
Highly Available Messaging
Rock solid MQ

WebSphere MQ development

IBM Hursley

dcoles@uk.ibm.comDavid Coles

hughson@uk.ibm.comMorag Hughson

Techniques and technologies to
ensure availability of messaging

WebSphere MQ technologies

• Queue Manager Clusters

• Multi-instance Queue Managers

• Shared Queues

Platform technologies

• Failover with HA clusters

• z/OS, Windows, Unix

Overview

Introduction to HA

WebSphere MQ HA technologies

Using MQ in an HA Cluster

Application considerations

Agenda

4

N

O

T

E

S

This page intentionally left blank.

Availability is a very large subject

• We won’t be covering everything

Not just HA technology – anything that can cause an outage is
significant

• This might be an overloaded system, etc

• We will only be covering HA technology

You can have the best HA technology in the world, but you have to
manage it correctly

HA technology is not a substitute for good planning and testing!

Introduction

6

N

O

T

E

S

Introduction

Availability is a very large subject. It is not simply a matter of selecting the correct hardware and
software. That in itself doesn’t provide an HA solution. It is necessary to consider anything that
may cause an outage or loss of service. This might be an outage of a machine, but it could just be
a slowdown in throughput which means you don’t meet your SLAs.

Even once you have tuned everything and set up your HA system, you can’t just sit back and
forget about it. You need to monitor the system to check it is working correctly and keep
maintaining it. HA is also not a substitute for good planning and management.

Just because you have implemented an HA environment doesn’t mean you can avoid testing!

Downtime
• A period when the system is unavailable

Single Point of Failure (SPOF)
• A part of a system whose failure prevents the entire system from working

High Availability (HA)
• Ensuring a certain (high) level of operational continuity for users of a system

Redundancy
• Additional instances of a critical component

High availability cluster
• A cluster of computer systems designed to give high availability. Typically, some

degree of redundancy, heartbeating and automation are provided.

Heartbeating
• Regular verification that an active system is still available

Some terms

Some terms

Failover
• Automatic switching of availability to a standby server

Switchover
• Controlled switching of availability to a standby server

Failback
• Restoration of a system back to its pre-failure state

Disaster Recovery (DR)
• Recovery of availability following major system or site disaster, sometimes with an

amount of data loss

Continuous Availability
• Ensuring complete operational continuity for users of a system

The objective is to achieve 24x7 availability of messaging

Not always achievable, but we can get close
• 99.9% availability = 8.76 hours downtime/year
• 99.999% = 5 minutes
• 99.9999% = 30 seconds

Potential outage types:
• 80% scheduled downtime (new software release, upgrades, maintenance)

• 20% unscheduled downtime (source: Gartner Group)
• 40% operator error
• 40% application error
• 20% other (network failures, disk crashes, power outage etc.)

Avoid application awareness of availability solutions

What are you trying to achieve?

10

N

O

T

E

S

What are you trying to achieve?

The objective is to achieve 24x7 availability of messaging. Applications should be processing
messages continuously, regardless of any failures in any component. This presentation
concentrates on the MQ and MB element, but they are not the only areas to think about.

Availability is not necessarily the same as ensuring processing of each and every message. In
some situations, some limited message loss is acceptable provided that availability is maximised.
For example, a message might expire or be superseded during an outage. Here, the important
thing is to ensure that messages are still getting through.

Service Level Agreements (SLAs) should define what level of availability your applications and
services should provide. The level of availability is often measured by the number of 9s.

HA solutions should increase availability given scheduled or unscheduled downtime. Scheduled
downtime is more common than unscheduled. Availability issues usually involve a multitude of
hardware and software systems.

Avoid application awareness of availability solutions and aim to have little or no code in the
application managing the environment. That’s a task better left to systems administrators.

With no redundancy or fault tolerance, a failure of any component can
lead to a loss of availability

Every component is critical. The system relies on the:
• Power supply, system unit, CPU, memory
• Disk controller, disks, network adapter, network cable
• ...and so on

Various techniques have been developed to tolerate failures:
• Uninterruptible Power Supply (UPS) or dual supplies for power loss
• RAID for disk failure
• Fault-tolerant architectures for CPU/memory failure
• ...etc

Elimination of SPOFs is important to achieve HA

Single Points of Failure

12

N

O

T

E

S

Single Points of Failure

Any part of a system whose failure can make the system unavailable is
single point of failure.

