Understanding IMS Locking

Rich Lewis
IBM

March 2, 2011
8566
IMS Locking White Paper

- “IMS Locking with Program Isolation or the IRLM”
 - Rich Lewis
 - Published in 2009
 - www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101535
 - Contains detailed information about IMS locking

- This presentation is based on information in the white paper
 - The white paper should be used with this presentation
Agenda

- Lock managers
- Lock compatibility matrices
- Full function locks
- Fast Path locks
- Lock timeouts
- Deadlocks
- Design advice
- Space for lock control blocks
- PI vs. IRLM
- Locking Reports
Lock Managers

- IMS has three lock managers
 - Program Isolation (PI)
 - Does not support data sharing
 - Locks are managed by the IMS online system
 - IRLM
 - May be used with or without data sharing
 - IRLM is a separate address space
 - Multiple IRLMs are used with data sharing across LPARs
 - Fast Path lock manager
 - Used without data sharing
 - Fast Path also uses PI or IRLM
 - Required for deadlock detection
Lock Compatibility

PI and FP lock compatibility matrix

<table>
<thead>
<tr>
<th>Lock Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – read</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>2 – share</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3 – update</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4 - exclusive</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

IRLM lock compatibility matrix

<table>
<thead>
<tr>
<th>Lock Level</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 – read</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>3 – erase</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4 – share</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>6 – update</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>8 - exclusive</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Lock level names are often confusing
- Reads may require a read, share, update, or exclusive lock
- Locks for updates sometimes use read locks
Full Function Locks

- **Database Record Lock**
 - Requested when a database record is accessed
 - HDAM and PHDAM lock the RAP
 - Used to serialize access to database records
 - Level depends on the PROCOPT
 - PROCOPT=G PI level 2 IRLM level 4
 - Readers may be positioned in a database record concurrently
 - PROCOPT=update PI level 3 (or 1) IRLM level 6
 - Updaters have exclusive access to database record
 - Released
 - If not update, when PCB position is moved to another database record
 - If update, held until sync point
 - PI demotes level 3 to level 1 when positioned is moved off the record and root is not updated
Full Function Locks

- **Database Record Lock**
 - HDAM and PHDAM
 - Lock is on the RAP
 - Another reason to have more RAPs than roots
 - Rule of thumb: \# RAPs > 2 \times \# roots
 - Often, this is the most important lock
 - “Control” records often produce lock conflicts
Full Function Locks

- Segment Lock
 - Used only with PI
 - Segment lock is always requested for updates to dependent segments
 - Used to serialize access to updated dependent segments
 - Updates include updates to pointers in the segment (to other segments)
 - HISAM lock is for overflow logical records
 - Level: PI level 3
 - Released
 - At sync point

- If database record lock is held at level 1 (by another program)
 - Some dependent segment is locked at level 3
 - Segment lock is tested when dependent segment is accessed
 - Test waits if lock is held but does not get the lock
IRLM vs. PI

- PI may provide more concurrency
 - Allows access to non-updated segments in updated database record
IRLM vs. PI

- PI may provide more concurrency
 - Non-shared lock of root makes the entire database record inaccessible
IRLM vs. PI

- PI may provide more concurrency
 - Non-shared lock of dependent makes all of its children inaccessible
IRLM vs. PI

- PI may provide more concurrency
 - Non-shared lock of twin makes following twins inaccessible
IRLM vs. PI

- PI may provide more concurrency
 - Non-shared lock of twin does not make preceding twins inaccessible
IRLM vs. PI

- PI may provide more concurrency
 - This effect may be small
 - What is the probability of two transactions or BMPs accessing different branches in the same database record at the same time?

```
Root Key=5674748585
  ├── Dependent 1
  │    ├── Dependent 2
  │    │    ├── Dependent 3
  │    │    └── Dependent 3
  │    └── Dependent 4
  └── Dependent 5
       ├── Dependent 6
       └── Dependent 7
            └── Dependent 8
```
Full Function Locks

