Energy Management for IBM zEnterprise™ 196

February 28th, 2011
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zEnterprise Energy Efficiency Improvements</td>
</tr>
<tr>
<td>2</td>
<td>zEnterprise Energy Management Controls</td>
</tr>
<tr>
<td>3</td>
<td>Unified Resource Manager - Energy Monitoring and Management</td>
</tr>
<tr>
<td>4</td>
<td>IBM Energy Management Stack Integration</td>
</tr>
</tbody>
</table>
IBM zEnterprise System – Best in Class Systems and Software Technologies

A system of systems that unifies IT for predictable service delivery

Unified management for a smarter system: zEnterprise Unified Resource Manager

- Unifies management of resources, extending IBM System z® qualities of service end-to-end across workloads
- Provides platform, hardware and workload management

The world’s fastest and most scalable system:
IBM zEnterprise™ 196 (z196)

- Ideal for large scale data and transaction serving and mission critical applications
- Most efficient platform for Large-scale Linux® consolidation
- Leveraging a large portfolio of z/OS® and Linux on System z applications
- Capable of massive scale up, over 50 Billion Instructions per Second (BIPS)

Scale out to a trillion instructions per second:
IBM zEnterprise BladeCenter® Extension (zBX)

- Selected IBM POWER7® blades and IBM System x® Blades¹ for tens of thousands of AIX® and Linux applications
- High performance optimizers and appliances to accelerate time to insight and reduce cost
- Dedicated high performance private network

¹ All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represents goals and objectives only.
Goals for Energy Management

Cost Reduction and Avoidance
- Identify opportunities for energy cost reduction (Operating Expenses)
- Delay facility expansion due to energy or cooling constraints (Capital Expenses)

Remove Operational Barriers
- Manage power and cooling capacity to enable growth and flexibility
- Power Control (Capping, Power Saving)

Manage Risk and Streamline Compliance
- Document and validate energy efficiency gains to stakeholders
System z Energy Efficiency Roadmap

2007 z9
- Power Calculator
- Power monitoring via SAD

2008 z10
- Advanced power & thermal trending via Active Energy Manager
- Power-savings mode for unused and idle processors

2010 zEnterprise
- No growth in power and thermal footprint
- Added altitude & temp sensors to reduce fan power
- Improved power conversion and distribution
- More power efficient chips
- Enhanced power savings for unused and idle processors
- Overhead cabling option
- HV DC input power option
- Water Cooled option
- Add reporting of humidity & heat load to water vs. air
- Static Power Savings mode
- Query Max Potential Power
- Energy Management part of Unified Resource Manager
z196 High Voltage DC

- A direct HV DC datacenter power design can improve data center energy efficiency by removing the need for an additional DC to AC inversion step.

- System bulk power for all z196 systems is updated to support HV DC so the only difference in shipped HW to implement the option is the DC line cord:
 - This adds DC line cord feature codes
 - Nominal DC supply voltage supported will be:
 - 380V – 520V (absolute min 330V, absolute max 550V)
 - New technology, multiple proposed “standards”
 - Support both ground referenced and dual polarity HV DC supply
 - As defined will support -380V to -520V, +/-190 to +/-260V, +380V, etc.

- System saves approximately 3% input power when run on HV DC
z196 Water Cooling Option

- Water cooled cold plate on processor MCM in each processor book
- 2N Water Conditioning Unit (WCU) with independent chilled water connections
- One WCU can support system
- Heat Exchanger (HX) removes heat from exhaust air at back of both frames
- Typically ~70% of system heat load is removed to water.
- Air cooling back-up mode for maximum robustness (all heat load to air if lose chilled water in to WCU’s)

Internal, closed, conditioned water loop

Chilled water flow is function of heat load on WCU & chilled water temp.

Data Center Chilled Water

2N building chilled water lines will have better RAS – single facility supply/return shown here.
Z196 Water Cooling Option

- Reduce max air heat load to less than 10 kW (about 5 kW typical)
- Input energy saving 2 kW
- Additional power saving in data center typically about 3 kW (water cooling efficiency higher than air cooling efficiency)
z196 Capacity per Watt improvements

- ~30x improvement in system capacity / kW

15 years of CMOS: G2 to z196 *

<table>
<thead>
<tr>
<th></th>
<th>Power Increase:</th>
<th>Performance increased by:</th>
<th>Performance / kWatt increased by:</th>
<th>Performance / sq ft increased by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>17% per year</td>
<td>~300x</td>
<td>~30x</td>
<td>~190x</td>
</tr>
<tr>
<td>G3</td>
<td>20% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>21% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>35% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>41% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z900</td>
<td>65% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z990</td>
<td>61% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z9 EC</td>
<td>71% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z10 EC</td>
<td>94% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z196 Air</td>
<td>20% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z196 Water</td>
<td>20% per year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Capacity/kWatt assumes hot room, max plugged I/O power, max memory power and all engines turned on. Real world max capacity system is about 3/4 of this.

