

Understanding IMS Locking

Rich Lewis IBM

March 2, 2011 8566

IMS Locking White Paper

- "IMS Locking with Program Isolation or the IRLM"
 - Rich Lewis
 - Published in 2009
 - www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101535
 - Contains detailed information about IMS locking
- This presentation is based on information in the white paper
 - The white paper should be used with this presentation

Agenda

- Lock managers
- Lock compatibility matrices
- Full function locks
- Fast Path locks
- Lock timeouts
- Deadlocks
- Design advice
- Space for lock control blocks
- PI vs. IRLM
- Locking Reports

Lock Managers

- IMS has three lock managers
 - Program Isolation (PI)
 - Does not support data sharing
 - Locks are managed by the IMS online system
 - IRLM
 - May be used with or without data sharing
 - IRLM is a separate address space
 - Multiple IRLMs are used with data sharing across LPARs
 - Fast Path lock manager
 - Used without data sharing
 - Fast Path also uses PI or IRLM
 - Required for deadlock detection

Lock Compatibility

PI and FP lock compatibility matrix

Lock Level	1	2	3	4
1 – read	Y	Y	Y	N
2 – share	Y	Y	N	N
3 - update	Y	N	N	N
4 - exclusive	N	N	N	N

Lock level names are often confusing

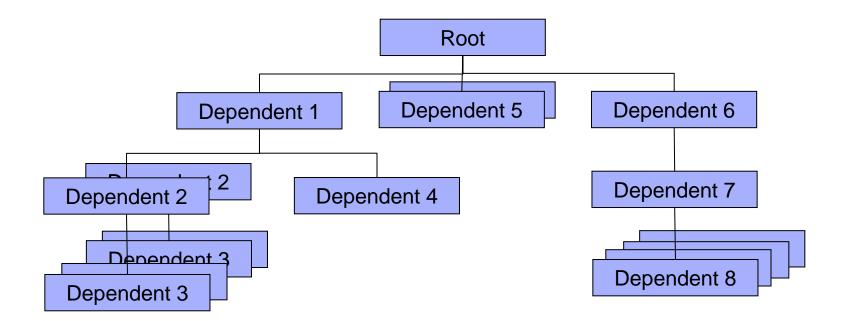
- Reads may require a read, share, update, or exclusive lock
- Locks for updates sometimes use read locks

IRLM lock compatibility matrix

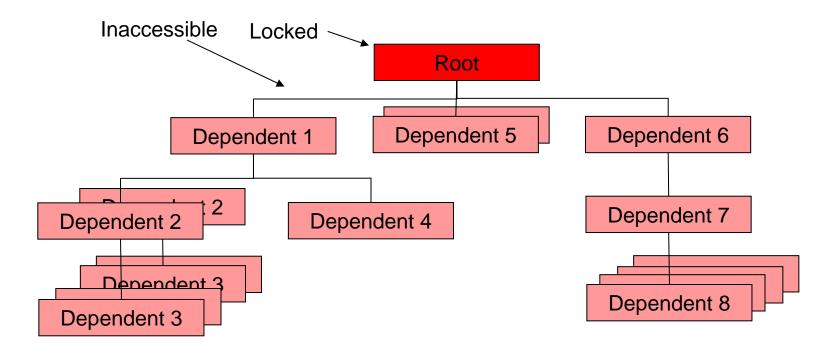
Lock Level	2	3	4	6	8
2 – read	Y	Y	Y	Y	N
3 – erase	Y	Y	N	N	N
4 – share	Y	N	Y	N	N
6 – update	Y	N	N	N	N
8 - exclusive	N	N	N	N	N

- Database Record Lock
 - Requested when a database record is accessed
 - HDAM and PHDAM lock the RAP
 - Used to serialize access to database records
 - Level depends on the PROCOPT
 - PROCOPT=G
 PI level 2
 IRLM level 4
 - Readers may be positioned in a database record concurrently
 - PROCOPT=update
 PI level 3 (or 1)
 IRLM level 6
 - Updaters have exclusive access to database record
 - Released
 - If not update, when PCB position is moved to another database record
 - If update, held until sync point
 - PI demotes level 3 to level 1 when positioned is moved off the record and root is not updated