- **Block Lock**
 - Used only with block level data sharing (SHARELVL=2 or 3)
 - Requested when a block is updated
 - Used to serialize updates from different IMS systems
 - Requested with private attribute
 - Cannot be shared across different IMS systems (no matter what level)
 - Level for OSAM and ESDS is always IRLM level 4
 - Level for KSDS (primary and secondary indexes)
 - Inserts and replaces IRLM level 4
 - Deletes IRLM level 3
 - CI/CA splits IRLM level 6
 - Released
 - At sync point

Block locks are only for updates! (ISRT, DLET and REPL calls)
IMS Locking

Full Function Locks

- **Block Lock**
 - Block locks are shared within an IMS system
 - Unless there is a delete with insert/replace of a KSDS record or a CI/CA split
 - Block lock conflicts typically occur for updates in a small database or small part of a database
 - Secondary index with high insert/delete activity to small range of records
 - Records in the same CI
 - Often due to keys based on current time
 - Small database with “control” records
 - Statistics maintenance, etc.
Full Function Locks

- **Busy Lock**
 - Requested to serialize activity to a data set
 - Update to KSDS with block level data sharing
 - Insert IRLM level 8
 - Non-insert IRLM level 2
 - Open and close of data set PI level 4 IRLM level 8
 - Creation of new block in data set PI level 4 IRLM level 8
 - Released
 - At end of operation (open, close, update, etc.)

- Lock waits are rarely a problem with busy locks

- The number of lock request may be important for data sharing
 - CF accesses for the lock structure for index updates
Fast Path Locks

- CI Lock
 - Similar to database record lock for full function
 - Requested when a CI is read into a buffer
 - Used to serialize access to segments in a CI
 - Level depends on the PROCOPT
 - PROCOPT=G FP level 1 IRLM level 2
 - PROCOPT=update FP level 4 IRLM level 8
 - Released
 - With update
 - By output thread (sync point with VSO)
 - Without update
 - By sync point or when buffer is stolen

No locks for SDEP CIs
Fast Path Locks

- **UOW Lock**
 - Only used when HSSP or High Speed Reorg (HSR) is active
 - Requested instead of a CI lock by HSSP and High Speed Reorg
 - Requested in addition to CI lock by others
 - Level depends on the PROCOPT
 - Non-HSSP or HSR request: FP level 1, IRLM level 2
 - HSSP or HSR request: FP level 4, IRLM level 8
 - Released
 - Non-HSSP, non-HSR request
 - When all locks on CIs in UOW are released
 - HSSP request
 - If update by output thread, if no update by sync point
 - HSR request
 - At end of reorg of UOW
Lock Time Outs

- PI and Fast Path lock managers *never* time out (i.e. end) a lock request.
- IRLM has capability to time out a lock request:
 - IRLM TIMEOUT parameter

    ```f
    F irlmproc,SET,TIMEOUT=seconds,imssubsystemname
    ```

 - Controls the reporting of “long locks” for an IMS system using the IRLM
 - It does **not** time out a lock request
 - It drives an IMS LOCKTIME process to check on time outs
 - IMS LOCKTIME parameter controls time outs of locks with IRLM
 - DFSVSMxx or DFSVSAMP parameter
 - LOCKTIME=(mtime,maction,btime,baction)
 - May be changed with UPDATE IMS SET(LOCKTIME(…) command

      ```sql
      UPDATE IMS SET(LOCKTIME(MSG(mtime),MSGOPT(maction),
          BMP(btime),BMPOPT(baction),TELLIRLM(Y|N))
      ```
Lock Time Outs

- If wait exceeds IMS LOCKTIME value, the waiter’s lock request ends
 - IMS “shoots the victim”
 - If ABEND is specified for ‘maction’ or ‘baction’
 - U3310 abend and IMS TM input message is discarded
 - If STATUS is specified for ‘maction’ or ‘baction’
 - ‘BD’ status code is returned for call which caused lock wait
 - The “bad guy” is probably the holder of the lock
Deadlock Detection

- Fast Path lock manager does not detect deadlocks
 - When a lock request waits, Fast Path passes information to the other lock manager (PI or IRLM)
 - Other lock manager does deadlock detection
- PI checks for deadlocks whenever a lock request waits
- IRLM checks for deadlocks on a timer basis
 - IRLM parameter: DEADLOK=(local,global)
 - Local is the time between deadlock detection cycles
 - Global value is ignored
 - Every local cycle is a global cycle
 - A wait must exist through two cycles before IRLM checks for a deadlock
 - With local value of 1 second, deadlock could last 2 seconds before detection
 - Reasonable values for local or 1 second or less
Deadlock Detection