Note: G2 data is best available 8/27/2010
Three fundamentals of energy management

Measure/Trend Power Consumption
- Determine the power being consumed now
- Trending energy and thermals over extended periods of time

Allocate Power Correctly
- Rightsizing of power and cooling allocations
- Enables deployment of more servers within the physical limits of a data center

Reduce power consumed
- Reduce power in periods of low utilization to reduce energy cost
Power Estimation Tool for z196

Configuration
- **Model**: M32
- **Voltage group**: 208 to 240V group
- **Line voltage**: 208
- **Water cooled (FC 0159)**: Yes
- **Room temp**: <25C (82F)
- **Installed altitude (in feet)**: 0
- **Workload**: Normal power save
- **Flexible memory**: No
- **Balanced power (FC 3003)**: No
- **Cargo cages (FC see help)**: 1
- **Cayuga drawer (FC 4000 or 4004)**: 1

CEC data

<table>
<thead>
<tr>
<th>Card Name</th>
<th>FC</th>
<th>Quantity</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer configured processors</td>
<td>9</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Base SAPs</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ordered memory</td>
<td>32</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>BT-2 Fan-out Card for Cappr</td>
<td>0162</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>BT+K42-2 Fan-out Card for Cottca</td>
<td>0183</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Cargo Cages

<table>
<thead>
<tr>
<th>Card Name</th>
<th>FC</th>
<th>Quantity</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-daughter card</td>
<td>0218</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>IS-HP Daughter Card</td>
<td>0326</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Crypto Express3</td>
<td>0684</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>16 port ESCON (old Q225)</td>
<td>2323</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>16 port ESCON (new Q225)</td>
<td>2323</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>FICON Express4 10KM LX</td>
<td>3321</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>FICON Express4 SX</td>
<td>3322</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>FICON Express4 4KM LX</td>
<td>3324</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>FICON Express4 10KM LX</td>
<td>3325</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>FICON Express4 SX</td>
<td>3326</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>OSA-Express3 GbE LX</td>
<td>3352</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>OSA-Express3 GbE SX</td>
<td>3353</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>OSA-Express2 GbE LX</td>
<td>3354</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>OSA-Express2 GbE SX</td>
<td>3355</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>OSA Express2 1000base-T</td>
<td>3356</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>OSA-Express3 1000base-T</td>
<td>3357</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>OSA-Express3 10 GbE LR</td>
<td>3370</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>OSA-Express3 10 GbE SR</td>
<td>3371</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Power Sequence Controller</td>
<td>6531</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Results
- **System total heat load**: 20877 kW/hr
- **Utility input power**: 6086 kW

Max Potential Power

- **Main use cases**
 - Allows reducing power allocation for system since you know the maximum power system can draw even with faults and hot room
 - Allows facility and system people without knowledge of z system configuration and use details to query max possible power of system
 - Looks like power capping to higher level management tools

- **Base mechanism: Calculation of max potential power based on**
 - System configuration
 - Altitude (absolute pressure sensors in bulk power subsystem)
 - Hot room environment
 - Highest single fault service scenario power condition for this configuration
 - Reasonable tolerances

- **Max Potential Power should be used in conjunction with the System z Power Estimation Tool which allows pre-planning for power and cooling needs**
Optimize Power/Cooling Allocation with Max Potential Power

- Label Power
- Power typically allocated to a server
- Over Allocated
 Power not converted into compute cycles
- Max Potential Power
- Power budget not converted into compute cycles
- Power (watts)
- Time

← Trending (weeks, months) →
Static Power Saving Mode

- **Main use cases**
 - Periods of low utilization
 - CBU Systems: Systems used for disaster recovery

- **Base mechanism**
 - Build upon existing RAS functions (frequency/voltage variation) implemented originally for MRU failures (since z900)
 - Use frequency and voltage reduction to reduce energy consumption of CEC
 - Only explicitly triggered by customer. No autonomic changes done “under the cover”

- **Power Savings Mode expectations**
 - Frequency reduction: 17%
 - Processor voltage reduction: 9%
 - Expected system power savings: 15%-20% (configuration dependent)

- For air-cooled systems entering power save is limited to once a day.

