

Right-Fitting Applications into Multi-Tier Hybrid Server Environments

Montgomery Bauman mbauman@us.ibm.com

Thursday, March 3, 2011: 8:00 AM-9:00 AM Room 201A (Anaheim Convention Center) Session Number 8620 MVS Core Technologies Project

Session Abstract

Fechnology • Connections • Result

- Right-Fitting Applications into Multi-Tier Hybrid Server Environments
- Thursday, March 3, 2011: 8:00 AM-9:00 AM
- Room 201A (Anaheim Convention Center)
- Speaker: Montgomery Bauman (IBM Corporation)
- A lot is being said about "Workload Optimization" these days. The notion at hand is ages old. Placing the right workloads onto the right servers (or virtual servers) so as to optimize IT value (i.e. reducing cost, maximizing time to value, and minimizing risk).
- The new IBM zEnterprise server offers not just a new bigger better faster mainframe (the z196), but a new approach to server design and systems construction. Whether you view zEnterprise as a "system of systems", or as a "hybrid server", the zEnterprise approach is a novel and potentially powerful new tool to be used to advance the cause of "Workload Optimization" and to derive the benefits therefrom.
- In this session, we will seek to understand zEnterprise as a platform for "Workload Optimization". We
 will also explore a methodology and toolset that facilitates the comparative analysis of zEnterprise vs
 traditional servers. The comparative analysis covers both technical and financial attributes of
 traditional multi-tier heterogeneous server configurations compared with hybrid-server configurations
 on zEnterprise servers.
- Past Share talks have been done for "Right-Fitting Applications into Consolidated Environments (RACE)". This talk expands the mission and scope of the RACE tools to explore not just virtualization cost & value analysis, but to also explore right fit analysis leading to overall "workload optimized" solutions.... solutions that cost less, improve time to value, and reduce risk.

<u>Topics</u>

Topics

Technology · Connections · Results

Ε

- 1. Workload Optimization Defined
- 2. Fit for Purpose Requirements Fitness
- 3. Total Cost of Ownership Financial Fitness
- <u>Appendix</u>

Workload Optimization - Defined

RE

Requirements

- Perform a function
- Deliver the function on time
- Deliver the function within budget
- Perform that function where needed
- Perform that function when needed
 - planned up time (and planned down time)
 - unplanned down time
- Perform that function how needed
 - in a manner the user finds productive (ease of use)
 - in a manner the user finds productive (response time)
- Make changes to the function over time
- Protect the function from illicit or illegal access or use

Costs

Building Costs

- The cost of building (or buying) & implementing components
- The cost of building (or buying) & implementing containers
- The cost of building (or buying) & implementing connectors
- The cost of building (or buying) & implementing platforms

Operating Costs

- The cost of operating components, containers, connectors, and platforms
- Including managing, monitoring, energizing, cleaning, and replenishing consumables
- Maintaining Costs
 - The cost of changing components, containers, connectors, and platforms
 - Including building changes, testing changes, and implementing changes

IT Services Composition

- Components
 - Code
 - Data
 - Rules/Scripts/Config Files/etc.

Containers

- Operating Systems
- Middleware
- Processes/Address Spaces
- The "API" Provider
- etc.

Connections

- TCP/IP RPC
- TCP/IP DRDA
- TCP/IP MQ
- etc.

Platform

- Discrete Server (& Operating System)
- Virtual Machine (& Operating System)
 - And Hypervisor
 - And Hosting server

IT Service Delivery Lifecycle: (and Component Development Lifecycle)

SHARE

Technology • Connections • Results

(Steps)

	Business Model	Architect	Code and Data	Engineer: Container Connector Platform	Test Plans	Operations Support Procedures	Operations Call Center
Build	1	2	3	3	4	4	
Test			5	5		5	
Run	6		6	6			6
Maintain	7	8	9	10	11	(12)	13

Topics

Technology · Connections · Results

Ε

2. Build Containers and Connectors

SHARE Technology · Connections · Results

5. Build Production Environment

SHARE Technology · Connections · Results

Viewpoints

- Users The Business
 - Business Process Owner / Application Owner / End User
 - Finance
- Architects
 - Patterns / Standards / Connectors
- Developers
 - Components / Languages / Data / Data Structures
- Engineers Platform and Infrastructure Engineers
 - Container Providers
 Middleware and Operating Systems
 - Platform Providers
 - (Virtual) Servers and (Virtual) Storage
 - Connector Providers
 - (Virtual) Networks and Middleware

- Testers
 - Functional Test
 - Usability Test
 - Acceptance Test
 - Load Test
 - Quality Assurance Test
- Operators Operations
 - Operators / Help Desk / Automation
 - Production Control
 - Problem / Performance Management
 - Change / Configuration Management
 - Auditors
 - Logs
 - Security
 - Data and privacy protection

Each "viewpoint" defines "OPTIMAL" in their own terms

Topics

So What is Optimal?

