Floating Point Numbers

Yes, this is the moon; our own moon. Not the fiinahtier but the first out post there to
be exploited by our greed of consumable minerasenSve the human race will be there
blasting the mines and depriving the orb withithes. Do we know how much is there
to steal?

Po uiz What is the surface area of moon?

2
Answer. The surface area of a sphere45:* m*R

Radius of moon is about 1738.2 KM; plugging theueat

4 *3.14159265 * 1738.2 * 1738.2 = 37967 2883162344 KM.

That would be 37.9 million square kilometers.

Two of our biggest states Texas and Californialareand 0.7 million square kilometers
respectively. Surface if the Moon would be aboG@td&/the area of North America or
about the size of Russia, that is close to the B®mSq Km

Now you, all mainframe assembly language tool deyeis i.e. old time MF
programmers try doing this calculation in S/390&xably. Give yourself few minutes.



Address | Object Code /390 Assembly Reg./ Memory after execution
000036 | B375 0010 LZDR R1 FPR1 00000000_00000000
00003A | ED10 C08C 0024 | LDE R1,FOUR FPR1 41400000_00000000
000040 | 7C10 C090 MDE R1,PIE FPR1 41C90FDC_00000000
000044 | 7C10 C094 MDE R1,RADIUS | FPR1 445552DD_F73CD400
000048 | 7C10 C094 MDE R1,RADIUS | FPR1 47243559 FE390700
00004C | B3C9 0011 CGDR R1,0,R1 GR1 0243559F

000050 | 5010 CO098 ST R1,FIXED

000054 | 4E10 C09C CVD R1,DECIMAL | 00000003 7967263C
000088 | 45B27570 FLOAT DC| X'45B27570

00008C | 41400000 FOUR DQ E'4'

000090 | 413243F7 PIE DC E'3.14159265E+0"

000094 | 436CA333 RADIUS DC| E'1.7382E+3'

000098 | 00000000 FIXED DC| FO'

00009C | 000000000000000Q DECIMAL DC| 2F'0'

This is one way of solving the problem mentionecpbavious slide and, of course, we all
know that there are several different ways to salwe programming problem and your
way is always better than mine. This is present¥d hs an example.

In the bottom part of the screen we have the dafiaitions. First at address x’88’ is a
dummy definition; this is meant as an example Watan actually define everything
manually as hexadecimal. Next is the “FOUR” fromn fmrmula. This is defined as
Floating-point-short. (Four bytes or one word) téasl of first E, | could have used D for
double word (eight bytes) or X for quad word (1&dsy. The second E is the same as
normal scientific notation; it denotes the expor@rthe current radix. Next two items
are standard one word binary.

Pie is 3.14 multiplied by 10 to power zero becawusealid not move the decimal point.
However, Radius is 1.7 to the power three becaesmoved the decimal point three
places to the left. Going back to the variable Fthe Floating Point value in Object
column is 41400000. Bit zero of byte zero is zegnifying a positive number, for
negative number it would be one. Bit 1 to 7 of byte is 100 0001 that is x’41’ or one
plus decimal 64 or one plus x'40’. We will come k&g this 64 business in detail later
but for the time being all the exponent valuesiirik/ of HFP are added 64 to indicate if
exponent is positive or negative.

Now coming to the instruction part in top half bétscreen:

The instruction on address x'36’ is Load Zero fooag register — that is a full register —
bit 0 to 63. As you can see, the content of FPRdr #ffie execution is all zero.



LDE is Load Lengthened that is take a Short FlggBoint number from storage at x’'8C’
and put it in full 64 bit FP register. Content ¢l is the same as the storage location
identified as Four.

Next three instructions are to multiply a Short f@mfrom storage to a Long number in
FP register. You can see that register contentrkeytiplying.

CGDR is Convert-to-Fixed register to register. Bibtl register mentioned have
positional meaning; a one in both places will ttatesFPR1 as operand two and GR1 as
operand one. If it was a real life program | wobltve defined different equate
instructions, but the point here is to give yoleaample and then explain, so | used same
equate as operands one and operand two and Assstititityok different meanings. The
content of GR1 is in Fixed Point format. Againolutd have taken care of exponent
portion by adding more instructions to separateoagpt and significand portions but that
would have lengthened the example.

Next two instructions are self explanatory; a) stBi to Fixed (don’t know why I did it,
may be yet another example ;-) b) Convert fixeBézimal. You can see that the
location identified as Decimal is 37.9 millions.

Now that | got your attention without using any fyrjoke here is what we are going to
do today:

Agenda

Number representation for FP arithmetic

Floating Point Overview

Floating-Point Registers

Floating Point Support Instructions (FPS)
Hexadecimal-Floating-Point Instructions (HFP)

Brief introduction to Binary and Decimal Floatin@iRt instructions

ogkrwnE

This is a complex subject and requires not onlgitlekplanation but | do expect lots of
guestions and answers to help clear understandivege are three distinct types of
Floating Point Instructions HFP, BFP, and DFP indions. Today | will only talk about
Support instructions and HFP instructions and giveief intro on the other two. For
those who are interested in going further, pleasgact John Ehrman of IBM to schedule
one more presentation in next SHARE.

Disclaimer:  Not all, but most of this informatioarne from manual “z/Architecture -
Principles of Operation” part number SA22-7832-67vihich IBM has the copyright.



Before we get too much confused about the calaratet us see how different data
looks like.

We know that in Assembly there are four basic f@taat in mainframe environment.