There are several techniques and technologies used to eliminate SPOFs,
such as deployment of redundant systems and hardware components.

Queue manager clusters

Queue-sharing groups

Support for networked storage

Multi-instance queue managers

HA clusters

Client reconnection

WebSphere MQ HA technologies

14

N

O

T

E

S

This page intentionally left blank.

Sharing cluster queues
on multiple queue
managers prevents a
queue from being a
SPOF

Cluster workload
algorithm automatically
routes traffic away from
failed queue managers

Queue Manager Clusters

16

N

O

T

E

S

Queue Manager Clusters

Although queue manager clustering does provide some facilities useful in
maintaining availability of messaging, it is primarily a parallel processing
feature. It is simple to deploy extra processing power in the cluster to
process more messages.

If a queue manager in a cluster fails, the failure can be mitigated by other
cluster queue managers hosting instances of the cluster queues. Messages
are marooned on the failed queue manager until it restarts, but messaging
through the cluster is still operational.

On z/OS, queue managers can be
members of a queue-sharing
group

Shared queues are held in a
coupling facility
• All queue managers in the QSG

can access the messages

Benefits:
• Messages remain available

even if a queue manager fails
• Pull workload balancing
• Apps can connect to the group

Queue
manager

Private
queues

Queue
manager

Private
queues

Queue
manager

Private
queues

Shared
queues

Queue-Sharing Groups

18

N

O

T

E

S

Queue-Sharing Groups

In the queue-sharing group environment, an application can connect to any of the
queue managers within the queue-sharing group. Because all the queue managers in
the queue-sharing group can access the same set of shared queues, the application
does not depend on the availability of a particular queue manager; any queue
manager in the queue-sharing group can service any queue. This gives greater
availability if a queue manager stops because all the other queue managers in the
queue-sharing group can continue processing the queue.

To further enhance the availability of messages in a queue-sharing group,
WebSphere MQ detects if another queue manager in the group disconnects from the
Coupling Facility abnormally, and completes units of work for that queue manager
that are still pending, where possible. This is known as peer recovery.

Support has been added for queue manager data in networked storage

• NAS so that data is available to multiple machines concurrently
• Already have SAN support

• Added protection against concurrent starting two instances of a queue
manager using the same queue manager data

• On Windows, support for Windows network drives (SMB)

• On Unix variants, support for Posix-compliant filesystems with leased file
locking

• NFS v4 has been tested by IBM
• Currently, Solaris has some issues with some network-attached storage systems.

Some customers have a “no local disk” policy for queue manager data

• This is an enabler for some virtualized deployments

• Allows simple switching of queue manager to another server following a
hardware failure

New in
7.0.1 on

distributedSupport for networked storage

20

N

O

T

E

S

Support for networked storage

While not directly an HA technology, this is an enabler for customers who want to
place all of the data remote from their servers such that it becomes possible to
replace one server with another in the event of a failure.

Support has been added for networked (NAS) storage for queue manager data and
logs. Previously, it’s been supported for error and trace directories, and for installation
binaries.

On Unix platforms, we support Posix-compliant filesystems which supports lease-
based file locking. The lease-based locking ensures that files unlock when the server
running a queue manager fails. This rules out NFS v3 for use in an HA environment
because the file locks are not released automatically for some failures and this will
prevent failover.

See this page for the latest support statement (include current Solaris limitations):
http://www.ibm.com/support/docview.wss?uid=swg21433474

On Unix, we have provided a test program (amqmfsck) which checks out the
filesystem’s behavior. If the tests do not pass, a queue manager using the filesystem
will not behave correctly. Output from this program can be used to diagnose a failure.

On Windows, we support Windows network drives (SMB – server message block).