- Balance of all viewpoints
 - Requirements-based decision-making
 - Consensus building
 - Balance of all cost points
 - Transparent requirementsbased tradeoffs

- And decide:
 - How to build components
 - What containers to use
 - What **connectors** to use
 - What platform to use
 - For each container
 - For each lifecycle stage

An Approach

- Technology Exploration / Architecture Assessment
 - Solution Design Options
 - Options Generation & Understanding
 - e.g. zEnterprise Whiteboard Right-Fit Workshop
 - e.g. IBM Integration Architecture Workshop
- Fit for Purpose Assessment
 - Requirements-based Options Analysis
 - Creation of a Requirements-Fitness Scorecard
 - e.g. IBM Fit for Purpose Workshop
- Total Cost of Ownership Assessment
 - TCO-based Options Analysis
 - Creation of a Financial-Fitness Scorecard
 - e.g. IBM RACE Workshop

Topics

Architecture Analysis

- What's been done in the past?
 - Local architectural patterns
 - Industry architectural patterns
- Which edge do you seek?
 - Leading edge? (innovator / adopt and adapt new patterns)
 - Bleeding edge? (inventor / make your own patterns)
 - Trialing edge? (adopter / re-use tried and true patterns)

Architecture Analysis - Options

- Define the option:
 - Components
 - Containers
 - Connectors
 - Platforms
 - Lifecycle Support (dev/test/qa/prod environments)
- Limit the options analysis to those that are truly viable
 - Based upon your "patterns"
 - Based upon your "edge"
 - Boiling the ocean is not very productive

Topics

Financial Analysis

- Starts with requirements equity
- Depends upon technical equity
- And delivers a TCO scorecard

Fechnology · Connections · Results

SHARE Technology · Connections · Results

End of Section

SHARE Technology · Connections · Results

The New Business Service (New Smart Meter Customer Application)

- Industry: Electric Utility
 - Smart Grid adopter (Smart Meter provider)
 - Collecting customer meter data on 15 min intervals
- New customer service
 - Home energy usage alerts
 - When energy usage "over budget", owner gets notified
 - When energy usage "off pattern", owner gets notified
 - Security use case: "Away From Home"
 - If "away", and if energy usage pattern is amiss
 - Then owner (and optionally additional parties) get notified
- Web 2.0 UI (lite-browser)

Requirements

- Function: Home and Away-from-home energy-usage alerts
- Time Line: Production offering coincident with stockholders meeting
- Available to all home owners equipped with smart meters
 - From any browser and/or from downloaded mobile app
 - Large (growing) number of users solution scalability required
- 7x24x365 Uptime
 - High availability runtime with DR (RTO=30min RPO=5min)
- Homeowner userid / pin (customer profile) access control
 - Assured data privacy high priority
- Integration with existing customer management system
 - z/OS Sysplex CICSplex CICS TS Web Services (or EXCI)
- Integration with existing smart meter readings database
 - z/OS Sysplex DB2 for z/OS Remote SQL (jdbc or similar)

<u>Topics</u>

Options 3 4 5 6 7 8 and ...

- There are certainly many more options
 - z/VM zLinux
 - POWER PowerVM AIX
 - zBX POWER AIX
 - zEnterprise z/VM zLinux
 - etc.
- In a "real" Fit for Purpose effort, all viable options would be examined ... but care need be taken not to "boil the ocean"
- But for this talk (for this case study) we will keep things simple

Topics

• And just look at Options 1 and 2

Requirements Analysis – Step 1

- Focus on requirements
- Respect for viewpoints
- Seek consensus
 - When consensus not reached
 - Understanding differences and distances
 - Sensitivity analysis (do differences matter?)
- Step 1 List the requirements

Requirements List

Technology · Connections · Result

Requirements List

Data privacy

Scalability

Integration with existing customer management system

Development lifecycle support

Availability

Performance

Manageability

Integration with existing smart meter readings database

<u>Topics</u>

Sort and Weight the Requirements

- Step 2
 - Prioritize (i.e. sort) the requirements in the list
 - Assign a weight to each requirement
 - To indicate relative importance of each requirement

Rank	Requirements List		
1	Performance	6	
2	Scalability	5	
3	Integration with existing customer management system	4	
4	Integration with existing smart meter readings database	4	
5	Availability	4	
6	Data privacy	3	
7	Manageability	3	
8	Development lifecycle support	3	