Signed Binary

Unsigned Binary
Unstructured Logical data
Decimal data

PwnhE

For arithmetic operations, the decimal data isverdivided as:

Zoned Decimal format:
| Z[N[Z[N[/[Z]|N]|ZIS[N]

Packed decimal format:
D|/D|D[D|/m|D|D|[D]|S]|

These formats are very good for commercial - letays- banking type of applications:

Account balance: 12345.91
Interest rate: 5%
Interest to be paid: 617.2955

We know that for amount figures, there are only tigits after decimal point. So we
will treat this number as $617.30

4 * 314159265 * 1738.2 * 1738.2 = 37967 Z583162344 KM,
However, our moon calculation is not that straigiivard. The decimal point is floating
all over, hence, a floating-point-decimal numbes.nElp computers do the calculations

on a fixed placement of decimal point the abovewdation can be rewritten in scientific
notation (Sl) as:

4.000 * 3.1416 * 1.7382 * 10r 1.7382 * 1§ = 3.79 X 10



This gives a harmonic view of all numbers — decipwht at the right of the left most
significant digit. This view - also called scieltihotation - is represented in computers
as “Floating Point”. This describes a system ofeéepnting numbers that are too large or
too small. It must be noted that the numbers reptssapproximately to a fix number of
significant digits and scaled using an exponenm&aber; this is all about
approximation hence not proper to be used for naoypetalculation.

Number System

Integers

Signed Binary Integers

Signed binary integers are most commonly repredanies bits as Halfwords or in 32
bits as Words. In both of these the leftmost Lit@pis the sign of the number. The
remaining bits (bits 1-15 for halfwords and 1-31 fidlwords) are used to specify the
magnitude or value of the number. Binary integeesadso referred to as fixed-point
numbers, because the radix point is considered foxed at the right, and any scaling is
done by the programmer. Positive binary integegdratrue binary notation with a zero
sign bit. Negative binary integers are in two’s-@@ment notation with sign bit On.
Negative binary integers are represented as tvaigptiment — all the bit are inverted
and a one is added after inverting the bits.

Signed Binary Integer:

+26 is 0000 0000 0001 0101
-26 is 1111 1111 1110 0110

Unsigned Binary Integer:
199 is 1100 0111
221 s 1101 1101
All unsigned binary numbers are considered positive

Packed Decimal Integers

+123 is 12 3C
-123 is 12 3D

Unsigned Binary Integers

Unsigned binary integers are presented in the $am®t as just mentioned, except that
the leftmost signed bit is also treated as nuntence, giving a larger magnitude.



Packed Decimal Integers

Decimal integers are represented by a 4-bit codde.decimal digits are in binary-coded
decimal (BCD) format, with the values 0-9 encode®@00-1001. The sign is usually
represented xC for plus and xD for minus. Thesdha@referred sign codes, but there
are also several alternate sign codes (xA, XE x&for plus; xB for minus). Decimal
integers may have different lengths, from one bgtene word or a multiple of words
lengths.

There are different decimal formats but two mogitpar are: Signed-Packed and Zoned.
In the signed-packed-decimal format, each byteasnattwo decimal digits, except for
the rightmost byte, which contains the sign codéneright half. In the zoned format,
each byte consists of a decimal digit on the ragid the zone code xF on the left, except
for the rightmost byte where the sign code repléicezone code.

Floating Point Numbers

1. Hexadecimal Floating-Point Numbers (HFP)
2. Binary Floating-Point Numbers (BFP)
3. Decimal Floating-Point Numbers (DFP)

Floating-point operands have formats based on tfadiges: 2, 10, or 16. These radix
values lead to the terminology “binary,” “decimadfid “hexadecimal’ floating point

(BFP, DFP, and HFP), respectively. The formatsaése based on three operand lengths:
short (32 bits), long (64 bits), and extended (28). Short operands require less storage
than long or extended operands. On the other hand.and extended operands permit
greater precision in computation.

A finite floating-point number has three componeatsgn bit, anexponent, and a
significand. The magnitude (an unsigned value) of the nungtra product of the
significand and the radix raise to the power ofé¢kponent. The number is positive or
negative depending on whether the sign bit is pemmne, respectively. The significand
consists of a string of digits, where each digdnsintegral value from zero to one less
than the radix (2, 10, or 16). (Thus, a BFP dgibme bit, an HFP digit is four bits, and a
DFP digit is a value from zero to nine.)

The number of digit positions in the significanctaled the precision of the floating-
point number. The significand has an implied rgubint, which, depending on the view,
may be considered to be on the left, to the righihe leftmost digit, on the right, or
elsewhere.

The exponent, a signed value, is represented assagned binary value by adding a
bias, the result, for BFP and DFP, is called the bissgubnent; for HFP, it is called the
characteristic (bias 64). The value of the biasedep on the view. In tHeaction view,
the radix point is considered to be the left ofskgnificand. In theeft-units view, the
radix point is considered to be to the right of lfgmost digit. In theright-units view,



the radix point is considered to be on the righthefsignificand. By choosing the
appropriate bias, any finite floating-point numisan be considered in any of these
views, or even in another view. For the first thoééhese views, the bias is called the
fraction view bias|eft-units-view bias, andight-units-view bias, respectively. Except
where otherwise indicated, HFP is defined in teofthe fraction view, BFP terms of the
left-units view, and DFP in terms of the right-sniew. For HFP, the significand is
considered to be a fraction with the implied raaidint on the left. In this view, the
significand is referred to as the fraction. For B significand consists of an implicit
unit digit to the left of an implied radix point d@n explicit fraction field to the right.