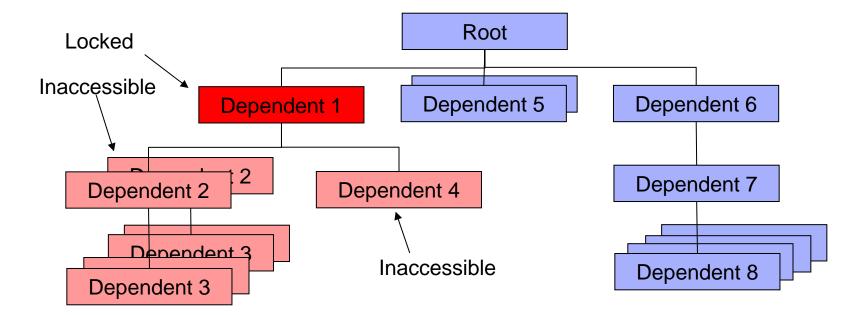
- Database Record Lock
 - HDAM and PHDAM
 - Lock is on the RAP
 - Another reason to have more RAPs than roots
 - Rule of thumb: # RAPs > 2 x # roots
 - Often, this is the most important lock
 - "Control" records often produce lock conflicts

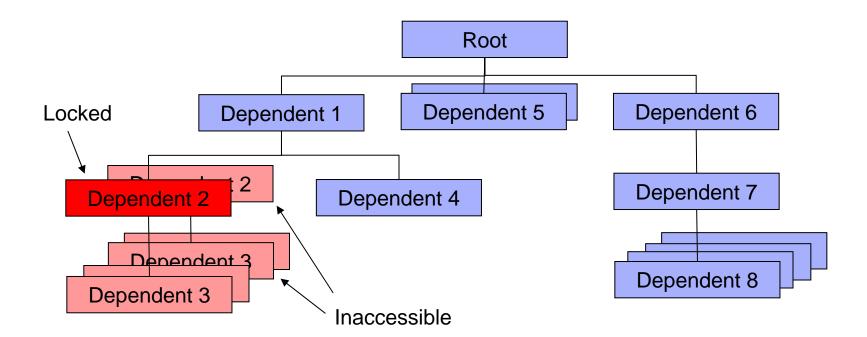


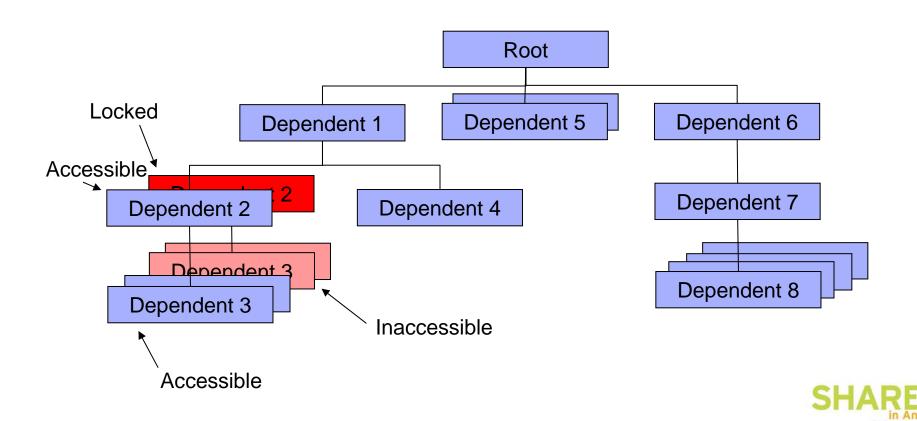
- Segment Lock
 - Used only with PI
 - Segment lock is always requested for updates to dependent segments
 - Used to serialize access to updated dependent segments
 - Updates include updates to pointers in the segment (to other segments)
 - HISAM lock is for overflow logical records
 - Level: PI level 3
 - Released
 - At sync point
 - If database record lock is held at level 1 (by another program)
 - Some dependent segment is locked at level 3
 - Segment lock is tested when dependent segment is accessed
 - Test waits if lock is held but does not get the lock