- Deadlocks may be created with IMS and non-IMS resources
 - CICS applications with IMS and VSAM
 - IMS TM applications with IMS DB and DB2
 - DB2 stored procedures with IMS DB and DB2
 - Example:
 - Tran A holds IMS lock X
 - Tran B holds DB2 lock Y
 - Tran A requests DB2 lock Y and waits
 - Tran B requests IMS lock X and waits – DEADLOCK!
 - These deadlocks are only resolved by time outs
 - Usually, resolved by the “other” resource manager, not IMS
 - IMS only times out lock requests when LOCKTIME value for IMS is specified with IRLM
Handling Deadlock Victims

- **Actions for deadlock victims**
 - MPP, JMP, IFP, BMP, or JBP: Abend U0777
 - MPP, JMP, and IFP messages are rescheduled
 - APPC CPIC driven or modified standard application: Abend U0123
 - CICS task: CICS ADCD abend
 - ODBA thread: AIB “system failure” return code x’00000108’, reason code x’00000244’ and error extension code x’10000309’ and thread is terminated

- **Exceptions of abend for deadlock ‘victim’**
 - INIT STATUS GROUPB
 - Back out occurs and program receives a ‘BC’ status code
 - Non-message driven BMP or JBP with Fast Path PCB
 - Back out occurs and program receives an ‘FD’ status code
 - Deadlock during sync point processing with MSDBs
 - Back out and reprocessing occur
Design Advice

- Minimize PROCOPT values
 - PROCOPT=A produces “non-shared” level locks

- Take frequent checkpoints
 - But don’t create a logging problem by checkpointing too much user data
 - Such as all of working storage

- Be wary of communications during a sync interval
 - OTMA commit mode 1 with synclevel=syncpoint or synclevel=confirm
 - APPC with synclevel=syncpoint or synclevel=confirm
 - Synchronous callout (ICAL)
 - Default timeout for ICAL is 10 seconds
 - Application may set any value
 - Communications delays will likely cause locking problems
Design Advice

- **Try to limit high frequency updates to any record**
 - “Control” records can be a problem
 - For example, “next invoice number”
 - Possible solutions:
 - Delay calls to the record until the end of the transaction
 - Use multiple records, one for each series of numbers
 - Use non-sequential numbers, such as choosing numbers at random
 - Databases with only a few database records are often problems

- **Provide free space in (P)HIDAM with block level data sharing**
 - Without free space all inserts go to end of data set causing block lock conflicts
Design Advice

- **By wary of PROCOPT=E**
 - PROCOPT=E on root
 - Schedules program exclusively for the database in an IMS subsystem
 - Does not affect scheduling or locking in other IMS subsystems
 - If not data sharing
 - No locks are used for the database
 - If data sharing
 - All locks for database are held until sync point
 - PROCOPT=E on a dependent segment
 - Schedules program exclusively for the segment in an IMS subsystem
 - Locks are used for the database records
 - No PI locks are used for the segment
 - PROCOPT=E on root is sometimes used to allow BMPs with infrequent checkpoints to run
Design Advice

- Tune the system and applications
 - Use lots of database buffers
 - *The faster an application runs, the shorter the time it holds locks!*
Space for Lock Control Blocks

- **PI**
 - Each locked resource uses 24 byte control block
 - Each holder of a resource lock uses 24 byte control block
 - Rule of thumb: Each lock requires 48 bytes
 - PI lock control block storage location:
 - With Fast Path: ECSA
 - Without Fast Path: Extended private of DLI SAS address space
 - Without Fast Path or DLI SAS: Extended private of control region
 - PI storage is limited by PIMAX execution parameter
 - If PIMAX is not specified, limited by second subparameter of CORE= on IMSCTF macro
 - PIINCR specifies the increments in which storage is acquired
Space for Lock Control Blocks