Failover is the automatic switching of availability of a service
• For MQ, the “service” is a queue manager

Traditionally the preserve of an HA cluster, such as HACMP

Requires:
• Data accessible on all servers
• Equivalent or at least compatible servers

• Common software levels and environment

• Sufficient capacity to handle workload after failure
• Workload may be rebalanced after failover requiring spare capacity

• Startup processing of queue manager following the failure

MQ offers two ways of configuring for failover:
• Multi-instance queue managers
• HA clusters

Introduction to Failover and MQ

22

N

O

T

E

S

Introduction to Failover and MQ

Requirement to access data

• Shared disks – for an HA cluster, usually “switchable” between the servers

• Mirrored disks – must be truly synchronized mirror for integrity

Requirement for client connectivity

• IP address takeover (IPAT) is generally a feature of failover environments

• If a queue manager changes IP address, intelligent routers can hide this or MQ
network configuration can be defined with alternative addresses

Servers must be equivalent

• Common software levels – or at least compatible, to allow for progressive upgrade
of the servers

• Common environments – paths, userids, security

Sufficient capacity to handle workload

• Often, workload will be redistributed following a failover. Often, the systems are
configured for mutual takeover where the workload following failover is doubled
since the surviving servers must handle the traffic intended for both.

Failover times are made up of three parts:

• Time taken to notice the failure
• Heartbeat missed
• Bad result from status query

• Time taken to establish the environment before activating the service
• Switching IP addresses and disks, and so on

• Time taken to activate the service
• This is queue manager restart

Failover involves a queue manager restart

• Nonpersistent messages, nondurable subscriptions discarded

For fastest times, ensure that queue manager restart is fast

• No long running transactions, for example

Failover considerations

24

N

O

T

E

S

This page intentionally left blank.

Basic failover support without HA cluster

Two instances of a queue manager on different machines

• One is the “active” instance, other is the “standby” instance

• Active instance “owns” the queue manager’s files
• Accepts connections from applications

• Standby instance monitors the active instance
• Applications cannot connect to the standby instance
• If active instance fails, standby performs queue manager restart and

becomes active

Instances are the SAME queue manager – only one set of queue
manager data

• Queue manager data is held in networked storage

Multi-instance Queue Managers
New in

7.0.1 on
distributed

26

N

O

T

E

S

Multi-instance Queue Managers

“Basic failover”: no coordination with other resources like disks, IP addresses,
databases, user applications. There is also no sophisticated control over where the
queue managers run and move to (like a 3-node HACMP cluster, for example).
Finally, once failover has occurred, it is necessary to manually start a new standby
instance.

Only one standby instance is supported.

Architecturally, this is essentially the same as an existing HACMP/VCS setup, with
the data shared between systems. It does not give anything “stronger” in terms of
availability – but we do expect the typical takeover time to be significantly less. And it
is much simpler to administer.

Just as with a configuration using an HA cluster, the takeover is in essence a restart
of the queue manager, so nonpersistent messages are discarded, queue manager
channels go into retry, and so on.

1. Set up shared filesystems for QM data and logs
2. Create the queue manager on machine1

• crtmqm –md /shared/qmdata –ld /shared/qmlog QM1

3. Define the queue manager on machine2 (or edit mqs.ini)
• addmqinf –vName=QM1 –vDirectory=QM1 –vPrefix=/var/mqm

-vDataPath=/shared/qmdata/QM1

4. Start an instance on machine1 – it becomes active
• strmqm –x QM1

5. Start another instance on machine2 – it becomes standby
• strmqm –x QM1

That’s it. If the queue manager instance on machine1 fails, the
standby instance on machine2 takes over and becomes active

On Windows, all instances must run on domain controllers

Setting up a Multi-instance Queue Manager

28

N

O

T

E

S

Setting up a Multi-instance Queue Manager

Create the filesystems in networked storage and mount on the machines to run the queue
manager instances. The networked storage must be mounted at the same location on the
machines appropriate file permissions so that MQ can create the queue manager. Typically, a pair
of filesystems would be used, one for the queue manager data and one for the logs.

Create the queue manager on one machine specifying the DataPath (-md) and LogPath (-ld)
parameters as directories on the networked storage.

Define the queue manager on the other machine. This involves creating a QueueManager stanza
in mqs.ini. The new addmqinf command can be used to do that if you don’t want to edit the file
directly. On Windows, addmqinf creates the equivalent entries in the registry.

Start the first instance. You need to use ‘-x’ to indicate that you want to start an instance of a
multi-instance queue manager. If you omit ‘-x’, the queue manager starts but it will not “permit” a
standby instance – it’s not a multi-instance queue manager.

Start the second instance. You also need to use ‘-x’ to indicates that you want to start an instance
of a multi-instance queue manager. If you omit ‘-x’, the command fails because the queue
manager is already running. If you specify ‘-x’, the command starts a standby instance.