- Update to “STSI: SYSIB 1.2.1 (Basic-Machine CPU) Performance-Reduction Indicator” to reflect entering and leaving power save mode
... value made possible by the Unified Resource Manager

- Factory installed and configured network
 - Improved network security with lower latency, less complexity, no encryption/decryption

- Gain flexibility, consistency and uniformity of virtualization
- Simplified network management for applications

- Simplified installation of hypervisors
- Gain significant time to market with improved speed of deployment

- Save time, cost and simplify asset management
- Decrease problem determination and resolution time for cross-platform resources
- Improve and simplify cross-platform availability procedures
- Enable broader and more granular view of resource consumption

- Insight into energy consumption and environmental data
 - Integrated energy management
 - Energy cost savings

- Allow critical workloads to receive resources and priority based on goal-oriented policies established by business requirements
- Smart business adjustments based on workload insight
- Provide deep insight into how IT resources are being used

- Useful for...
Unified Resource Manager - Energy Monitoring Overview

Monitoring data available at

- Monitors Dashboard
- Environmental Efficiency Statistics
- Additional detailed data provided for
 - **Blade**,
 - Energy and environmental data
 - **BladeCenter**
 - Aggregated energy and environmental data
 - **zCPC**
 - Energy and environmental data
 - Max potential power
 - **CPC**
 - Aggregated energy and environmental data
 - **Ensemble**
 - Aggregated energy data
Environmental Efficiency Statistics

To display new data, enter the start date and/or the duration, and click Refresh.

Starting date: 7/13/10
Duration: One day

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>Power Consumption (kW)</th>
<th>Power Consumption (Blu/hr)</th>
<th>Temperature (°C)</th>
<th>Temperature (°F)</th>
<th>CPU Utilization (%)</th>
<th>Blade CPU Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 13, 2010 12:00:00 AM</td>
<td>13.957</td>
<td>47657</td>
<td>20.0</td>
<td>78.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jul 13, 2010 1:00:00 AM</td>
<td>14.133</td>
<td>48224</td>
<td>28.0</td>
<td>82.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jul 13, 2010 2:00:00 AM</td>
<td>14.025</td>
<td>47855</td>
<td>28.0</td>
<td>82.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jul 13, 2010 3:00:00 AM</td>
<td>14.036</td>
<td>47803</td>
<td>28.0</td>
<td>82.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jul 13, 2010 4:00:00 AM</td>
<td>13.955</td>
<td>47719</td>
<td>28.0</td>
<td>82.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jul 13, 2010 5:00:00 AM</td>
<td>13.989</td>
<td>47732</td>
<td>28.0</td>
<td>82.4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total: 25
Energy Management Information - CPC and zCPC

- CPC:
 - Power rating: 36844 W
 - Power consumption: 8355 W
 - Power saving: Not entitled
 - Power capping: Not entitled

- zCPC:
 - Power rating: 27400 W
 - Power consumption: 7266 W
 - Ambient temperature: 29.6°C (85.3°F)
 - Exhaust temperature: 39.0°C (102.2°F)
 - Humidity: 24%
 - Dew point: 7.0°C (44.6°F)
 - Heat load: 24810 BTU/hr.
 - Heat load (forced-air): 24810 BTU/hr.
 - Heat load (water): 0 BTU/hr.
 - Maximum potential power: 8448 W
 - Maximum potential heat load: 28845 BTU/hr.
 - Power saving: Not entitled
 - Power capping: Not entitled
Energy Management Information - CPC and zCPC

CPC
- Power rating: 36844 W
- Power consumption: 8625 W
- Power saving: High performance
- Power capping: Disabled
- Cap range: 17655 W - 115050 W
- Current cap: 115050 W

zCPC
- Power rating: 27400 W
- Power consumption: 7394 W
- Ambient temperature: 30.3°C (86.5°F)
- Exhaust temperature: 40.0°C (104.0°F)
- Humidity: 23 %
- Dew point: 6.8°C (44.2°F)
- Heat load: 25248 BTU/hr.
- Heat load (forced-air): 25248 BTU/hr.
- Heat load (water): 0 BTU/hr.
- Maximum potential power: 8448 W
- Maximum potential heat load: 28845 BTU/hr.
- Power saving: High performance
- Power capping: Disabled
- Cap range: 8448 W - 27400 W
- Current cap: 27400 W
Energy Management Information - BladeCenter and Blade

Power rating: 9444 W
Power consumption: 1233 W
Ambient temperature: 21.0°C (69.8°F)
Exhaust temperature: 27.5°C (81.5°F)
Power saving: Custom
Power capping: Disabled
Cap range: 3127 W - 9444 W
Current cap: 9444 W

Power rating: 382 W
Power consumption: 131 W
Power saving: Low power
Power capping: Disabled
Cap range: 277 W - 382 W
Current cap: 392 W
Energy Management Information - Ensemble

![Energy Management Information - Ensemble Details](image)
Unified Resource Manager - Energy Controls Overview

- **zCPC**
 - **Power Save**

- **Blade**
 - **Blade power save**
 for all blades supporting power savings mode
 - **Blade power cap**

- **BladeCenter**
 - **BladeCenter group power save**
 Ensure that all elements in a group (that support it) are in power save or high performance state.
 - **BladeCenter group power cap**
 Ensures that the group power consumption stays at or below the maximum value specified in the group cap using automatic power budget distribution.