For DFP, the significand is considered to be amget with the implied radix point on the
right.

Hexadecimal-Floating-Point Numbers

Same as decimal floating point numbers are expdeasa fraction multiplied by power
of 10, Hexadecimal Floating Point (HFP) are exprdsa fraction multiplied by the
power of 16. The term floating point (HFP) indicatbat the hexadecimal point (radix) is
maintained by calculation, in this case by machine.

The part of an HFP number which represents théidradigits of the number is called
the significand. A second part the number raisatiedl6 is called exponent. It indicates
the location of the radix point of the number. Bgnificand and exponent together may
be represented by short format (32 bits or one yyéodg format (64 bits double word),
or extended format (128 bits quad word).

Short HFP Number

One Word
S | Characteristic 6-Digits Fraction
0 |1 8 31

Long HPF Number

Two Word
S | Characteristic 14-Digits Fraction
0 |1 8 31

14-digit Fraction (Continued from above)

32 63

Extended HPF Number

Four Word

S | Hgh Order Chst Leftmost14-Digits Fractign

0 |1 8 31




Leftmost 14-digit Fraction (Continued from above

32 63

S | Low Order Chst Rightmost 14-Digits Fractn

64 72 95

Rightmost 14-digit Fraction (Continued from above)

96 127

Like its real world counter part a HFP number vas $igns: one for the fraction and
another one for the exponent. The fraction sigrse the sign of the entire number is the
leftmost bit of each format (O for plus, 1 for m&@)uThe numeric part of the fraction is in
true notation regardless of the sign.

This numeric - also called the significand - partontained in bits 8-31 for the short
format, in bits 8-63 for the long format, and inst8-63 followed by bits 72-127 for the
extended format. The exponent sign is obtaineeXpyessing the exponent in excess-64
notation; that is, a 64 is added in the exponemé. rEsulting number is called the
characteristic. It is located in bits 1-7 for altrnats. The characteristic can vary from 0
to 127, permitting the exponent to vary from -64-G8. This provides a scale multiplier
in the range of 18" to 162

Two types of instructions are available, a) to wonknormalized or b) to work on un-
normalized fraction. Normalization is a process wehal the zeros are removed from the
left of the fraction and actual number is movedh left most position — that is bit
position 8-11 are nonzero. It is un-normalized# teftmost digit contains all zeros. An
HFP operation will provide the greatest precisiahe fraction is normalized.

Following example came straight from IBM’s PoP.

1.0 +1/16x161 0 100 0001 0001 0000 0000 0000 0000 00002
0.5 +8/16x160 0 100 0000 1000 0000 0000 0000 0000 00002
1/64 +4/16x16-1 0011 1111 0100 0000 0000 0000 0000 00002
0.0 +0 x16-64 0 000 0000 0000 0000 0000 0000 0000 00002
-15.0 -15/16x161 1100 0001 1111 0000 0000 0000 0000 00002
5.4x10-79 +1/16x16-64 0 000 0000 0001 0000 0000 0000 0000 00002
7.2x107s (1-16-6)x1663 0111111111111211 12111111 11111111

Conversion from decimal to HFP

a) The number is split into decimal integer andmactfraction
61.25 = 61 plus 0.25

b) Both of the components are converted into hesiat® representation



61 3Cx

0.25 0.4x (A shortcut is to multiply by 16)
C) Put them back together as hexadecimal number
3C.4x = 0.3C4x * 1%

C) Characteristic is developed by adding 64 inatteial location of radix point
64 +2 =66 binary = 100 0010

d) Put them together with a sign bit at bit positiro.

S Char Fraction
0 1000010 0110 1100 0100 0000 0000 0000

Hexadecimal-floating-point (HFP) operands have faistwhich provide for exponents
that specify powers of the radix 16 and significatitht are hexadecimal numbers. The
exponent range is the same for the short, longeatehded formats. It is important to
note that the results of most operations on HFR di truncated to fit into the target
format and are approximation to the actual decmaahber. There are instructions
available to round the result when converting tmaower format. For HFP operands,
the implicit unit digit of the significand is alwayero. Please note that the value of the
significand and fraction are the same. Although Hieetion is traditionally described as
significand, | will use the term fraction and tleerh significand interchangeably.

Either normalized or un-normalized numbers maydeas operands for any HFP or
DFP operation. Where, for HFP, a normalized nungene having a nonzero leftmost
fraction digit, or, for DFP, a normalized numbepige having a nonzero leftmost
significand digit. Most HFP instructions generatemalized results for greatest
precision. HFP add and subtract instructions teaegate un-normalized results are also
available.

Binary Floating-Point (BFP)

Binary-floating-point (BFP) operands have formé&iat tprovide for exponents that
specify powers of the radix 2 and significands #ratbinary numbers. The exponent
range differs for different formats, the range lgegmeater for the longer formats. In the
long and extended formats, the exponent ranggmfisiantly greater for BFP data than
for HFP data. The results of operations performe®BP data are rounded automatically
to fit into the target format; the manner of rourglis determined by a program-settable
BFP rounding mode. There are no un-normalized oplsréor BFP operations.

For BFP numbers, the implicit unit digit of the mificand is one. For values too small in
magnitude to be represented in normalized formirtipdicit unit digit is zero. These
numbers are called “subnormal” numbers (these wegially called de-normalize
numbers) Unlike the HFP and DFP formats, whereséimee value can have multiple



representations in a given format because of tksibitity of un-normalized numbers,
the BFP format does not allow such redundancy.