1. Normal
execution

Owns the queue manager data

MQ
Client

Machine A Machine B

QM1

QM1
Active

instance

QM1
Standby
instance

can fail-over

MQ
Client

network

168.0.0.2168.0.0.1

networked storage

Multi-instance Queue Managers

2. Disaster
strikes

MQ
Client

Machine A Machine B

QM1

QM1
Active

instance

QM1
Standby
instance

locks freed

MQ
Client

network

IPA

networked storage

168.0.0.2

Client
connections

broken

Multi-instance Queue Managers

3. FAILOVER

Standby
becomes

active

MQ
Client

Machine B

QM1

QM1
Active

instance

MQ
Client

network

networked storage

Owns the queue manager data

168.0.0.2

Client
connection
still broken

Multi-instance Queue Managers

4. Recovery
complete

MQ
Client

Machine B

QM1

QM1
Active

instance

MQ
Client

network

networked storage

Owns the queue manager data

168.0.0.2

Client
connections
reconnect

Multi-instance Queue Managers

MQ is NOT becoming an HA cluster

• If other resources need to be coordinated, you need an HA cluster

• WebSphere Message Broker and WebSphere MQ File Transfer
Edition will integrate with multi-instance QM

• Queue manager services can be automatically started, but with
limited control

The IP address of the queue manager changes when it moves

• MQ channel configuration needs list of addresses unless you use
external IPAT or an intelligent router

• Connection name syntax extended to a comma-separated list
• CONNAME(‘168.0.0.1,168.0.0.2’)

System administrator is responsible for restarting another standby
instance when failover has occurred

Multi-instance Queue Managers

All queue manager administration must be performed on the active
instance

dspmq enhanced to display instance information

• dspmq issued on “staravia”

• On “staravia”, there’s a standby instance

• The active instance is on “starly”

$ hostname
staravia
$ dspmq -x
QMNAME(MIQM) STATUS(Running as standby)

INSTANCE(starly) MODE(Active)
INSTANCE(staravia) MODE(Standby)

Administering a
Multi-instance Queue Manager

MQ Explorer MQ Explorer
automatically automatically
switches to switches to
the active the active
instanceinstance

Multi-instance Queue Manager
in MQ explorer

36

N

O

T

E

S

This page intentionally left blank.

MQ traditionally made highly available using an HA cluster

• IBM PowerHA for AIX (formerly HACMP), Veritas Cluster Server, Microsoft
Cluster Server, HP Serviceguard, …

HA clusters can:

• Coordinate multiple resources such as application server, database

• Consist of more than two machines

• Failover more than once without operator intervention

• Takeover IP address as part of failover

• Likely to be more resilient in cases of MQ and OS defects

SupportPac MC91 has been withdrawn

• Existing MC91 will work, but is not really appropriate any more

• New commands allow for simpler taker over, will be described in the info
center.

HA clusters

38

N

O

T

E

S

This page intentionally left blank.

In an HA cluster, queue manager data and logs are placed on a
shared disk

• Disk is switched between machines during failover

The queue manager has its own “service” IP address

• IP address is switched between machines during failover

• Queue manager’s IP address remains the same after failover

The queue manager is defined to the HA cluster as a resource
dependent on the shared disk and the IP address

• During failover, the HA cluster will switch the disk, take over the IP
address and then start the queue manager

HA clusters

40

N

O

T

E

S

The collection of servers that makes up a failover environment is known as a cluster.
The servers are typically referred to as nodes.

One node runs an application or service such as a queue manager, while the HA
cluster monitors its health. The following example is called a cold standby setup
because the other nodes are not running workload of their own. The standby node is
ready to accept the workload being performed by the active node should it fail.

A shared disk is a common approach to transferring state information about the
application from one node to another, but is not the only solution. In most systems, the
disks are not accessed concurrently by both nodes, but are accessible from either
node, which take turns to "own" each disk or set of disks. In other systems the disks
are concurrently visible to both (all) nodes, and lock management software is used to
arbitrate read or write access.

Alternatively, disk mirroring can be used instead of shared disk. An advantage of this is
increased geographical separation, but latency limits the distance that can be
achieved. But for reliability, any transaction logs must be the same - which means any
synchronous disk writes must also be sent down the wire before being confirmed.