- **CPC**
 - **CPC group power save**
 - **CPC group power cap**
 - Uses max potential power as Pcap-min for zCPC
Set Power Saving Task
Energy Management Automation

The following scheduled operation will be created:

Set power saving

Select the date and time of the initial execution, then select a time window.

Date: 11/8/10
Time: 4:39 PM

Power Saving

Name Type Power Saving
P0000R97 CPC Custom
zCPC zCPC High Performance
C.2 BladeCenter Custom
C.2.05 POWER Blade High Performance
C.2.06 POWER Blade Low Power
C.2.07 POWER Blade High Performance

Total: 6 Filtered: 6

Save Cancel Help
Set Power Cap

![Screen shot of Set Power Cap window]

Select a resource from the table below to configure power capping.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Power Capping</th>
<th>Cap Value (Watts)</th>
<th>Cap Value Range (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0000R97</td>
<td>CPC</td>
<td>Custom</td>
<td>115050</td>
<td>17655-115050</td>
</tr>
<tr>
<td>zCPC</td>
<td>zCPC</td>
<td>Disabled</td>
<td>27400</td>
<td>8448-27400</td>
</tr>
<tr>
<td>C.2</td>
<td>BladeCenter</td>
<td>Enabled</td>
<td>3200</td>
<td>3127-9444</td>
</tr>
<tr>
<td>C.2.05</td>
<td>POWER Blade</td>
<td>Enabled</td>
<td>298</td>
<td>277-382</td>
</tr>
<tr>
<td>C.2.06</td>
<td>POWER Blade</td>
<td>Enabled</td>
<td>298</td>
<td>277-382</td>
</tr>
<tr>
<td>C.2.07</td>
<td>POWER Blade</td>
<td>Enabled</td>
<td>298</td>
<td>277-382</td>
</tr>
</tbody>
</table>

Total: 6 Filtered: 6
Set zCPC Power Saving Policy in the Activation Profile
Active Energy Manager Integration

- IBM System Director Active Energy Manager is an advanced energy manager provided through IBM Systems Director.
- AEM monitors, measures and controls energy usage at the data center level.
- Support across a large spectrum of IBM and non-IBM systems. System z support available since z10 GA1.
- AEM monitoring functions can be used free of charge.
- Enables to monitor System z in context of a heterogeneous data center.
- AEM 4.3.1 added Power Savings support for both zCEC and zBX.
IBM Integrated Energy Management

Tivoli energy management solution

- Financial Accounting for Energy
- Storage & Data Optimization
- Energy-Aware Provisioning and Scheduling
- Energy Dashboard for Business Service Management
- Optimize Energy Efficiency of Assets
- Data Center Mapping and Thermal Maps

Tivoli Monitoring for Energy Management

- Enterprise Energy Optimization & Reporting
- Enterprise Alerting for IT and Facilities
- Discover and Manage Non-IBM Systems
- Discover and Manage IBM Systems
- Views, Alerting, & Reporting for IBM Systems
- Asset Repository
- Security
- Lighting
- Fire
- HVAC
- UPS
- CRAC
- PDUs
- Sensors

IBM Systems Director Active Energy Manager

- Active Energy Management
- IT Assets
- Data Center Infrastructure Assets
- Facility Infrastructure Assets
zEnterprise 196 – Energy Efficiency and Management Summary

- Significant improvements in energy efficiency
 - Tremendous performance improvement with same energy footprint

- Enables additional efficiency gains
 - Water cooling option
 - Overhead cabling option
 - HV DC power input option

- Energy Monitoring and Management delivered as part of Unified Resource Manager
 - Extensive monitoring of energy consumption and key environmental parameters
 - Integrated Energy Management Controls

- Integration into IBM Energy Management stack through Active Energy Manager
“You can’t make a product greener, whether it’s a car, a refrigerator or a city, without making it smarter: smarter materials, smarter software or smarter design.”

(Thomas Friedman, New York Times)