Decimal Floating-Point (DFP)

Decimal-floating-point (DFP) operands have forntat provide for exponents which
specify powers of the radix 10 and significandg #ra decimal numbers. The exponent
range differs for different formats, the range lgagmeater for the longer formats. Please
note that the exponent range is greater for DF® tthain for BFP data. The results of
operations performed on DFP data are rounded atitaita to fit into the target format;
the manner of rounding is determined by a prograteesable DFP rounding mode. Like
HFP, DFP numbers can be normalized or un-normal&gder normalized or un-
normalized numbers may be used as operands fdDBRyoperation. For DFP, a
normalized number is one having a nonzero leftraiggtificand digit. Because of the
possibility of un-normalized numbers, the same @a&an have multiple representations
in a given DFP format. The representations havmegsime value are called members of
a cohort. Unlike HFP, DFP instructions generatenadized results for greater precision
only when the result is inexact. When the resudixiact, most DFP instructions produce a
value in the form that preserves information catlesl quantum.

Floating-Point Data in Storage and Registers

All floating-point data formats appear in storagete same left-to-right sequence as all
other data formats. (No little-endian big-endiaguanent here ;-) data of the higher
significance are written in the lowest numberedbynd bits. The data that is of lower
value is written in higher number bytes / addrassivers.

Other non-number constructsfor BFP and DFP

Sign Bit
All floating-point data have a sign bit. The sighib zero for plus and one for minus.
Infinities

BFP and DFP data include an infinite numeric datcaied infinity. Infinities can
participate in most arithmetic operations and givensistent result, usually infinity. An
infinity has a sign bit. In comparisons, infinitiebthe same sign compare equat, +
compares greater than any finite number, andoempares less than any finite number.

Not-A-Number (NaN)

BFP and DFP data types include a nonnumeric datalied not-a-number (or NaN). A
NaN is produced in place of a numeric result edtemvalid operation when there is no
IEEE trap action. NaNs may also be used by therprogo flag special operands, such
as the contents of an uninitialized storage areldaN has a sign bit, a NaN-type bit, and
a payload.



Normally, QNaNs are just propagated during comparnatso that they will remain
visible at the end;

Signaling and Quiet NaNs

There are two types of NaNs, signaling and quietighaling NaN (SNaN) is
distinguished from the corresponding quiet NaN (Q@INlby the NaN-type bit. For BFP,
the NaN-type bit is the leftmost bit of the fractibeld, and is called the QNaN bit: a
BFP NaN is an SNaN, or a QNaN, depending on whetiee@QNaN bit is zero, or one,
respectively. For DFP, the NaN-type bit is in losftion 6 in all three formats, and is
called the SNaN bit: a DFP NaN is a QNaN, or anl$Niepending on whether the
SNaN bit is zero, or one, respectively.

Payload

NaNs include diagnostic information called the pag. For BFP, the payload has two
fewer bits than the precision and is considerdakta left-aligned bit-reversed binary
integer. For DFP, the payload has one fewer digihtthe precision and is considered to
be a right-aligned decimal integer. For both BFE BfP the payload of a NaN is
considered to be an unsigned integer.

Registers And Controls

Floating-Point Registers

All floating-point instructions (FPS, BFP, DFP, ad&P) use the same 16 floating-point
registers. The floating-point registers are idésdifoy the numbers 0-15 and are
designated by a four-bit R field in floating-poinstructions. Each floating-point register
is 64 bits long and can either work on a shortlf8per a long (64-bit) floating-point
operand or a long (64 bits) operand. A short flugpoint datum requires only the
leftmost 32 bit (lower numbered) positions of aafing-point register. The rightmost 32
bit positions of the register are ignored whenrtgster is the source of an operand in
the short format, and they remain unchanged whshoe result is placed in the register.
A datum in the Long format uses all the 64 bitsladum in the extended (128-bit) format
occupies a register pair. Register pairs are forbyecbupling the 16 registers as follows:
Oand 2,4 and 6, 8 and 10, 12 and 14, 1 and8d5 a9 and 11, and 13 and 15. Each of
the eight pairs is referred to by the number ofitiweer-numbered register of the pair.

To visualize consider the following: only the adjatof the following table can be used
as pair.

0 2 10 12 14

ol|b
~N (O
© |00

1 3 11 13 15




An instruction specifying a floating-point operaindthe extended format must designate
register 0, 1, 4, 5, 8, 9, 12, or 13 (again adjgcetherwise, a specification exception is
recognized.

Floating-Point-Control (FPC) Register

The floating-point-control (FPC) register is a 3Rrbgister that contains mask bits, flag
bits, a data exception code, IEEE exception trajecand two rounding-mode fields. The
bits of the FPC register are often referred tdasgxample, FPC 1.0, meaning bit O of
byte 1 of the register.

|EEE Invalid Operation
An IEEE-invalid-operation exception is recognizelden, in the execution of an IEEE
computational operation, any of the following occur

1. An SNaN is encountered in an IEEE computationalatpmm.

2. A QNaN is encountered in an unordered-signalingpamson (COMPARE AND
SIGNAL with a QNaN operand).

3. An IEEE difference is undefined (addition of infies of opposite sign, or
subtraction of infinities of like sign).

4. An IEEE product is undefined (zero times infinity).

5. An IEEE quotient is undefined (DIVIDE instructiontiv both operands zero or
both operands infinity).

6. A BFP remainder is undefined (DIVIDE TO INTEGER w# dividend of

infinity or a divisor of zero).