HA clusters

HA cluster

MQ in an HA cluster
Cold standby

1. Normal
execution

MQ
Client

Machine A Machine B

QM1
data

and logs

QM1
Active

instance

can fail-over

MQ
Client

network

shared disk

168.0.0.1

2 machines
in an HA
cluster

HA cluster

MQ in an HA cluster
Cold standby

2. Disaster
strikes

MQ
Client

Machine A Machine B
QM1

Active
instance

MQ
Client

network

IPA

QM1
data

and logs

shared disk

168.0.0.1

IP address
takeover

Shared disk
switched

HA cluster

MQ in an HA cluster
Cold standby

3. FAILOVER MQ
Client

Machine B
QM1

Active
instance

MQ
Client

network

QM1
data

and logs

shared disk

168.0.0.1

Client
connections
still broken

HA cluster

MQ in an HA cluster
Cold standby

4. Recovery
complete

MQ
Client

Machine B
QM1

Active
instance

MQ
Client

network

QM1
data

and logs

shared disk

168.0.0.1

Client
connections
reconnect

HA cluster

MQ in an HA cluster
Active/active

1. Normal
execution

MQ
Client

Machine A Machine B
QM1

Active
instance

MQ
Client

network

168.0.0.1

QM2
Active

instance

QM2
data

and logs

QM1
data

and logs

shared disk

168.0.0.2

HA cluster

MQ in an HA cluster
Active/active

2. Disaster
strikes

MQ
Client

Machine A Machine B
QM1

Active
instance

MQ
Client

network

168.0.0.1

QM2
Active

instance

QM2
data

and logs

QM1
data

and logs

shared disk

168.0.0.2

HA cluster

MQ in an HA cluster
Active/active

3. FAILOVER MQ
Client

Machine A Machine B

MQ
Client

network

168.0.0.1

QM2
Active

instance

QM2
data

and logs

QM1
data

and logs

shared disk

168.0.0.2
QM1

Active
instance

Shared disk
switched

IP address
takeover

Queue
manager
restarted

MQ in an HA cluster
Active/active

This configuration is also sometimes called a "mutual takeover" system

In normal operation, both machines are running independent queue managers. If one of the systems
fails, then this configuration can migrate the failed queue manager to the working machine. So it still
appears to applications outside the cluster that you have 2 queue managers. The throughput of each
queue manager may degrade (depending on how heavily loaded they run) but at least the work is still
getting done.

With this kind of setup, you probably have a failback capability so that the queue manager can be
sent back to its original node when the failure has been corrected. Whether the failback is automatic
or not may be your choice, but I'd strongly recommend that it's done manually so that applications
which have already connected to the running queue manager do not have their connections broken
arbitrarily. You probably want to monitor the workload and only failback when there's not too much
work that's going to be disrupted by the failback.

A number of variations on the themes of cold and hot standby are also possible, for example having 3
nodes to host 2 queue managers (an "N+1" configuration). The availability of these options will
depend on the facilities available in your cluster software.

In this configuration, we've shown the IP address associated with each queue manager being
migrated. You will also need to keep a port number reserved for each queue manager (the same
number on both machines in the cluster), and have appropriate setup for runmqlsr or a queue-
manager listener object.

Multi-instance queue manager

Integrated into the WebSphere MQ product

Faster failover than HA cluster and MC91
• Delay before queue manager restart is much shorter

Runtime performance of networked storage

More susceptible to MQ and OS defects

Only fails over MQ Queue Manager (+related)

HA cluster

Capable of handling a wider range of failures

Multiple resource managers supported

Failover historically rather slow, but some HA clusters are improving

Some customers frustrated by unnecessary failovers

Require MC91 SupportPac or equivalent configuration

Extra product purchase and skills required

Multi-instance QM or HA cluster?