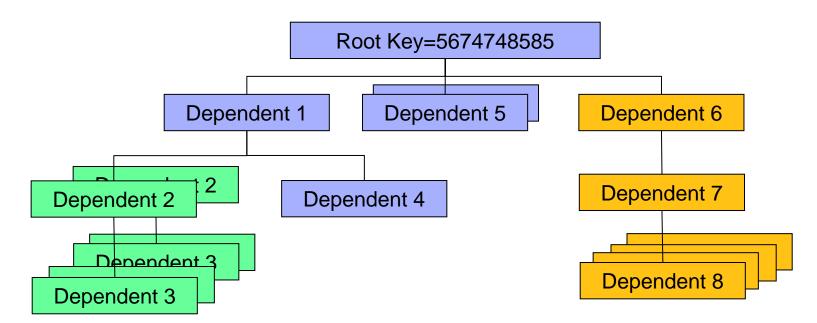

- PI may provide more concurrency
 - Allows accessed to non-updated segments in updated database record

SHARE Technology · Connections · Results


- PI may provide more concurrency
 - Non-shared lock of root makes the entire database record inaccessible


- PI may provide more concurrency
 - Non-shared lock of dependent makes all of its children inaccessible


- PI may provide more concurrency
 - Non-shared lock of twin makes following twins inaccessible



- PI may provide more concurrency
 - Non-shared lock of twin does not make preceding twins inaccessible

- PI may provide more concurrency
 - This effect may be small
 - What is the probability of two transactions or BMPs accessing different branches in the same database record at the same time?

- Block Lock
 - Used only with block level data sharing (SHARELVL=2 or 3)
 - Requested when a block is updated
 - Used to serialize updates from different IMS systems
 - Requested with private attribute
 - Cannot be shared across different IMS systems (no matter what level)
 - Level for OSAM and ESDS is always IRLM level 4
 - Level for KSDS (primary and secondary indexes)
 - Inserts and replaces IRLM level 4
 - Deletes IRLM level 3
 - CI/CA splits
 IRLM level 6
 - Released
 - At sync point

Block locks are only for updates! (ISRT, DLET and REPL calls)

Block Lock

- Block locks are shared within an IMS system
 - Unless there is a delete with insert/replace of a KSDS record or a CI/CA split
- Block lock conflicts typically occur for updates in a small database or small part of a database
 - Secondary index with high insert/delete activity to small range of records
 - Records in the same CI
 - Often due to keys based on current time
 - Small database with "control" records.
 - Statistics maintenance, etc.

- Busy Lock
 - Requested to serialize activity to a data set
 - Update to KSDS with block level data sharing
 - InsertIRLM level 8
 - Non-insertIRLM level 2
 - Open and close of data set
 PI level 4
 IRLM level 8
 - Creation of new block in data set
 PI level 4
 IRLM level 8
 - Released
 - At end of operation (open, close, update, etc.)
- Lock waits are rarely a problem with busy locks
- The number of lock request may be important for data sharing
 - CF accesses for the lock structure for index updates

Fast Path Locks

CI Lock

- Similar to database record lock for full function
- Requested when a CI is read into a buffer

No locks for SDEP CIs

- Used to serialize access to segments in a CI
- Level depends on the PROCOPT
 - PROCOPT=G
 FP level 1
 IRLM level 2
 - PROCOPT=update
 FP level 4
 IRLM level 8

Released

- With update
 - By output thread (sync point with VSO)
- Without update
 - By sync point or when buffer is stolen

Fast Path Locks

UOW Lock

- Only used when HSSP or High Speed Reorg (HSR) is active
 - Requested instead of a CI lock by HSSP and High Speed Reorg
 - Requested in addition to CI lock by others
- Level depends on the PROCOPT
 - Non-HSSP or HSR request FP level 1 IRLM level 2
 - HSSP or HSR request
 FP level 4
 IRLM level 8
- Released
 - Non-HSSP, non-HSR request
 - When all locks on CIs in UOW are released
 - HSSP request
 - If update by output thread, if no update by sync point
 - HSR request
 - At end of reorg of UOW

SHARE

Lock Time Outs

- PI and Fast Path lock managers <u>never</u> time out (i.e. end) a lock request
- IRLM has capability to time out a lock request
 - IRLM TIMEOUT parameter

```
F irlmproc, SET, TIMEOUT = seconds, imssubsystemname
```

- Controls the reporting of "long locks" for an IMS system using the IRLM
- It does <u>not</u> time out a lock request
- It drives an IMS LOCKTIME process to check on time outs
- IMS LOCKTIME parameter controls time outs of locks with IRLM
 - DFSVSMxx or DFSVSAMP parameter
 - LOCKTIME=(mtime,maction,btime,baction)
 - May be changed with UPDATE IMS SET(LOCKTIME(...) command UPDATE IMS SET(LOCKTIME(MSG(mtime), MSGOPT(maction), BMP(btime), BMPOPT(baction), TELLIRLM(Y|N)