- **IRLM**
 - Each lock requires about 540 bytes in 64-bit storage of IRLM address space
 - Space may be limited by the z/OS MEMLIMIT parameter on the job or job step

- **Coupling Facility Lock Structure**
 - Each lock protecting an update uses an entry in the lock record list
 - All block locks
 - Level 6 database record locks
 - Level 8 Fast Path CI and UOW locks
 - Record list entries are about 250 bytes
 - Goal for lock table: 1000 entries per held lock
 - Provides false contention rate of 0.1%
 - Entries are typically 2 bytes
 - Therefore, about 2000 bytes per held lock
Space for Lock Control Blocks

- When lock space is exhausted
 - PI: U0775 abend of requestor
 - IRLM: U3300 abend of requestor
 - Lock structure record list: U3307 of requestor

- Excessive space for locks
 - Usually caused by BMPs
 - Usually a very small subset of BMPs
LOCKMAX Usage

- LOCKMAX parameter limits the number of locks held by a dependent region or batch job at any time
 - Specified in 1000s
 - Specified in PSBGEN statement of PSB
 - Specified as region parameter
 - Overrides PSB specification
- U3301 of program when LOCKMAX reached
- Log records contain the maximum number actually used
 - x’37’ and x’5937’ for online systems
 - x’41’ for batch data sharing
- Recommendation:
 - Specify LOCKMAX in all dependent regions
 - Specify it in test systems
PI vs. IRLM

- IRLM required for block level data sharing
- PI has shorter path length
 - May not be significant in total application path length
- PI has maximum of 63 waiters
 - 64th waiter receives U2478 abend
 - MPP or JMP is rescheduled
 - IRLM has no limit on the number of waiters
- IRLM has “long locks” capability
 - Reports locks which wait for a long time
- Lock timeout capability requires IRLM
Locking Reports
IMS Monitor

- PROGRAM I/O Report

<table>
<thead>
<tr>
<th>PSBNAME</th>
<th>PCB NAME</th>
<th>IWAITS</th>
<th>TOTAL</th>
<th>MEAN</th>
<th>MAXIMUM</th>
<th>DDN/FUNC</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZLACL</td>
<td>RZCMA001</td>
<td>2</td>
<td>3419</td>
<td>1709</td>
<td>1991</td>
<td>PI</td>
<td>RZCMA001...1</td>
</tr>
</tbody>
</table>

- REGION IWAIT Report

<table>
<thead>
<tr>
<th>REGION</th>
<th>45 OCCURRENCES</th>
<th>..........IWAIT TIME......</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL</td>
<td>MEAN</td>
</tr>
<tr>
<td>16</td>
<td>20959</td>
<td>1309</td>
</tr>
<tr>
<td>19</td>
<td>48901</td>
<td>2573</td>
</tr>
</tbody>
</table>

- Notes:
 - “PI” appears for both PI and IRLM
 - Segment code is “1” except for PI segment locks

- You can examine these reports to see if you have a lot of locks and to determine their average wait times
KBLA IRLM Lock Trace Analysis Utilities (DFSKLTx0)

- Report produced from IRLM lock trace
 - Excellent source of overall information on lock waits

Suspended IRLM Lock Requests Summary Report - Wait Time Order Page 001

<table>
<thead>
<tr>
<th>Database DS Name</th>
<th>Lock Req Id</th>
<th>Wait Count</th>
<th>Not Int Count</th>
<th>Total Time</th>
<th>Average Time</th>
<th>Maximum Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFLMSGY3 01</td>
<td>8628</td>
<td>115</td>
<td>110</td>
<td>9.198</td>
<td>0.079</td>
<td>2.76</td>
</tr>
<tr>
<td>BFLMSGY7 01</td>
<td>8452</td>
<td>102</td>
<td>98</td>
<td>4.813</td>
<td>0.047</td>
<td>4.36</td>
</tr>
<tr>
<td>BFLMSGP 01</td>
<td>15862</td>
<td>181</td>
<td>169</td>
<td>4.401</td>
<td>0.024</td>
<td>0.64</td>
</tr>
<tr>
<td>BFLSUMP 01</td>
<td>3929</td>
<td>40</td>
<td>37</td>
<td>3.703</td>
<td>0.092</td>
<td>2.39</td>
</tr>
<tr>
<td>BCMTLIRD 09</td>
<td>1153</td>
<td>1</td>
<td>1</td>
<td>3.400</td>
<td>3.400</td>
<td>3.40</td>
</tr>
</tbody>
</table>

Wait Count: Includes internal latch waits and lock waits

Not Int Count: Not including internal latch waits
KBLA Lock Trace Detailed Print Program (DFSKLTC0)

- Report produced from IRLM lock trace
 - Detailed information about each wait
 - Voluminous!

