFERRED

PREFERRED

PREFERRED

AFFINITY

planetip.plutoTCPCLNTCONNchl3

planetip.venusTCPCLNTCONNchl2

planetip.marsTCPCLNTCONNchl1

QMNAMECONNAMETRPTYPECHLTYPEName

40%

40%

20%

New in
MQ V6

New in
MQ V7

mars

venus

pluto

Workload Balancing client connections

40

N

O

T

E

S

Workload Balancing client connections

When using a client channel definition table (CCDT) to configure the client
connectivity used by your client applications, you can provide a number of destination
queue managers to choose from in order to provide redundancy and alternate
destinations when one fails.

You can define these destinations with a weighting so that the spread of client
connections between the group of queue managers is as you require.

You can then use the same CCDT with all your clients – no need to produce different
copies of the CCDT to spread out your client connections across all the back-end
servers.

The default value of CLNTWGHT is 0 – which retains the V6 behaviour of primary
then secondary choices chosen by alphabetical order.

By default client channels have AFFINITY(PREFERED) set. This means that any
particular client application will attempt to connect to the same queue manager each
time. This is the same behaviour that was available in V6 with the mechanism that the
primary connection was attempted first, then if it was not available, the secondary
connection was attempted, and so on. If it is desired that connections from the same
machine are to be workload balanced as above, AFFINITY(NONE)
can be chosen.

Limiting client connections
Queue Manager

SVRCONN
MAXINST(4)

MAXINSTC(2)

Starting MQSC for queue manager TEST1.

DEFINE CHANNEL(SALES.CONNECT) CHLTYPE(SVRCONN)
MAXINST(4) MAXINSTC(2)

New in
MQ V6

New in
MQ V7

42

N

O

T

E

S

Limiting client connections

New attributes on your server-connection channels allow you to restrict the
number of client-connection instances that can connect in. Now you can
configure your system so that server-connection instances cannot fill up
your maximum number of channels.

There are in fact two attributes on your server-connection definition.

MAXINST restricts the number of instances in total for the specific channel
name.

MAXINSTC restricts the number of instances from a specific IP address for
that channel name.

MQCONNX (qmgr name, CNO, Hconn, cc, rc)

...

If used, overrides MQSERVER and CHANNEL tables

MQCD - Channel Definition

. . .
MQCHAR ChannelName[20]; /* Channel definition name */
. . .
MQCHAR ConnectionName[264]; /* Connection name */

MQCNO - Connection Options:
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of MQCONNX */
. . .
MQLONG ClientConnOffset; /* Offset of MQCD structure for client connection */
MQPTR ClientConnPtr; /* Address of MQCD structure for client connection*/
. . .

Using MQCONNX

44

N

O

T

E

S

Using MQCONNX

See Chapter 8. Using channels and Chapter 10. Using the message queue
interface (MQI)

MQCONNX calls provide an alternative way to identify which channel a
client should use. This method overrides the use of both the MQSERVER
environment variable and the use of channel definition tables.

The MQCNO structure allows you to pass an MQCD (channel definition)
structure to use directly to the client library. This means the channel can be
provided programmatically at run time.

The MQCD definition can either be provided via a pointer or via an offset.
The offset field is for those languages which often don’t have pointers such
as COBOL.

You can provide SSL related information in the MQSCO structure of the
MQCONNX call.

See sample amqscnxc.

MQCD cd = {MQCD_CLIENT_CONN_DEFAULT};

cno.Version = MQCNO_VERSION_2; // CD ignored if CNO not V2 or greater

cno.ClientConnPtr = &cd;

strcpy(cd.ChannelName,"SYSTEM.DEF.SVRCONN“);

strcpy(cd.ConnectionName,"VENUS.SOLAR.SYSTEM.UNI“);

MQCONNX (“”, &cno, &hQm, &cc, &rc)

Using MQCONNX

46

N

O

T

E

S

Using MQCONNX

The ClientConnOffset or ClientConnPtr can be used to specify the location of
the channel definition structure. In order for the location to be picked up by
the client the version of the MQCNO structure must be 2 or greater.

The details about the channel can now be placed in the MQCD structure.

Note: MQCNO_STANDARD_BINDING and MQCNO_FASTPATH_BINDING
are ignored when calling MQCONNX from a client. Whether the channel
actually runs using standard or fastpath is controlled via the MQIBINDTYPE
setting in the server configuration.