Lock Time Outs

- If wait exceeds IMS LOCKTIME value, the waiter's lock request ends
 - IMS "shoots the victim"
 - If ABEND is specified for 'maction' or 'baction'
 - U3310 abend and IMS TM input message is discarded
 - If STATUS is specified for 'maction' or 'baction'
 - 'BD' status code is returned for call which caused lock wait
 - The "bad guy" is probably the holder of the lock

Deadlock Detection

- Fast Path lock manager does not detect deadlocks
 - When a lock request waits, Fast Path passes information to the other lock manager (PI or IRLM)
 - Other lock manager does deadlock detection
- PI checks for deadlocks whenever a lock request waits
- IRLM checks for deadlocks on a timer basis
 - IRLM parameter: DEADLOK=(local,global)
 - Local is the time between deadlock detection cycles
 - Global value is ignored
 - Every local cycle is a global cycle
 - A wait must exist through two cycles before IRLM checks for a deadlock
 - With local value of 1 second, deadlock could last 2 seconds before detection
 - Reasonable values for local or 1 second or less

Deadlock Detection

- Deadlocks may be created with IMS and non-IMS resources
 - CICS applications with IMS and VSAM
 - IMS TM applications with IMS DB and DB2
 - DB2 stored procedures with IMS DB and DB2
 - Example:
 - Tran A holds IMS lock X
 - Tran B holds DB2 lock Y
 - Tran A requests DB2 lock Y and waits
 - Tran B requests IMS lock X and waits DEADLOCK!
 - These deadlocks are only resolved by time outs
 - Usually, resolved by the "other" resource manager, not IMS
 - IMS only times out lock requests when LOCKTIME value for IMS is specified with IRLM

Handling Deadlock Victims

- Actions for deadlock victims
 - MPP, JMP, IFP, BMP, or JBP: Abend U0777
 - MPP, JMP, and IFP messages are rescheduled
 - APPC CPIC driven or modified standard application: Abend U0123
 - CICS task: CICS ADCD abend
 - ODBA thread: AIB "system failure" return code x'00000108', reason code x'00000244' and error extension code x'10000309' and thread is terminated
- Exceptions of abend for deadlock 'victim'
 - INIT STATUS GROUPB
 - Back out occurs and program receives a 'BC' status code
 - Non-message driven BMP or JBP with Fast Path PCB
 - Back out occurs and program receives an 'FD' status code
 - Deadlock during sync point processing with MSDBs
 - Back out and reprocessing occur

- Minimize PROCOPT values
 - PROCOPT=A produces "non-shared' level locks"
- Take frequent checkpoints
 - But don't create a logging problem by checkpointing too much user data
 - Such as all of working storage
- Be wary of communications during a sync interval
 - OTMA commit mode 1 with synclevel=syncpoint or synclevel=confirm
 - APPC with synclevel=syncpoint or synclevel=confirm
 - Synchronous callout (ICAL)
 - Default timeout for ICAL is 10 seconds
 - Application may set any value
 - Communications delays will likely cause locking problems

- Try to limit high frequency updates to any record
 - "Control" records can be a problem
 - For example, "next invoice number"
 - Possible solutions:
 - Delay calls to the record until the end of the transaction
 - Use multiple records, one for each series of numbers
 - Use non-sequential numbers, such as choosing numbers at random
 - Databases with only a few database records are often problems
- Provide free space in (P)HIDAM with block level data sharing
 - Without free space all inserts go to end of data set causing block lock conflicts

- By wary of PROCOPT=E
 - PROCOPT=E on root
 - Schedules program exclusively for the database in an IMS subsystem
 - Does not affect scheduling or locking in other IMS subsystems
 - If not data sharing
 - No locks are used for the database
 - If data sharing
 - All locks for database are held until sync point
 - PROCOPT=E on a dependent segment
 - Schedules program exclusively for the segment in an IMS subsystem
 - Locks are used for the database records.
 - No PI locks are used for the segment
 - PROCOPT=E on root is sometimes used to allow BMPs with infrequent checkpoints to run

- Tune the system and applications
 - Use lots of database buffers
 - The faster an application runs, the shorter the time it holds locks!