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Elapsed Time</th>
<th>Type</th>
<th>Num</th>
<th>Type</th>
<th>Lvl</th>
<th>DB</th>
<th>RBA/HASH</th>
<th>S</th>
<th>RCFB</th>
<th>TRAC</th>
<th>Type</th>
<th>Num</th>
<th>Time</th>
<th>Seq#</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:06:09.723</td>
<td>16:06:09.724</td>
<td>0.000</td>
<td>F</td>
<td>100</td>
<td>BIDP</td>
<td>4</td>
<td>BCICINY</td>
<td>01</td>
<td>099DE001</td>
<td>P</td>
<td>CPR</td>
<td>0000</td>
<td>08C0</td>
<td>ISRT</td>
<td>001</td>
</tr>
<tr>
<td>16:06:09.727</td>
<td>16:06:09.727</td>
<td>0.004</td>
<td>F</td>
<td>100</td>
<td>BIDP</td>
<td>4</td>
<td>BCICINY</td>
<td>01</td>
<td>099DE001</td>
<td>P</td>
<td>CPKF</td>
<td>0000</td>
<td>08C0</td>
<td>ISRT</td>
<td>001</td>
</tr>
<tr>
<td>16:06:09.567</td>
<td>16:06:09.952</td>
<td>0.385</td>
<td>G</td>
<td>067</td>
<td>FPCI</td>
<td>8</td>
<td>BCMTRMD</td>
<td>08</td>
<td>00024CE0</td>
<td>F</td>
<td>K</td>
<td>0440</td>
<td>08F0</td>
<td>9F73</td>
<td></td>
</tr>
<tr>
<td>16:06:10.170</td>
<td>16:06:10.170</td>
<td>0.004</td>
<td>G</td>
<td>067</td>
<td>BIDP</td>
<td>4</td>
<td>BAGTX1P</td>
<td>01</td>
<td>32117800</td>
<td>P</td>
<td>CPKF</td>
<td>0840</td>
<td>08F0</td>
<td>ISRT</td>
<td>001</td>
</tr>
<tr>
<td>16:06:10.209</td>
<td>16:06:10.242</td>
<td>0.032</td>
<td>G</td>
<td>100</td>
<td>FPCI</td>
<td>8</td>
<td>BGLACAD</td>
<td>06</td>
<td>005203A0</td>
<td>F</td>
<td>K</td>
<td>0440</td>
<td>08F0</td>
<td>9A67</td>
<td></td>
</tr>
<tr>
<td>16:06:10.354</td>
<td>16:06:10.354</td>
<td>0.004</td>
<td>L</td>
<td>122</td>
<td>FPCI</td>
<td>8</td>
<td>BCMRDAD</td>
<td>10</td>
<td>00053AEO</td>
<td>F</td>
<td>K</td>
<td>0440</td>
<td>2080</td>
<td>D030</td>
<td></td>
</tr>
<tr>
<td>16:06:10.397</td>
<td>16:06:10.398</td>
<td>0.001</td>
<td>L</td>
<td>122</td>
<td>FPCI</td>
<td>8</td>
<td>BCMRDAD</td>
<td>11</td>
<td>00143820</td>
<td>F</td>
<td>K</td>
<td>0440</td>
<td>2080</td>
<td>DFDE</td>
<td></td>
</tr>
<tr>
<td>16:06:10.438</td>
<td>16:06:10.438</td>
<td>0.000</td>
<td>L</td>
<td>122</td>
<td>FPCI</td>
<td>8</td>
<td>BCMRDAD</td>
<td>13</td>
<td>0009E000</td>
<td>F</td>
<td>K</td>
<td>0440</td>
<td>2080</td>
<td>EB9D</td>
<td></td>
</tr>
<tr>
<td>16:06:10.959</td>
<td>16:06:10.992</td>
<td>0.032</td>
<td>L</td>
<td>038</td>
<td>BIDP</td>
<td>6</td>
<td>BCMTRPP</td>
<td>01</td>
<td>0412E8804</td>
<td>P</td>
<td>PKF</td>
<td>0000</td>
<td>2080</td>
<td>ISRT</td>
<td>001</td>
</tr>
<tr>
<td>16:06:11.011</td>
<td>16:06:11.012</td>
<td>0.001</td>
<td>L</td>
<td>122</td>
<td>FPCI</td>
<td>8</td>
<td>BCMRDAD</td>
<td>11</td>
<td>00168360</td>
<td>F</td>
<td>K</td>
<td>0440</td>
<td>2080</td>
<td>D79D</td>
<td></td>
</tr>
</tbody>
</table>