Debugging Connection problems

Check the error logs!
• Server error log <root>\qmgrs\<QM>\errors\AMQERR01.LOG
• Client error log <root>\errors\AMQERR01.LOG

Double check the MQSERVER variable

Does the amqsputc sample work?

Is the network working ?
• Can you "tcp ping" the host?

Is there an MQ listener running?

Is the channel table specified correctly
• Do the environment variables point to the right place?

48

N

O

T

E

S

Debugging Connection problems

These are some of the simple ways to try and diagnose why you can't
connect to a queue manager.

Don’t forget about the error logs. Both the client and the server machine
have error logs which will tell you why an MQCONN is failing.

Try your configuration with a tried and trusted application such as the
sample AMQSPUTC.

Check that the server you are trying to connect to is available, the network
connection is available, that the queue manager is running and that a
listener for that queue manager has been started.

Check that you have correctly identified the whereabouts of your channel
definition table.

JMS Applications

JVM

JMS API layer

Standard MQ Java
layer

MQ
Server

(Server) JNI TCP/IP (Client)

MQ Java Client

Java classes for accessing MQ

May be optional Install
component (e.g. Windows)

JMS interface also provided

50

N

O

T

E

S

MQ Java Client

The MQ Java client can be used to access a server directly using the Java
Native Interface (JNI) or as a client using the TCP/IP protocol.

The MQ Java interface maps fairly closely to the MQI in many ways,
however a JMS interface which complies with Sun standards is also
provided.

The MQ API is more complex but offers more control.

JMS is a simpler, higher-level API, although it does offer some facilities not
available in the MQ API. For example: the publish/subcribe model, and
message selectors.

import com.ibm.mq.*; // Include the MQ package

MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
MQC.TRANSPORT_MQSERIES);

MQEnvironment.hostname = "VENUS.SOLAR.SYSTEM.UNI";
MQEnvironment.channel = "SYSTEM.DEF.SVRCONN";

try
{

MQQueueManager qmgr = new MQQueueManager("");
}
catch (MQException ex) { ex.printStackTrace(System.err);}

Connecting Clients in Java

52

N

O

T

E

S

Connecting Clients in Java

This is a simple example showing how a Java client identifies which queue
manager it wishes to connect to.

The presence of a non blank hostname informs the client that the bindings
mode (direct server connection) cannot be used.

The other MQEnvironment variables (such as channel) can be used to
configure the client connection to the queue manager.

import com.ibm.mq.*; // Include the MQ package

MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
MQC.TRANSPORT_MQSERIES);

URL chanTab = new URL(ftp://ftp.server/mq/AMQCHLCL.TAB);
try
{

MQQueueManager qmgr = new MQQueueManager(“venus“,chanTab);
}
catch (MQException ex) { ex.printStackTrace(System.err);}

Connecting Clients in Java

54

N

O

T

E

S

Connecting Clients in Java

This is a simple example showing how a Java client identifies which queue
manager it wishes to connect to.

The presence of a non blank hostname informs the client that the bindings
mode (direct server connection) cannot be used.

The other MQEnvironment variables (such as channel) can be used to
configure the client connection to the queue manager.

import javax.jms.*;
import javax.naming.*;
import javax.naming.directory.*;
.
java.util.Hashtable environment = new java.util.Hashtable();
environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);
environment.put(Context.PROVIDER_URL, url);
Context ctx = new InitialDirContext(environment);

QueueConnectionFactory factory;
factory = (QueueConnectionFactory)ctx.lookup("cn=ivtQCF");

Connecting Clients in JMS

56

N

O

T

E

S

Connecting Clients in JMS

This is a short and incomplete example showing the start of a JMS
application which connects to a queue manager.

The application provides the location of a context where objects are placed
which can be used by JMS to start a connection to a queue manager.

The QueueConnectionFactory object can contain a channel name and other
details which identify how the application is to connect to a queue manager.

As always If you don't want to lose messages, code MQ*_SYNCPOINT on
MQGET and MQPUT calls then issue MQCMIT

Programming Considerations

Take care when specifying the queue manager name on MQCONN if using client
channel definition table...