A BFP square root is undefined (negative nonzersya).

Any other IEEE computational operation whose reisudtither undefined or not

represent able in the target format.

© N

Control Instructions

The floating-point-support instructions and theimemonics and operation codes are
listed in the following Figure. All floating-poirgupport instructions are subject to the
AFP-register-control bit, bit 45 of control registe The AFP-register-control bit must be
one when an AFP register is specified as an opdoaadion; otherwise, an AFP-register
data exception, DXC 1, is recognized.

Mnemonics for the floating-point instructions haueR as the last letter when the
instruction is in the RR, RRE, or RRF format. Ciertatters are used for floating-point
instructions to represent operand-format lengttipbews:

D Long
E Short
X Extended

Condition Codesfor | EEE Instructions



For those operations which set the condition codedicate the value of an IEEE result,
condition codes 0, 1, and 2 are set to indicatettigaresult is a zero of either sign, less
than zero, or greater than zero, respectively.cimgition-code setting depends only on
an inspection of the rounded result. For comparggmerations, condition codes 0, 1, and
2 indicate equal, low, or high, respectively. Thesttings are the same as for the HFP
instructions.

Condition code 3 can also be set. After an aritioyagieration, condition code 3
indicates a NaN result of either sign. After a cangon, it indicates that a NaN was
involved in the comparison (the unordered cond)tion

CONVERT BFP TO HFP

Mnemonic R1,R2 [RRE]

Op Code i R R,

0 16 24 28 31
Mnemonic  Op Code Operands

THDER 'B358' Short BFP operand, long HFP result
THDR 'B359' Long BFP operand, long HFP result

The second operand (the source operand) is codvieoi® the binary-floating-point
(BFP) format to the hexadecimal-floating-point (HF&mat, and th@ormalized result

is placed at the first-operand location. The sigd magnitude of the source operand are
tested to determine the setting of the conditiasieco

For numeric operands, the sign of the result isthe of the source operand. If the
source operand has a sign bit of one and all aijperand bits are zeros, the result also is
a one followed by all zeros. When, for THDR, tharecteristic of the result would be
negative, the result is made all zeros but withstrae sign as that of the source operand,
and condition code 1 or 2 is set to indicate the sif the source operand.

Resulting Condition Code:

0 Source was zero

1 Source was less than zero

2 Source was greater than zero
3 Special case

CONVERT HFP TO BFP

Mnemonic R1,R2 [RRE]

16 20 24 28 3L

Op Code M3 1 [ R,
0




Mnemonic  Op Code Operands
TBEDR ‘B350 Long HFP operand, short BFP result
TBDR ‘B351" Long HFP operand, long BFP result

The second operand (the source operand) is codvieot® the hexadecimal-floating-
point (HFP) format to the binary-floating-point (BfFformat, and the result rounded
according to the rounding method specified by ttgefidld is placed at the first-operand
location. The sign and magnitude of the sourceapkare tested to determine the setting
of the condition code.

The M3 field contains a modifier specifying a rourgimethod, as follows:

M3 Effective Rounding Method

Round toward 0

Round to nearest with ties away from 0

Round to nearest with ties to even

Round toward 0

Round toward o

Round towardee

~No ol h~h -, O

COPY SIGN

CPSDR R1,R3, R2 [RRF]

B372 Rs I R Ro

0 16 20 24 28 3L

The second operand is placed at the first-operacatibn with the sign bit set to the sign
of the third operand. The first, second, and tbjpdrands are each in a 64-bit floating-
point register. The sign bit of the second operamdi bits 1-63 of the third operand are
ignored.

EXTRACT FPC

EFPC

R1 [RRE]

‘B38C’

i

i

R

i

16

20

24

28

The contents of the FPC (floating-point-controljister are placed in bit positions 32-63
of the general register designated by R1. Bit posst0-31 of the general register remain
unchanged.

LOAD

Mnemonic R1,R2 [RR]



OpCode | R Ro
0 8 12 14
Mnemonic  Op Code Operands
LER ‘38" Short
LDR '28' Long
Mnemonic2 R1,R2 [RRE]
Op Code T R R,
0 16 24 28 31
Mnemonic  Op Code Operands
LXR '‘B365' Extended
Mnemonic3 R1,D2(X2,B2) [RX]
Op Code R Xz B1 D,
0 8 12 16 20 31
Mnemonic3 Op Code Operands
LE '78' Short
LD '68' Long
Mnemonic4 R1,D2(X2,B2) [RXY]
Op Code R Xz B, DL, DH, Op Code
0 8 12 16 20 32 40 47
Mnemonic3 Op Code Operands
LEY ‘ED64’ Short
LDY ‘ED65’ Long

The second operand is placed unchanged at thefiesand location.

The operation is performed without inspecting tbetents of the second operand; no

arithmetic exceptions are recognized.

For LXR, the R fields must designate valid floatpgint-register pairs; otherwise, a

specification exception is recognized.

LOAD COMPLEMENT

LCDFR R1,R2 [RRE]

it

Op Code
0

16

28




The second operand is placed at the first-opermacatibn with the sign bit inverted. Both
the first and second operands are each in a Gibaiing-point register.

LOAD FPC

LFPC D2(B2) [S]

‘B29D’ B> D2

0 16 20 3]

The four-byte second operand in storage is loadtedthe FPC (floating-point-control)
register.