F – false contention
G – global contention
L – local contention
RMF II - IRLM Long Lock Detection Report

- Shows lock waits greater than IRLM LOCKTIME value
 - Also shows holders of lock and other waiters for lock

<table>
<thead>
<tr>
<th>State</th>
<th>Type</th>
<th>Lock_Name</th>
<th>IMS_ID</th>
<th>Recovery_Token</th>
<th>PSB_Name</th>
<th>Elap_Time</th>
<th>CICS_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>Structure</td>
<td>ACOXLOCK</td>
<td>at 07/28/2006 13:02:10 Deadlock Cycle 00002EC7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP</td>
<td>BMP</td>
<td>09C943CFA7800101D70000000000000000</td>
<td>DFSSAM</td>
<td>06:04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCKER</td>
<td>ACO3</td>
<td>ACO3</td>
<td>00000000300000000000</td>
<td>IRLMTOP</td>
<td>06:09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP</td>
<td>BMP</td>
<td>09C3614505800101D70000000000000000</td>
<td>DFSSAM</td>
<td>06:09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCKER</td>
<td>ACO1</td>
<td>ACO1</td>
<td>00000000600000000000</td>
<td>IRLMTOP</td>
<td>06:09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAITER</td>
<td>BMP</td>
<td>09C3614505800101D70000000000000000</td>
<td>DFSSAM</td>
<td>05:52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACO2</td>
<td>ACO2</td>
<td>ACO2</td>
<td>00000000800000000000</td>
<td>IRLMWTA</td>
<td>05:52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAITER</td>
<td>BMP</td>
<td>09C943CFA7800101D70000000000000000</td>
<td>DFSSAM</td>
<td>05:42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACO2</td>
<td>ACO2</td>
<td>ACO2</td>
<td>00000000900000000000</td>
<td>IRLMWTA</td>
<td>05:42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DFSERA30 Deadlock Report

- Provides detailed information about each deadlock

<table>
<thead>
<tr>
<th>RESOURCE DMB-NAME</th>
<th>LOCK-LEN</th>
<th>LOCK-NAME</th>
<th>WAITER FOR THIS RESOURCE IS VICTIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMLDDCDB</td>
<td>08</td>
<td>7EB22000834A01D7</td>
<td>KEY FOR RESOURCE IS FROM DELETE WORK AREA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMS-NAME</th>
<th>TRAN/JOB</th>
<th>PSB-NAME</th>
<th>PCB--DBD</th>
<th>PST#</th>
<th>RGN</th>
<th>CALL</th>
<th>LOCK</th>
<th>LOCKFUNC</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>TRLDDC1</td>
<td>CMLDDCDB</td>
<td>CMLDDCDB</td>
<td>00003</td>
<td>MPP</td>
<td>DLET</td>
<td>GBIDP</td>
<td>22400318</td>
<td>04-P</td>
</tr>
<tr>
<td>IMS1</td>
<td>USMEED2</td>
<td>CMLDDCDB</td>
<td>--------</td>
<td>00007</td>
<td>MPP</td>
<td>----</td>
<td>-----</td>
<td>--------</td>
<td>04-P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESOURCE DMB-NAME</th>
<th>LOCK-LEN</th>
<th>LOCK-NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMLDDCDB</td>
<td>08</td>
<td>7EB22000843A01D7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMS-NAME</th>
<th>TRAN/JOB</th>
<th>PSB-NAME</th>
<th>PCB--DBD</th>
<th>PST#</th>
<th>RGN</th>
<th>CALL</th>
<th>LOCK</th>
<th>LOCKFUNC</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>USMEED2</td>
<td>CMLDDCDB</td>
<td>--------</td>
<td>00007</td>
<td>MPP</td>
<td>GET</td>
<td>GRIDX</td>
<td>30400358</td>
<td>06-P</td>
</tr>
<tr>
<td>IMS2</td>
<td>TRLDDC1</td>
<td>CMLDDCDB</td>
<td>--------</td>
<td>00003</td>
<td>MPP</td>
<td>----</td>
<td>-----</td>
<td>--------</td>
<td>06-P</td>
</tr>
</tbody>
</table>