Most MQI calls are SYNCHRONOUS and tend to be slower than in a server
environment.

Always be prepared for MQRC_CONNECTION_BROKEN.

Always code MQGMO_FAIL_IF_QUIESCING.

For optimum performance don’t use really short lived connections (MQCONNs)

Carefully code MQWI_UNLIMITED on MQGET calls.

Use Asynchronous MQPUT and Read Ahead if appropriate

58

N

O

T

E

S

Programming Considerations

In general the rules for programming clients is the same as for local applications.
However, effects tend to be exaggerated – calls are slower, more can go wrong and
windows tend to be larger..

Because there’s a real network and the Queue Manager is usually on a different
machine than the client a client is much more likely to receive an
MQRC_CONNECTION_BROKEN reason code from an MQI call. Be prepared for this
and deal with it appropriately.

The most expensive call is the MQCONN itself. For optimum performance it is
imperative you don’t connect too often and do a reasonable amount of work under
each connection.

As in local applications make sure all the processing of messages you care about are
done under a transaction. This means MQPUT and MQGET calls should use the
SYNCPOINT option. Failure to do so could lead to messages becoming lost. This
behaviour tends to be more obvious in the client environment because the failure
windows are much larger.

If large numbers of non-persistent messages are involved it is worth considering
using Asynchronous MQPUT and/or Read Ahead to avoid a line turnaround from the
client per message.

MQ Client

MQGMO_GET WAIT +
MQGMO_NO_SYNCPOINT

MQ Server

MQGMO_GET WAIT +
MQGMO_NO_SYNCPOINT

Message Arrives

Transactions

Message Is Lost!Message Is Lost!

Application
Dies!

60

N

O

T

E

S

Transactions

This slide demonstrates the last point on the Programming Considerations slide.

Message data can be lost if applications end while performing an MQGET with wait
without being in syncpoint:

• An application issues an MQGET with MQWI_UNLIMITED, but not in syncpoint.

• There are currently no messages available on the server so the server starts waiting for one to arrive.

• Meanwhile, the application ends unexpectedly before the MQGET returns.

• A message now arrives, so the server gets it from the queue to send it to the application.

• The server finds the application dead and so the message is discarded.

By getting messages in syncpoint if they are not correctly delivered they will
not be discarded.

It is recommended that an application always explicitly states MQGMO_SYNCPOINT
or MQGMO_NO_SYNCPOINT because the syncpoint default varies between
servers. (z/OS the default is syncpoint, Distributed the default is no syncpoint).

The key point here, though, is that the syncpoint model for local and client
machines is identical.

MQPUT/GET

EXEC SQL

SQL COMMIT

MQCMIT

MQ
Server

MQ
Server

Global Transactions

Database
Server

Database
Server

Multiple Resource Managers involved in the transaction

62

N

O

T

E

S

Global Transactions

The MQ client available for free download can only commit a unit of work
carried out on the queue manager it is connected to. The client cannot be
used to manage work carried out on other resource managers. Therefore
the MQBEGIN call is not available within normal MQ clients.

Work between different resource managers can only be loosely coordinated,
as shown by the slide, where different resource managers are accessed
using their native interfaces and under different units of work.

However, this is often sufficient. In the example shown the MQGET
operation is not committed until a successful commit of the database
update. This means that if the application crashes the request message is
rolled back to the queue and can be reprocessed. If the application crashes
after the database update but before the MQ transaction is committed then
the transaction would merely be replayed.

Database
client

App

Queue
Manager

XA
TM

NODE 1

Database Server

NODE 2

Local
Application

Database
client

App

Extended MQ
Client

XA
TM

NODE 1

Database Server

NODE 2

NODE 3

Queue
Manager

Extended
Transactional
Client

Extended Transactional Client

64

N

O

T

E

S

Extended Transactional Client

The function provided by the Extended Transactional Client allows a client
to participate in units of work coordinated by an XA transaction manager.

Externally coordinated transactions can now work with queue managers
located on different machines from where the transaction coordination takes
place.

The Extended Transactional Client still does not support the MQBEGIN call
- all units of work must be started using the XA interface by an external
transaction manager.

Potentially allows simpler administration by separating the machines with
the databases on from the machines with the queue managers on.

Note: you will only find benefit in the Extended Transactional Client if you
use another resource manager other than WebSphere MQ!