Bits corresponding to unsupported bit positiongha FPC register must be zero;
otherwise, a specification exception is recognized.

LOAD FPC AND SIGNAL

LFAS D2(B2) [S]

‘B2BD’ B, D2

0 16 20 3]

First, bits 0-4 of byte 1 of the floating-point-¢ow (FPC) register at the beginning of the
operation are preserved to be used as signaligg. fidext, the contents of the source
operand are placed in the FPC register; then #gs iih the FPC register are set to the
logical OR of the signaling flags and the souregi$l Finally, the conditions for
simulated- IEEE-exception trap action are examifié. source operand is the second
operand in storage.

If any signaling flag is one and the correspondiagrce mask is also one, simulated-
IEEE-exception trap action occurs. The data-exoeptode (DXC) in the FPC register is
updated to indicate the specific cause of thernggion and a data-exception program
interruption occurs at completion of the instrustexecution.

If no signaling flag is enabled, the DXC in the FR@ister remains as loaded from the
source and instruction execution completes witlrap action.

Bits in the source operand that correspond to ymstiged bit positions in the FPC
register must be zero; otherwise, a specificatiaeption is recognized.

LOAD FPR FROM GR

LDGR R1,R2 [RRE]

‘B3CY i Ry Ry

0 16 24 28 31




The second operand is placed at the first-opem@catibn. The second operand is in a
general register, and the first operand is in atiit@-point register.

LOAD GR FROM FPR

LGGR R1,R2 [RRE]

‘B3CD’ i R1 Ry

0 16 24 28 31

The second operand is placed at the first-opem@catibn. The second operand is in a
floating-point register, and the first operandnsigeneral register.

LOAD NEGATIVE

LGGR R1,R2 [RRE]

‘B371’ i R1 Ry

0 16 24 28 31

The second operand is placed at the first-operaeatibn with the sign bit set to one.
Both the first and second operands are each intat@kbating-point register.

LOAD POSITVE

LPDFR R1,R2 [RRE]

‘B370’ i R1 Ry

0 16 24 28 31

The second operand is placed at the first-operacatibn with the sign bit set to zero.
Both the first and second operands are each intat@kbating-point register.

LOAD ZERO

Mnemonic R1 [RRE]

Op Code 1 R 1

0 16 24 28 31
Mnemonic  Op Code Operands

LZER ‘B374" Short

LZDR ‘B375" Short

LZXR ‘B376" Short

All bits of the first operand are set to zeros.



For LZXR, The R1 field must designate a valid flogtpoint-register pair; otherwise, a
specification exception is recognized.

PERFORM FLOATING-POINT OPERATION

PFPO [E]

‘010A’

The operation specified by the function code inegahregister 0 is performed and the
condition code is set to indicate the result. Wtieme are no exceptional conditions,
condition code 0 is set. When an IEEE nontrap etejs recognized, condition code 1
is set. When an IEEE trap exception with altera&teon is recognized, condition code 2
is set. A 32-bit return code is placed in bits e general register 1; bits 0-31 of
general register 1 remain unchanged.

The PERFORM FLOATING-POINT OPERATION (PFPO) instioa is subject to the
AFP-register control bit bit 45 of control registerFor PFPO to be executed successfully
the AFP-register-control bit must be one; otherwegeAFP-register data exception,
DXC 1, is recognized. Bit 32 of general registés €he test bit. When bit 32 is zero, the
function specified by bits 33-63 of general regi€tés performed; each field in bits 33-
63 must be valid and the combination must be a\aid installed function; otherwise a
specification exception is recognized. When bits3@ne, the function specified by bits
33-63 is not performed but, instead, the conditiode is set to indicate whether these
bits specify a valid and installed function; theandition code is set to O if the function is
valid and installed or to 3 if the function is ihideor not installed. This will be useful if
additional functions are assigned in the futuras Definition is written as if the test bit is
zero except when stated otherwise.

Bits 33-39 of GRO specify the operation type. Omig operation type is currently
defined: 01, hex, is PFPO Convert Floating-PoindikRa

Note: See page 658 of PoP
SET BFP ROUNDING MODE

SRNM D2(B2) [S]

‘B299’ B> D2

0 16 20 3]

The BFP rounding-mode bits are set from the seap®iand address.



The second-operand address is not used to addiessristead, the BFP rounding-mode
bits in the FPC register are set with bits 62 aB@fthe address.

Bits other than 62 and 63 of the second-operanceaddire ignored.
SET DFP ROUNDING MODE

SRNMT D2(B2) [S]

‘B2BY’ B> D2

0 16 20 3]

The DFP rounding-mode bits are set from the seapetand address.

The second-operand address is not used to addressréstead, the DFP rounding-mode
bits in the FPC register are set with bits 61-6&efaddress.

Bits other than 61-63 of the second-operand ad@esgnored.

SET FPC

SFPC R1

[RRE]

‘B284’

i

R1

i

0

16

24

28

3

L

The contents of bit positions 32-63 of the genezgister designated by R1 are placed in
the FPC (floating-point-control) register.

All of bits 32-63 corresponding to unsupportedgdasitions in the FPC register must be
zero; otherwise, a specification exception is rewed. For purposes of this checking, a
bit position is considered to be unsupported oiityi either unassigned or assigned to a
facility which is not installed in any architecturaode of the configuration. Bits 0-31 of
the general register are ignored.