50

N

O

T

E

S

Page intentionally left blank

Shared Queues,
HP NonStop Server continuous continuous

MQ
Clusters none continuous

continuousautomatic

automatic automatic

none none

HA Clustering,
Multi-instance

No special
support

Access to
existing messages

Access for
new messages

Comparison of Technologies

52

N

O

T

E

S

Comparison of Technologies

This picture shows one view of the different capabilities. However you also
need to consider factors such as total hardware/software price, the
requirement for nonpersistent message availability (remember that they are
discarded by a failover-restart), and the requirement for persistent message
availability (not if you're using the shared queue support)

Application environment
• What does the application depend on

Application design
• Affinities implicit in the application design

• Message loss

MQ connectivity
• What happens when the application loses connectivity

How to make your own
applications HA

54

N

O

T

E

S

Page intentionally left blank

HA applications
Application environment

Simple applications only need a queue manager connection

Many business applications have dependencies, such as:

• Database instance, message broker, application server

• Configuration information

• Some data is machine-specific, other data is server-specific

• Get the ordering of dependencies and timing correct

How can you tell if it's working

• Such as PING QMGR

• Remember that restart might take a little while

Start/stop operations need to be robust

• Don't rely on anything!

• Remember that a 'stop' command might erroneously block

If you want to put your app in an HA cluster, you’ll need to answer these

56

N

O

T

E

S

HA applications
Application environment

Having a highly available queue manager is not a lot of use unless there are applications which are going to be
dealing with the messages. So you need to also think about how you are going to make your applications highly
available.

If you take an education class on something like HACMP then you will be taught how to do this. However, this
slide gives some high-level critical design steps you should look at, based on our experiences of making the HA
SupportPacs for MQ and the message brokers.

First off, you need to work out the unit of failover. This will probably be an instance of the "application program" if it
is a single executable process or perhaps a related group of processes. This program is often tied to a specific
queue manager or broker (perhaps it's a command line option).

What configuration information needs to be moved around with the application? Is there some that is machine-
specific (and hence should not move) and is there some that is instance-specific. Is there any synchronization
required between 2 machines? Where is the config information stored? In a file or in a system registry?
If you are going to be actively monitoring the health of your application so you can recover if it should fail, what is
the actual test you will apply? Checking for a process running? Looking to see if a file exists? Remember that if a
program is updating a file with its status, you might not be able to rely on that information if the program abends.
Start and Stop commands need to be able to recover from just about any state the application is in. While you
might try a 'graceful' stop, this may need to be repeated in a more forceful way if the operation does not complete
in a reasonable time. You might need to do some kind of synchronization between Start and the initial Monitoring -
to ensure you don't report a failure just because there's a slow restart.

Doing operations asynchronously within the HA framework is often a good idea, so that other components in the
system can also be monitored or restarted simultaneously. Again though, you might have some dependencies (eg
a database) to wait for.

HA applications
Application affinities

Affinities can be introduced by:
• The need to continue using the same instance of a service
• Multiple messages sent to the same application process
• Conversational-style applications

Try to avoid Affinities!
• they cause problems with availability and WLM
• also cause difficulties using generic channels or ports on z/OS

Carry any transient state in the message
• And replicate frequently-read data

Let other components handle partitioning or sharing of data
• e.g. store state in a parallel database

MQ clusters can handle application affinity requirements
• Use BIND_ON_OPEN option
• Could program a workload exit to remember previous messages

HA applications
Message loss

Does your application really need every message
delivered?
• If so, it’s quite fragile to failures

• Queue manager restart will lose nonpersistent messages

• Message expiry discards old messages

• Typically, disaster recovery (DR) situations involve message
loss

By careful design of the messages and applications, it is
often possible to keep messaging even without failover
• Some customers use workload balancing and application

redundancy instead

HA applications
MQ connectivity

If an application loses its connection to a queue manager,
what does it do?

• End abnormally

• Handle the failure and retry the connection

• Reconnect automatically, thanks to application container
• WebSphere Application Server contains logic to reconnect

• Use MQ automatic client reconnection

MQ client automatically reconnects when connection broken

• MQI C clients and JMS clients

Reconnection includes reopening queues, remaking subscriptions

• All MQI handles keep their original values

Can connect back to the same queue manager or another, equivalent
queue manager

MQI or JMS calls block until connection is remade

• By default, will wait for up to 30 minutes

• Long enough for a queue manager failover (even a really slow one)

Automatic client reconnection

New in
7.0.1 on

distributed

Can register event handler to observe reconnection

Not all MQI is seamless, but majority repaired transparently

• Browse cursors revert to the top of the queue

• Nonpersistent messages are discarded during restart

• Nondurable subscriptions are remade and may miss some
messages

• In-flight transactions backed out

Tries to keep dynamic queues with same name

• If queue manager doesn’t restart, reconnecting client’s TDQs are
kept for a while in case it reconnects