Space for Lock Control Blocks

PI

- Each locked resource uses 24 byte control block
- Each holder of a resource lock uses 24 byte control block
- Rule of thumb: Each lock requires 48 bytes
- PI lock control block storage location:
 - With Fast Path: ECSA
 - Without Fast Path: Extended private of DLI SAS address space
 - Without Fast Path or DLI SAS: Extended private of control region
- PI storage is limited by PIMAX execution parameter
 - If PIMAX is not specified, limited by second subparameter of CORE= on IMSCTF macro
 - PIINCR specifies the increments in which storage is acquired

Space for Lock Control Blocks

IRLM

- Each lock requires about 540 bytes in 64-bit storage of IRLM address space
- Space may be limited by the z/OS MEMLIMIT parameter on the job or job step

Coupling Facility Lock Structure

- Each lock <u>protecting an update</u> uses an entry in the lock <u>record list</u>
 - All block locks
 - Level 6 database record locks
 - Level 8 Fast Path CI and UOW locks
 - Record list entries are about 250 bytes
- Goal for lock table: 1000 entries per held lock
 - Provides false contention rate of 0.1%
 - Entries are typically 2 bytes
 - Therefore, about 2000 bytes per held lock

Space for Lock Control Blocks

- When lock space is exhausted
 - PI: U0775 abend of requestor
 - IRLM: U3300 abend of requestor
 - Lock structure record list: U3307 of requestor
- Excessive space for locks
 - Usually caused by BMPs
 - Usually a very small subset of BMPs

LOCKMAX Usage

- LOCKMAX parameter limits the number of locks held by a dependent region or batch job at any time
 - Specified in 1000s
 - Specified in PSBGEN statement of PSB
 - Specified as region parameter
 - Overrides PSB specification
- U3301 of program when LOCKMAX reached
- Log records contain the maximum number actually used
 - x'37' and x'5937' for online systems
 - x'41' for batch data sharing
- Recommendation:
 - Specify LOCKMAX in all dependent regions
 - Specify it in test systems

PI vs. IRLM

- IRLM required for block level data sharing
- PI has shorter path length
 - May not be significant in total application path length
- PI has maximum of 63 waiters
 - 64th waiter receives U2478 abend
 - MPP or JMP is rescheduled
 - IRLM has no limit on the number of waiters
- IRLM has "long locks" capability
 - Reports locks which wait for a long time
- Lock timeout capability requires IRLM

Locking Reports

PROGRAM I/O Report

	<u>PSBNAME</u> AZLACL	PCB NAME RZCMA001	<u>IWAITS</u> 2	<u>TOTAL</u> 3419	<u>MEAN</u> 1709	MAXIMUM 1991	DDN/FUNC MPI RZCMA001	MODULE 1
•	REGIO	N IWAIT I	Report		Databa	se name	Segm	ent code
					.IWAIT TIN	ΊΕ `		
	**REGION	<u>1</u> 45 <u>occ</u>	<u>CURRENCES</u>	TOTAL	<u>MEAN</u>	<u>MAXIMUM</u>	<u>FUNCTION</u>	MODULE
	DL/I CALI	LS						*
			16	20959	1309	4696	PI=SMWLJ001.	. (1)
			19	48901	2573	26494	PI=RZCMA001.	. 1

Notes:

- "PI" appears for both PI and IRLM
- Segment code is "1" except for PI segment locks
- You can examine these reports to see if you have a lot of locks and to determine their average wait times

KBLA IRLM Lock Trace Analysis Utilities (DFSKLTx0)

Technology · Connections · Results

- Report produced from IRLM lock trace
 - Excellent source of overall information on lock waits

Suspended IRLM Lock Requests Summary Report - Wait Time Order Page 001 Trace Date = 01/12/2005 Trace Start Time = 16:01:47 Trace End Time = 16:06:26 Trace Elapsed Time (secs) = 278 Trace Input DSN = IMS.ISA1.DFSTRA01

Database Name		Lock Req Count	Wait Count	Not Int Count	Total Time	Average Time	Maximum Time
BFLMSGY3	01	8628	115	110	9.198	0.079	2.76
BFLMSGY7	01	8452	102	98	4.813	0.047	4.36
BFLMSGP	01	15862	181	169	4.401	0.024	0.64
BFLSUMP	01	3929	40	37	3.703	0.092	2.39
BCMTLRD	09	1153	1	1	3.400	3.400	3.40