SET FPC AND SIGNAL

SFASR R1

[RRE]

‘B385’

i

Ry

i

0

16

24

28

3

L

First, bits 0-4 of byte 1 of the floating-point-¢ow (FPC) register at the beginning of the
operation are preserved to be used as signaligg. fidext, the contents of the source
operand are placed in the FPC register; then #gs iih the FPC register are set to the
logical OR of the signaling flags and the souregi$l Finally, the conditions for

simulated-IEEE-exception trap action are examined.



The source operand is in bits 32-63 of the gemeraster designated by R1; bits 0-31 of
the general register are ignored.

STORE
Mnemonic R1,D2(X2,B2) [RX]
‘Op Code R, Xs B; D,

0 8 12 16 20 3L
Mnemonic  Op Code Operands
STE 70 Short
STD '60' Long
Mnemonic R1,D2(X2,B2) [RXY]

‘Op Code R1 Xo B, DL, DH, Op Code
0 8 12 16 20 32 40 47
Mnemonic  Op Code Operands
STEY ‘ED66’ Short
STDY ‘ED67’ Long

The first operand is placed unchanged in storage at the second-operand location.
The displacement for STE and STD is treated as a 12-bit unsigned binary integer. The
displacement for STEY and STDY is treated as a 20-bit signed binary integer.

STORE FPC

STFPC D2(B2) [S]

‘B29C’ B2 D2

0 16 20 3]

The contents of the FPC (floating-point-controljister are placed in storage at the
second-operand location. The operand is four bgtesngth. All 32 bits of the FPC
register are stored.

Hexadecimal-Floating-Point I nstructions
Normalization

A quantity can be represented with the greatesigiocs by an HFP number of a given
fraction length when that number is normalized.okmalized HFP number has a
nonzero leftmost hexadecimal fraction digit. If aemore leftmost fraction digits are
zeros, the number is said to be un-normalized. &malized numbers are normalized by
shifting the fraction left, one digit at a time,tlithe leftmost hexadecimal digit is



nonzero and reducing the characteristic by the mummbhexadecimal digits shifted. A
number with a zero fraction cannot be normalizétthee its characteristic remains
unchanged or its characteristic is made zero whemesult is forced to be a true zero.

HFP Data For mats

HFP numbers have a 32-bit (short) format, a 64lbitg) format, or a 128-bit (extended)
format. Numbers in the short and long formats magésignated as operands both in
storage and in the floating-point registers, whem@aerands having the extended format
can be designated only in the floating-point reggistin all formats, the first bit (bit 0) is
the sign bit (S). The next seven bits are the cbariatic. In the short and long formats,
the remaining bits constitute the fraction, whidmsists of six or 14 hexadecimal digits,
respectively.

Short HFP Number

One Word
S | Characteristic 6-Digits Fraction
0 |1 3 311

Long HPF Number

Two Word
S | Characteristic 14-Digits Fraction
0 |1 8 31

14-digit Fraction (Continued from above)

32 63

Extended HPF Number

Four Word
S | Hgh Order Chst Leftmost14-Digits Fractior
0 |1 8 31

Leftmost 14-digit Fraction (Continued from above

32 63

S | Low Order Chst Rightmost 14-Digits Fractr

64 72 95

Rightmost 14-digit Fraction (Continued from above)

96 127




ADD NORMALIZED

Mnemonic R1,R2 [RR]
OpCode | R Ro
0 16 20 31
Mnemonic  Op Code Operands
AER '3A Short HFP
ADR 2A' Long HPF
AXR '36' Extended HPF
Mnemonic R1,D2(X2,B2) [RX]
OpCode | R X3 B2 D,
0 8 12 16 20
Mnemonic  Op Code Operands
AE 74 Short HFP
AD 'BA' Long HFP

The second operand is added to the first operamtitree normalized sum is placed at the
first-operand location.

Addition of two HFP numbers consists in characterisomparison, fraction alignment,
and signed fraction addition. The characteristidhie two operands are compared, and
the fraction accompanying the smaller characteristaligned with the other fraction

by a right shift, with its characteristic increasgdone for each hexadecimal digit of shift
until the two characteristics agree.

When a fraction is shifted right during alignmethi leftmost hexadecimal digit shifted
out is retained as a guard digit. The fraction thaiot shifted is considered to be
extended with a zero in the guard-digit positiorhaf' no alignment shift occurs, both
operands are considered to be extended with zetbe iguard-digit position. The
fractions with signs are then added algebraicalliptm a signed intermediate sum.

The intermediate-sum fraction consists of sevear{dbrmat), 15 (long format), or 29
(extended format) hexadecimal digits, including glvard digit, and a possible carry. If a
carry is present, the sum is shifted right onetgigsition so that the carry becomes the
leftmost digit of the fraction, and the characticiss increased by one. If the addition
produces no carry.

ADD UNNORMALIZED

Mnemonic R1,R2 [RR]

| OpCode | R | R




[0

[ 16 |

20

31

Mnemonic  Op Code Operands
AUR '3E' Short HFP
AWR 2E' Long HPF
Mnemonic R1,D2(X2,B2) [RX]
Op Code R Xz B2 D,
0 8 12 16 20
Mnemonic  Op Code Operands
AU ‘TE' Short HFP
AW '6E' Long HFP

The second operand is added to the first operamtitree un-normalized sum is placed at

the first-operand location.