• If queue manager does restart, TDQs are recreated when it
reconnects

Automatic client reconnection

Enabled in application code or ini file

• MQI: MQCNO_RECONNECT, MQCNO_RECONNECT_Q_MGR

• JMS: Connection factories/activation specification properties

Plenty of opportunity for configuration

• Reconnection timeout

• Frequency of reconnection attempts

Requires:

• Threaded client

• 7.0.1 server (distributed or z/OS)

• full-duplex client communications (SHARECNV >= 1)

Automatic client reconnection

WMQFTE Overview for HA

Agent

QMAGENTAGENTAGENT
Agent

QM AGENTAGENT

Command

QM

OPERATIONS

Coordination

QM

LOGGING MONITORING

WMQ
Pub/Sub

Messaging

64

N

O

T

E

S

WMQFTE Overview for HA

Each agent is associated with exactly one “Agent QM”
• However one QM can host multiple agents

• FTE Agents can connect as an MQ Client or using bindings to connect to a local QM.

Connectivity is required between “Command QM” and “Agent QM”

Transfer results and audit information are sent point to point via “Agents
QM” to the “Coordination QM” where it is published to interested parties.

Some commands connect to the “coordination QM”
• Eg. Receive information about the MQFTE topology.

Messages are point-to-point except for the Coordination QM.

Making file transfers highly available

Since version 7.0.2 WMQFTE has had support for MQ Multi-Instance
queue managers

Configurable for coordination queue managers and agent queue
managers.

Done through the properties file

If the multi-instance queue manager fails over to the standby then the
agent will attempt to connect to the standby instance.

Also works for the database logger tool
http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/topic/com.ibm.wmqfte.admin.doc/high_availability_qms.htm

66

N

O

T

E

S

Making file transfers highly available

WebSphere MQ File transfer Edition multi-instance config
• (7.0.2) Coordination Queue Manager

• (7.0.2) Agent Queue Manager

• (7.0.3) Command Queue Manager

The database logger feature can also use an MQ multi-instance
queue manager

This is fully documented in the online Information center here:
http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/topic/com.ibm.wmqfte.admin.doc/high_availability_qms.ht
m

Other WMQ HA Reference material
• HA Solutions Redbook

• http://www.redbooks.ibm.com/abstracts/sg247839.html?Open

• Microsoft Cluster
• http://www.ibm.com/developerworks/websphere/library/techarticles/1101_bareham/1101_bareham.html?ca=drs-

Using an multi-instance coordination queue manager

Configured using the
coordination.properties file

coordinationQMgrStandby
property

Follows the standard MQ
notation of
<hostname>(<port_number>)

68

N

O

T

E

S

Using an multi-instance coordination
queue manager

To configure the coordination queue manager to use an MQ multi-instance
queue manager the coordinationQMgrStandby property needs to be set in
the coordination.properties file. The value for this property follows the
standard MQ notation of <host_name>(<port_number>)

The example shows the coordination.properties file for the coordination
queue manager FT7A:

The coordination queue manager is on host winmvsy1, and is available on
port 1701.
The standby instance is on host winmvsy0 and is available on port 1601

The properties file should contain:
• coordinationQMgr=FT7A

• coordinationQMgrHost=winmvsy1

• coordinationQMgrChannel=SYSTEM.DEF.SVRCONN

• coordinationQMgrPort=1701

• coordinationQMgrStandby=winmvsy0(1601)

Using an multi-instance agent
queue manager

Similar to the coordination queue
manager setup

Configured using the
agent.properties file

agentQMgrStandby property

Follows the standard MQ notation
of <hostname>(<port_number>)

70

N

O

T

E

S

Making file transfers highly available

To configure the agent queue manager to use an MQ multi-instance queue manager
the agentQMgrStandby property needs to be set in the agent.properties file. The
value for this property follows the standard MQ notation of
<host_name>(<port_number>)

The example shows the agent.properties file for the coordination queue manager
FT7B:

The agent queue manager is on host winmvsy1, and is available on port 1702.
The standby instance is on host winmvsy0 and is available on port 1602

The properties file should contain:
• agentQMgr=FT7B

• agentQMgrPort=1702

• agentDesc=

• agentQMgrHost=winmvsy1

• agentQMgrChannel=SYSTEM.DEF.SVRCONN

• agentName=AGENT_F7A

• agentQMgrStandby=winmvsy0(1602)

Use of MQ HA by Message Broker

How is it achieved on Broker.
• Broker “Global” Data is retained on shared network storage

• Broker Registry
• Components directory – Configuration Store
• Logs, errors and shared-classes remain on local machine.