DEADLOCK ANALYSIS REPORT - END OF REPORT
Coupling Facility Usage Summary – Structure Summary

<table>
<thead>
<tr>
<th>STRUCTURE TYPE</th>
<th>STRUCTURE NAME</th>
<th>STATUS</th>
<th>CHG</th>
<th>SIZE</th>
<th>STOR</th>
<th>REQ</th>
<th>#</th>
<th>REQ</th>
<th>UTIL</th>
<th>SEC</th>
<th>TOT/CUR</th>
<th>TOT/CUR</th>
<th>TOT/CUR</th>
<th>LOCK</th>
<th>XI'S</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCK</td>
<td>MMHL_IMSIRLM</td>
<td>ACTIVE</td>
<td></td>
<td>34M</td>
<td>71551</td>
<td>0.1</td>
<td>0.1</td>
<td>59.63</td>
<td></td>
<td></td>
<td>62K</td>
<td>0</td>
<td>8389K</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

COUPLING FACILITY NAME = CF01

TOTAL SAMPLES (AVG) = 240 (MAX) = 240 (MIN) = 240
Coupling Facility Usage Summary – Structure Summary

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Name</th>
<th>Status</th>
<th>CHG</th>
<th>Alloc Size</th>
<th>% Alloc</th>
<th>% CF</th>
<th>% All</th>
<th>Avg Size</th>
<th>LST/DIR Entries</th>
<th>DATA Entries</th>
<th>LOCK Entries</th>
<th>DIR REC Entries</th>
<th>XI's</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCK</td>
<td>MMHL_IMSIRLM</td>
<td>ACTIVE</td>
<td>34M</td>
<td>34M</td>
<td>100.00</td>
<td></td>
<td></td>
<td>34M</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Record List:
- AVG: 59.63
- LST/DIR: 62K
- DATA: 0
- LOCK: 8389K

Lock Table:
- AVG: 28
- DATA: 0
- LOCK: 170
- XI's: N/A
RMF Coupling Facility Reports

Coupling Facility Structure Activity

<table>
<thead>
<tr>
<th>Structure Name = MMHL_IMSIRLM</th>
<th>Type = LOCK</th>
<th>Status = ACTIVE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>System Name</th>
<th>TOTAL</th>
<th>AVG/SEC</th>
<th># REQ</th>
<th>% OF REQ</th>
<th>-SERV TIME (MIC)</th>
<th>CUR TIME (MIC)</th>
<th># OF</th>
<th>% OF</th>
<th>REASON</th>
<th># DELAYED REQUESTS</th>
<th>% OF DELAYED REQUESTS</th>
<th>DELAYED TIME (MIC)</th>
<th>AVG TIME (MIC)</th>
<th>STD_DEV</th>
<th>CONTENTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSY</td>
<td>69K</td>
<td>57.96</td>
<td>0.1</td>
<td>108.6</td>
<td>387.3</td>
<td>97.1</td>
<td>0.0</td>
<td>9.3</td>
<td>PR WT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.4</td>
<td>15</td>
</tr>
<tr>
<td>CHNGD</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>51.1</td>
<td>9.3</td>
<td>0.0</td>
<td>0.0</td>
<td>PR CMP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>SYSN</td>
<td>406</td>
<td>0.34</td>
<td>0.0</td>
<td>51.1</td>
<td>9.3</td>
<td>0.0</td>
<td>0.0</td>
<td>PR CMP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>CHNGD</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>51.1</td>
<td>9.3</td>
<td>0.0</td>
<td>0.0</td>
<td>PR CMP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>SYSO</td>
<td>1014</td>
<td>0.84</td>
<td>1.4</td>
<td>18.0</td>
<td>7.8</td>
<td>0.0</td>
<td>0.0</td>
<td>PR SCH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>CHNGD</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>51.1</td>
<td>9.3</td>
<td>0.0</td>
<td>0.0</td>
<td>PR CMP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>71551</td>
<td>59.63</td>
<td>1.4</td>
<td>18.0</td>
<td>7.8</td>
<td>0.0</td>
<td>0.0</td>
<td>PR SCH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Request Details