Not Int Count: Not including internal latch waits

Wait Count: Includes internal latch waits and lock waits

KBLA Lock Trace Detailed Print Program (DFSKLTC0)

Technology · Connections · Results

- Report produced from IRLM lock trace
 - Detailed information about each wait
 - Voluminous!

```
Suspended IRLM Lock Requests Report - Req Comp Order
                                                                      Page 0043
Trace Date = 01/12/2005 DSN = IMS.ISA1.DFSTRA01
Lock Request Lock Request ----Wait----- PST --Lock-- -----Resource------ Flag --IRLM--- ------Call------Trace
Start Time
              End Time
                          Elapsed Type Num Type Lvl
                                                       DB
                                                             DS RBA/HASH S
                                                                               RCFB TRAC Type Num
16:06:09.723 16:06:09.724
                             0.000 F 100 BIDP 4
                                                    BCICINY1 01 099DE001 P CPR 0000 08C0 ISRT 001 16:06:09.690 0975
16:06:09.727 16:06:09.727
                             0.004
                                      100 BTDP 4
                                                    BCICINY1 01 099DE001 P CPKF 0000 08C0 ISRT 001 16:06:09.690 0C98
                                                    BCMTRMD
                                                             08 00024CE0 F K
16:06:09.567 16:06:09.952
                             0.385
                                      067 FPCI 8
                                                                                0440 08F0
                                                                                                               F073
16:06:10.170 16:06:10.170
                             0.004
                                   G 067 BIDP
                                                    BAGTX1P
                                                             01 32117800 P CPKF 0840 08F0 ISRT 001 16:06:10.170 8B69
16:06:10.209 16:06:10.242
                                                    BGLACAD
                                                             06 005203A0 F K
                                                                                0440 08F0
                             0.032
                                   G 100 FPCI 8
                                                                                                               9A67
16:06:10.354 16:06:10.354
                             0.004 L 122 FPCI 8
                                                    BCMRDAD 10 00053AE0 F K
                                                                                0440 2080
                                                                                                               D030
16:06:10.397 16:06:10.398
                             0.001 L 122 FPCI 8
                                                    BCMRDAD 11 00143820 F K
                                                                                0440 2080
                                                                                                               DFDE
                                                    BCMRDAD 13 0009E000 F K
16:06:10.438 16:06:10.438
                             0.000 L 122 FPCI 8
                                                                                0440 2080
                                                                                                               EB9D
                                                    BCMTRPP
16:06:10.959 16:06:10.992
                             0.032 L 038 BIDP 6
                                                            01 0412E804 P PKF
                                                                               0000 2080 ISRT 001 16:06:10.959 BBD8
16:06:11.011 16:06:11.012
                             0.001 L 122 FPCI 8
                                                    BCMRDAD 11 00168360 F K
                                                                                0440 2080
                                                                                                               D79D
```

F – false contention

G - global contention

L - local contention

RMF II - IRLM Long Lock Detection Report

- Shows lock waits greater than IRLM LOCKTIME value
 - Also shows holders of lock and other waiters for lock

Command	===>		IRLM Long		k Dete	ection		e 1 of 15 ===> HALF RMF5
Total State		Lock_Nam	ı		PST#	PSB_Name Trx/Job	Elap_Time Wait_Time	_
CF Stru	cture AC	OXLOCK	at 07/28/2	2006	13:02	2:10 Deadl	ock Cycle (00002EC7
TOP BLOCKER	BMP ACO3		01D700000 030000000		00000	DFSSAMB1 IRLMTOPZ	00:06:04	
TOP BLOCKER	BMP ACO1		01D700000 0600000000		00000	DFSSAMB1 IRLMTOPA	00:06:09	
WAITER	BMP ACO2		.01D700000 0800000000		00000	DFSSAMB2 IRLMWTA1	00:05:52	DI21PART
WAITER	BMP ACO2		.01D700000 .0900000000		00000	DFSSAMB7 IRLMWTZ2	00:05:42	DI21PART