Client Server

Transport (Security)

Security Exit to Exit

Userid (real)
from

Environment
Userid to Exit

SSL

Security Security

Client Security

66

N

O

T

E

S

Client Security

See Chapter 7. Setting up WebSphere MQ client security.
Channel security exits

• The channel security exits for client to server communication can work in the same way as for
server to server communication. A protocol independent pair of exits provide mutual
authentication of both the client and the server.

See next slide for SSL

If no client security exit, userid passed in MQCD
• Windows NT/2K/XP and Unix -- pass the logged on UserID

• Windows NT/2K/XP only
Security ID (SID) passed in "Accounting" field in the message descriptor

If the MQ server and client are both on Windows NT/2K/XP, and if the MQ
server has access to the domain on which the client user ID is defined, MQ
supports user IDs of up to 20 characters.

On all other platforms and configurations, the maximum length
for user IDs is 12 characters.

Client Server

DEF CHANNEL ('SYSTEM.DEF.SVRCONN')
CHLTYPE(SVRCONN)
SSLCAUTH(REQUIRED)
SSLCIPH('RC4_MD5_US')
SSLPEER('CN="*", O="IBM", C="UK"')

Authentication,
Encryption, Integrity

DEF CHANNEL('SYSTEM.DEF.CLNTCONN')
CHLTYPE(CLNTCONN)
SSLCIPH('RC4_MD5_US')
SSLPEER('CN=“user", O="IBM",C="UK"')

SSL facility
ƒkey repository
ƒMQSSLKEYR
environment variable

SSL facility
ƒkey repository

Client Security - SSL

68

N

O

T

E

S

Client Security - SSL

See Chapter 9. The Secure Sockets Layer (SSL) on WebSphere MQ clients and the
WebSphere MQ Security book.

The Secure Sockets Layer (SSL) provides an industry standard protocol for
transmitting data in a secure manner over an insecure network. The SSL protocol is
widely deployed in both Internet and Intranet applications. SSL defines methods for
authentication, data encryption, and message integrity for a reliable transport
protocol, usually TCP/IP.

SSL can be enabled on client channels by specifying a CipherSpec on the client and
server connection channel definitions.

SSL cannot be used if using the MQSERVER environment variable.

If using the MQCNO structure to pass in the client channel on an MQCONNX call, a
CipherSpec can be set in the MQCD structure.

If using Active Directory on Windows you can use the setmqcsp control command to
publish the client-connection channel definitions in Active Directory. One or more of
these definitions can specify the name of a CipherSpec.

Security

Send

Receive

Security

Receive

Send

Client Server

Message exits and Retry Exits are not applicable

MQCONN(..)

MQOPEN(..)

MQPUT(..)
…

Exits

70

N

O

T

E

S

The ExitPath stanza of the ini file determines location of exits, if not fully qualified
on the DEF CHL command

Add to mqs.ini which is installed with both the server and the client.

Client : ClientExitPath:
ExitsDefaultPath=path

Server: ExitPath:
ExitsDefaultPath=path

Conversion is always done on the server to which the client is connected
Conversion exits, therefore, must be located on the server.

Exits

Summary

Clients are a simple, low administration and cheap way of
providing queuing throughout your network.

Consider which client to use based on
• Programming Language required (C,Java,C#, C++)

• Programming model required (MQI vs JMS)

• Performance

Client applications can do the same as local applications
• However, no network - no queuing

72

N

O

T

E

S

Further Information

WebSphere MQ Information Center
• Main index

• http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

• MQ Client information
• http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs10120_.htm

WebSphere MQ home page
• http://www.ibm.com/software/integration/wmq/

WebSphere MQ SupportPacs:
• General Index

• https://www-304.ibm.com/support/docview.wss?uid=swg27007197
• MQC7 – MQ V7 Clients

• https://www-304.ibm.com/support/docview.wss?uid=swg24019253
• MQC6 – MQ V6 Clients

• https://www-304.ibm.com/support/docview.wss?uid=swg24009961
• MQC5 – MQ Client for VSE

• https://www-304.ibm.com/support/docview.wss?uid=swg24010051
• MQC4 – MQ Client for OpenVMS

• https://www-304.ibm.com/support/docview.wss?uid=swg24009031