- **SYSL**
 - Sync: 584 (97.1% of total, avg 8.2 mic)
 - Async: 0 (0.0% of total, avg 0.0 mic)
- **SYSN**
 - Sync: 406 (88.2% of total, avg 7.5 mic)
 - Async: 12 (0.0% of total, avg 9.3 mic)
- **SYSO**
 - Sync: 1014 (88.2% of total, avg 7.8 mic)
 - Async: 0 (0.0% of total, avg 0.0 mic)
- **SYSM**
 - Sync: 69547 (97.1% of total, avg 9.7 mic)
 - Async: 103 (1.4% of total, avg 9.3 mic)

External Requests

- **SYSL**
 - Sync: 0 (0.0% of total, avg 0.0 mic)
 - Async: 0 (0.0% of total, avg 0.0 mic)
- **SYSN**
 - Sync: 0 (0.0% of total, avg 0.0 mic)
 - Async: 0 (0.0% of total, avg 0.0 mic)
- **SYSO**
 - Sync: 0 (0.0% of total, avg 0.0 mic)
 - Async: 0 (0.0% of total, avg 0.0 mic)
- **SYSM**
 - Sync: 103 (0.1% of total, avg 387.3 mic)
 - Async: 0 (0.0% of total, avg 0.0 mic)

Total

- Sync: 71551 (97.1% of total, avg 7.8 mic)
- Async: 115 (1.6% of total, avg 366.8 mic)

Contention Details

- **SYSL**
 - Included in Async: 0 (0.0% of total, avg 0.0 mic)
 - CHNGD: 0 (0.0% of total, avg 0.0 mic)
- **SYSN**
 - Included in Async: 0 (0.0% of total, avg 0.0 mic)
 - CHNGD: 0 (0.0% of total, avg 0.0 mic)
- **SYSO**
 - Included in Async: 0 (0.0% of total, avg 0.0 mic)
 - CHNGD: 0 (0.0% of total, avg 0.0 mic)
- **SYSM**
 - Included in Async: 15 (0.2% of total, avg 387.3 mic)
 - CHNGD: 1 (0.0% of total, avg 0.0 mic)

Total

- CHNGD: 16 (0.2% of total, avg 0.0 mic)

Request Statistics

- **Req Total**: 723
 - Deferred: 7
 - Cont: 7
 - False Cont: 0

- **Req Total**: 723
 - Deferred: 7
 - Cont: 7
 - False Cont: 0

Total

- **Req Total**: 82K
 - Deferred: 88
 - Cont: 87
 - False Cont: 16
RMF Coupling Facility Reports

Coupling Facility Structure Activity

<table>
<thead>
<tr>
<th>STRUCTURE NAME = MMHL_IMSIRLM</th>
<th>TYPE = LOCK</th>
<th>STATUS = ACTIVE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SYSTEM NAME</th>
<th>TOTAL</th>
<th># REQ</th>
<th>% OF ALL</th>
<th>SERV TIME (MIC) -</th>
<th>REQ DEFERRED</th>
<th>EXTERNAL REQUEST</th>
</tr>
</thead>
</table>
Summary

- Locking affects IMS performance
- Locking is influenced by
 - Database design
 - Application program design
 - Syncpoint frequencies
- There are multiple sources of information about locking
 - These may be used to discover and address locking problems