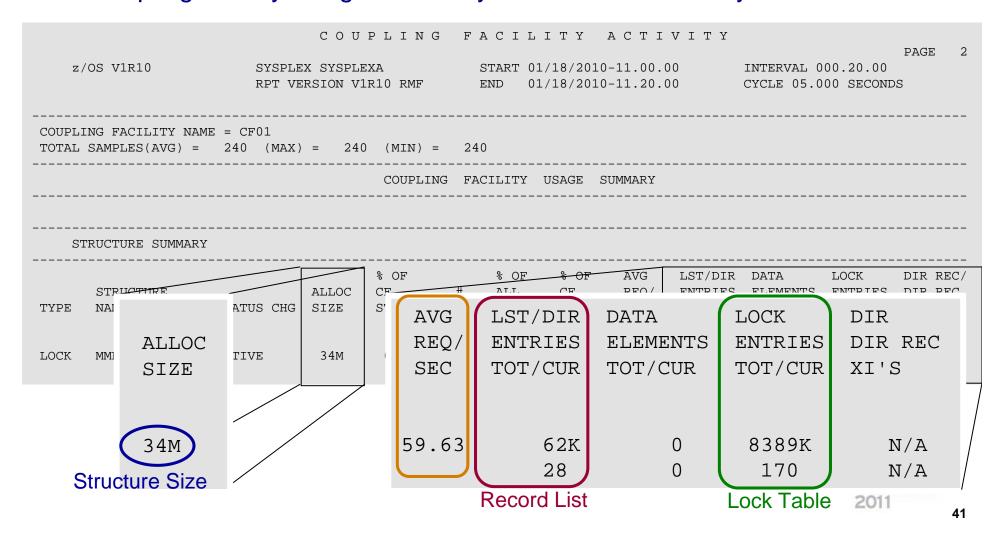
DFSERA30 Deadlock Report

Provides detailed information about each deadlock

******	**************
DEADLOCK ANALYSIS REPORT -	- LOCK MANAGER IS IRLM
RESOURCE DMB-NAME LOCK-LED	I LOCK-NAME - WAITER FOR THIS RESOURCE IS VICTIM
01 OF 02 CMLDDCDB 08	7EB22000843A01D7
KEY FOR RESOURCE IS FROM I	DELETE WORK AREA
KEY=(200414913326180)	
IMS-NAME TRAN/JOH	B PSB-NAME PCBDBD PST# RGN CALL LOCK LOCKFUNC STATE
WAITER IMS2 TRLDDC1	CMLDDCDB CMLDDCDB 00003 MPP DLET GBIDP 22400318 04-P
HOLDER IMS1 USMEED2	CMLDDCDB 00007 MPP 04-P
RESOURCE DMB-NAME LOCK-LED	I LOCK-NAME
02 OF 02 CMLDDCDB 08	7EB22B3E843A01D7
KEY IS ROOT KEY OF DATA BA	ASE RECORD ASSOCIATED WITH LOCK
KEY=(200414913326180)	
IMS-NAME TRAN/JOH	B PSB-NAME PCBDBD PST# RGN CALL LOCK LOCKFUNC STATE
WAITER IMS1 USMEED2	CMLDDCDB CMLDDCDB 00007 MPP GET GRIDX 30400358 06-P
HOLDER IMS2 TRLDDC1	CMLDDCDB 00003 MPP 06-P
DEADLOCK ANALYSIS REPORT -	- END OF REPORT
*******	***************
	DI MUNICIPALITA

RMF Coupling Facility Reports

Coupling Facility Usage Summary – Structure Summary


z/	OS V1R10		C O U X SYSPLE RSION V1	XA		START 0	1/18/201	A C T I 0-11.00.0 0-11.20.0	00	INTERVAL 0		PAGE S	2
	NG FACILITY NAM SAMPLES(AVG) =		= 240) (MIN) = 24	:0							
				COUP	LING FA	CILITY	USAGE	SUMMARY					
ST		· ?											
TYPE	STRUCTURE NAME	STATUS CHG	ALLOC SIZE	% OF CF STOR	# REQ	% OF ALL REQ	% OF CF UTIL	AVG REQ/ SEC	LST/DIR ENTRIES TOT/CUR	ELEMENTS	LOCK ENTRIES TOT/CUR	DIR RI DIR RI XI'S	
LOCK	MMHL_IMSIRLM	ACTIVE	34M	0.2	71551	0.1	0.1	59.63	62K 28	0 0	8389K 170	N/2 N/2	