Score the Options

Technology • Connections • Result

- Step 3 for each requirement, score the options
 - Assess each options ability to meet the requirement

Qualifier	Label	Score
Demonstrated Can Exceed	D.Exceed	7
Likely to Exceed	L.Exceed	6
Demonstrated Can Meet	D.Meet	5
Likely to Meet	L.Meet	4
Marginal	Marginal	2
Does Not Meet	No.Meet	0

			Option 1 (x86)		Option 2 (z)	
Rank	Requirements List	Weight	Score		Score	
1	Performance	6	L.Meet		L.Exceed	
2	Scalability	5	L.Meet		L.Exceed	
3	Integration with existing customer management system	4	L.Meet		D.Meet	
4	Integration with existing smart meter readings database	4	L.Meet		D.Meet	
5	Availability	4	Marginal		D.Meet	
6	Data privacy	3	L.Meet		D.Meet	
7	Manageability	3	L.Meet		D.Meet	
8	Development lifecycle support	3	D.Meet		L.Meet	

Topics

Rate the Options

Technology · Connections · Result

- Step 4
 - Multiply the requirement's weight by the option's score
 - Add up the results

			Option 1 (x86)		Option 2 (z)	
Rank	Requirements List	Weight	Score	Result	Score	Result
1	Performance	6	L.Meet	24	L.Exceed	30
2	Scalability	5	L.Meet	20	L.Exceed	25
3	Integration with existing customer management system	4	L.Meet	16	D.Meet	20
4	Integration with existing smart meter readings database	4	L.Meet	16	D.Meet	20
5	Availability	4	Marginal	8	D.Meet	20
6	Data privacy	3	L.Meet	12	D.Meet	15
7	Manageability	3	L.Meet	12	D.Meet	15
8	Development lifecycle support	3	D.Meet	15	L.Meet	12
				123		157

This is a "Requirements Scorecard"

Topics

SHARE Technology · Connections · Results

End of Section

Total Cost of Ownership Case Study – Financial Fitness

Technology · Connections · Results

Financial Fitness Analysis / TCO

- Prereq 1 Technical Equity
 - Each option being analyzed must be sized and configured to meet the same set of requirements
- Prereq 2 Solution Lifecycle Equity
 - Each option being analyzed must similarly meet the solution's lifecycle stages and timetable
- Prereq 3 Financial Equity
 - Each option being analyzed must receive similar financial analysis treatment

Technical Equity

- Equitable containers
- Equitable connectors
 - Capacity
 - Availability
- Equitable platforms
 - Capacity
 - Availability
- Equitable component-lifecycle support

Topics

Solution Lifecycle Equity

- Solution investment period
- Production date
- Component development staging

Technology • Connections • Results

Financial Equity

- Treatment of assets at end of life
- Depreciation treatment
- Trade-In treatment
- Tech refresh treatment

Technology · Connections · Results

RACEv and RACEzOS

- TCO Cost Modeling Tools
- Spreadsheets
 - RACEv for distributed server (including zLinux) costing
 - RACEzOS for non-zLinux costing (usually z/OS)
- Use RACEv and RACEzOS together to model "hybrid solutions"
 - aka Multi-Tier Multi-Platform configurations

Step 3 – RACEv zEnterprise Target Distributed Elements

Fechnology • Connections • Result

Step 6 – Complete the Models Examine the Results

Technology • Connections • Resul

Technology · Connections · Results

RE

Step 7 – Examine More Results

Step 8 - Iterate

- Refine Inputs
- Add Additional Cases and Solution Configurations
- Sensitivity Analysis
- Assumptions Analysis
 - The cost & value of zEnterprise Unified Resource Manager
 - The value of co-location
 - The cross-server sizing
 - Discounting
 - Admin ratios
 - etc.
 - etc.
 - etc.

Technology · Connections · Results

And Finally

- Merge the Requirements Analysis...
- And the TCO Analysis

SHARE Technology · Connections · Results

End of Section

Two-Column Slide (Type Size=28)

- Topic A (Type Size=24)
 - Subtopic 1 (Type Size=22)
 - Subtopic 2 (Type Size=22)
 - Subtopic 3 (Type Size=22)
 - Subtopic 4 (Type Size=22)
- Topic B (Type Size=24)

- Topic C (Type Size=24)
 - Subtopic 1 (Type Size=22)
 - Subtopic 2 (Type Size=22)
 - Subtopic 3 (Type Size=22)
 - Sub-subtopic 1 (Type Size=20)
 - Sub-subtopic 2(Type Size=20)
- Topic D (Type Size=20)

S H A R E Technology · Connections · Results

Technology · Connections · Results

RE

Slide with Text & Graphic

SHARE Technology · Connections · Results

End of Section