• Software HA Support for Broker uses Multi-Instance Queue
Managers
• Pre-requisite : MQ v7.0.1.0 which delivered :

• Multi-Instance queue manager
• Automatic client reconnect

Machine A Machine B

Broker1
QM1

shared disks

can fail-over

Critical data persisted on shared disks

High Availability Cluster Coordination
- active / passive machines

Client
Application

Client
Application

network

HA coordinator

IP Address

HA coordinator

Machine A Machine B

shared disks

Fails-over

High Availability Cluster Coordination
- a failure occurs

Broker1
QM1

network

Client
Application

Client
Application

Machine B

Broker1
QM1

shared disks
Critical data persisted on shared disks

High Availability Cluster Coordination
- broker fails over to machine B

HA coordinator

network

can fail-over after machine A restarts

Machine A

Restart

IP Address

Client
Application

Client
Application

Software HA Support - multi-Instance broker Using
multi-instance queue manager

Machine A Machine B

QM1
Active

instance

QM1
Standby
instance

Broker1
Active

instance Broker1

networked storage

Broker1
Standby
instance

Owns the broker data

Can fail-over

Can fail-over

QM1

networked storage

Owns the queue manager data

MQ Client Application

No need for external HA co-ordinator

Broker relies on queue manager fail-over capability

Failover will occur when active queue manager terminates / stops

Software HA Support
- a failure occurs

Machine A Machine B

QM1

QM1
Active

instance

networked storage

fails-over

Broker1
Active

instance Broker1

networked storage

QM1
Standby
instance

1. QM1 stops on A

2. QM1 fails-over to machine B

3. Broker1 detects QM1 has stopped . Moves to Standby on machine A

4. Broker1 fails-over to machine B

Broker1
Standby
instance

fails-over

1

3

2

4

QM1

networked storage

MQ Client Application will auto reconnect

Software HA Support
- queue manager and broker fail over to machine B

Machine A Machine B

QM1

QM1
standby
instance

networked storage

Broker1
Active

instanceBroker1

networked storage

Owns the queue

manager data

Owns the

broker data

QM1
Active

instance

Broker1
standby
instance

can fail-over

can fail-over

Restart QM1

networked storage

MQ Client Application

Recovery is complete on machine B. Broker1 and QM1 are active

Restart QM1 on machine B in standby mode. BK1 still in standby mode

reconnected

Configuration – The Broker
Create multi-instance broker “Broker1” on node A

-> mqsicreatebroker Broker1 -q QM1 –e <shared network directory>

• creates shared registry and configuration data on shared network storage

• creates local registry reference to shared network path

• logs ,error data and shared-classes remain on local machine

Create broker instance “Broker1” on node B

-> mqsiaddbrokerinstance Broker1 –e <shared network directory>

• References the broker configuration on the shared network directory

• Creates local registry reference to shared network path

• logs, error data and shared-classes remain on local machine

Machine A Machine B

QM1
instance

QM1
instance

Broker1
instance

Broker1

networked storage

Broker1
instance

QM1

networked storage

Runtime
- Displaying status of multi-instance broker

Run mqsilist on Node A

->mqsilist
BIP1295I: Broker ‘Broker1' is a multi-instance broker
running in active mode on multi-instance queue manager
'QM1'.

BIP8071I: Successful command completion.

Run mqsilist on Node B
->mqsilist

BIP1294I: Broker ‘Broker1' is a multi-instance broker
running in standby mode on multi-instance queue manager
'QM1'. More information will be available when the broker
instance is active.

BIP8071I: Successful command completion.

MQ and operating system products provide lots of options to assist with
availability
• Many interact and can work well in conjunction with one another

But it's the whole stack which is important ...
• Think of your application designs
• Ensure your application works in these environments

Decide which failures you need to protect against
• And the potential effects of those failures

Also look for RedBooks and read the MQ HA whitepaper
• www.ibm.com/developerworks/websphere/library/techarticles/0505_hiscock/0505_hiscock.html
• http://www.redbooks.ibm.com/abstracts/sg247839.html

Summary