RMF Coupling Facility Reports

Coupling Facility Usage Summary – Structure Summary

RMF Coupling Facility Reports

Coupling Facility Structure Activity

					COU	PLING FAC	LILITY S	TRUCU	TRE AC	 TIVITY					
STRUCT						CK STATU				DELA	VED DEOLIE	ото			
SYSTEM	TOTAL	KEQ	#											EXTERNAL REQUEST	
NAME	AVG/SEC	1	REQ	ALL	AVG	STD_DEV	1.21.001	REQ					CONTENTIONS		
SYSL	584	SYNC	584	0.8	18.3	8.2	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	723	
	0.49	ASYNC	0	0.0	0.0	0.0	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	7	
		CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	7	
													-FALSE CONT	0	
SYSM	69547	SYNC	69K	97.1	15.7	7.4	NO SCH	3	0.0	9.3	5.1	0.0	REQ TOTAL	79K	
	57.96	ASYNC	103	0.1	108.6	387.3	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	54	
		CHNGD	1	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	53	
													-FALSE CONT	15	
SYSN	406	SYNC	394	0.6	21.2	7.5	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	520	
	0.34	ASYNC	12	0.0	51.1	9.3	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	9	
		CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	9	
													-FALSE CONT	1	
SYSO	1014	SYNC	1014	1.4	18.0	7.8	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	1236	
	0.84	ASYNC	0	0.0	0.0	0.0	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	18	
		CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	18	
													-FALSE CONT	0	
TOTAL	71551	SYNC	71K	100	15.7	7.4	NO SCH	3	0.0	9.3	5.1	0.0	REQ TOTAL	82K	
	59.63	ASYNC	115	0.2	102.6	366.8	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	88	
		CHNGD	1	0.0			PR CMP	0	0.0	0.0	0.0	0.0	-CONT	87	
													-FALSE CONT	16	

SHARE

RMF Coupling Facility Reports

Coupling Facility Structure Activity

					COU	PLING FAC	LLITY	STRUCU	JTRE AC	 TIVITY				
STRUCT	URE NAME #	= MMHL_ REQ	IMSIRLM		TYPE = LOC - REOUESTS	CK STATU	IS = AC			DELA	YED REOUES	STS		
SYSTEM NAME		~	# REQ	% OF ALL	-SERV TII	ME(MIC)- STD_DEV	REASC		% OF	A	VG TIME(MI			EST
SYSL	584 0.49	SYNC ASYNC CHNGD	584 0 0	0.8 0.0 0.0	18.3 0.0 INCLUDE	-SERV AV		ME(MI STD_	•	0.0	0.0 0.0 0.0	0.0 0.0 0.0	REQ TOTAL REQ DEFERRED -CONT -FALSE CONT	723 7 7 0
SYSM	69547 57.96	SYNC ASYNC CHNGD	69K 103 1	97.1 0.1 0.0	15.7 108.6 INCLUDED	7.4 387.3 IN ASYNC	NO SC PR WT PR CM	0	0.0 0.0 0.0	9.3 0.0 0.0	5.1 0.0 0.0	0.0 0.0 0.0	REQ TOTAL REQ DEFERRED -CONT -FALSE CONT	79K 54 53
SYSN	406 0.34	SYNC ASYNC	394 12	0.6	21.2 51.1	7.5 9.3	NO SC		0.0	0.0	0.0	0.0	REQ TOTAL	520 9
		CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CM	IP 0	0.	~	TOTAL DEFFEI	RRED	82K \ 88	9 1
SYSO	1014 0.84	SYNC ASYNC CHNGD	1014 0 0	1.4 0.0 0.0	18.0 0.0 INCLUDED	7.8 0.0 IN ASYNC	NO SC PR WT PR CM	0	0. 0. 0.	-COI			87 16	1236 18 18
TOTAL	71551 59.63	SYNC ASYNC CHNGD	71K 115 1	100 0.2 0.0	102	7.4	NO SC	7.4	0.0	9.3 0.0 0.0	5.1 0.0 0.0	0.0	REQ TOTAL REQ DEFERRED -CONT -FALSE CONT	82K 88 87 16
					•				~				2011	13

Summary

- Locking affects IMS performance
- Locking is influenced by
 - Database design
 - Application program design
 - Syncpoint frequencies
- There are multiple sources of information about locking
 - These may be used to discover and address locking problems