COMPARE
Mnemonic R1,R2 [RR]
OpCode | R Ro
0 16 20 31
Mnemonic  Op Code Operands
CER '39' Short HFP
CDR '29' Long HPF
Mnemonic R1,R2 [RRE]
Op Code i R R,
0 16 24 28
Mnemonic  Op Code Operands
CXR ‘B369’ Extended HFP
Mnemonic R1,D2(X2,B2) [RX]
Op Code R X2 B2 D,
0 8 12 16 20
Mnemonic  Op Code Operands
CE 79’ Short HFP
CD '69' Long HFP




The first operand is compared with the second apkrand the condition code is set to
indicate the result. The comparison is algebradfatiows the procedure for normalized
subtraction, except that the difference is discduaféer setting the condition code and
both operands remain unchanged. When the differémdading the guard digit, is zero,
the operands are equal.

CONVERT FROM FIXED

Mnemonic R1,R2 [RRE]

Op Code 1 R R,
0 16 24 28 31
Mnemonic  Op Code Operands
CEFR ‘B3B4’ 32-bit binary-integer operand, ShdRP result
CDFR ‘B3B5’ 32-bit binary-integer operand, LondrPi result
CXFR ‘B3B6’ 32-bit binary-integer operand, ExtenddHFP result
CEGR ‘B3C4’ 64-bit binary-integer operand, SHARP result
CDGR ‘B3CY’ 64-bit binary-integer operand, Long PiFesult
CXGR ‘B3C4’ 64-bit binary-integer operand, ExtedddFP result

The fixed-point second operand is converted tdHRE format, and the normalized result
is placed at the first-operand location. A nonzesult is normalized. A zero result is

made a positive true zero.

The second operand is a signed binary integeiighatated in the general register
designated by R2. A 32-bit operand is in bit posii 32-63 of the register

CONVERT TO FIXED

Mnemonic R1,M1,R2 [RRF]

Op Code M i Ry R,
0 16 20 24 28 3
Mnemonic  Op Code Operands
CEER ‘B3B8’ Short HFP operand, 32-bit binary-gee result
CFDR ‘B3BY’ Long HFP operand, 32-bit binary-ineegesult
CFXR ‘B3BA’ Extended HFP operand, 32-bit binanyager result
CGER ‘B3C8’ Short HFP operand, 64-bit binary-ggeresult
CGDR ‘B3CY’ Long HFP operand, 64-bit binary-integesult
CGXR ‘B3CA’ Extended HFP operand, 64-bit binaryeiger result

The HFP second operand is rounded to an integae\aald then converted to the fixed-
point format. The result is placed at the first4@pel location. The result is a signed



binary integer that is placed in the general regidesignated by R1. A 32-bit result
replaces bits 32-63 of the register, and bits @f3he register remain unchanged.

The second operand is rounded to an integer valueumding as specified by the
modifier in the M3 field:

M3 Effective Rounding Method

Round toward O

Round to nearest with ties away from 0
Round to nearest with ties to even
Round toward O

Round toward

Round towardoe

~N~No ok, O

DIVIDE

Mnemonic R1,R2 [RR]

Op Code | R Ro
0 16 20 3]
Mnemonic  Op Code Operands
DER ‘3D’ Short HFP
DDR ‘2D’ Long HPF

Mnemonic2 R1,R2 [RRE]

Op Code i R R,
0 16 24 28 31
Mnemonic  Op Code Operands
DXR ‘B22D’ Extended HFP
Mnemonic3 R1,D2(X2,B2) [RX]

‘Op Code Ry X5 B, D,

0 8 12 16 20 3L
Mnemonic  Op Code Operands
DE 7D’ Short HFP
DD '6D' Long HFP

The first operand (the dividend) is divided by #ezond operand (the divisor), and the
normalized quotient is placed at the first-operkoation. No remainder is preserved.

HFP division consists in characteristic subtractiod fraction division. The operands are
first normalized to eliminate leading hexadecinmaios. The difference between the



dividend and divisor characteristics of the noraedi operands, plus 64, is used as the
characteristic of an intermediate quotient.

HALVE

Mnemonic R1,R2 [RR]

OpCode | R Ro
0 16 20 31
Mnemonic  Op Code Operands
HER '34' Short HFP
HDR '24' Long HPF

The second operand is divided by 2, and the noredljuotient is placed at the first-
operand location.

LOAD AND TEST

Mnemonic R1,R2 [RR]

OpCode | R Rz
0 16 20 3]
Mnemonic  Op Code Operands
LTER '32' Short HFP
LTDR 22" Long HPF

Mnemonic2 R1,R2 [RRE]

Op Code 1 R R,
0 16 24 28 31
Mnemonic  Op Code Operands
LTXR '‘B362' Extended HFP

The second operand is placed at the first-operaeatibn, and its sign and magnitude are
tested to determine the setting of the conditiasiecd he condition code is set the same
as for a comparison of the second operand with zero

LOAD COMPLEMENT

Mnemonic R1,R2 [RR]

OpCode | R Rz

0 16 20 3]




Mnemonic  Op Code Operands
LCER ‘33 Short HFP
LCDR '23' Long HPF
Mnemonic2 R1,R2 [RRE]
Op Code 1 R R,
0 16 24 28 31
Mnemonic  Op Code Operands
LCXR '‘B363" Extended HFP

The second operand is placed at the first-oper@catibn with the sign bit inverted.
The sign bit is inverted even if the operand i©z€&or all operand lengths, the source
fraction is placed unchanged in the result.

LOAD FP INTEGER

Mnemonic R1,R2 [RRE]
Op Code 1 R R,
0 16 24 28 31
Mnemonic  Op Code Operands
LIER 'B377" Short HFP
LIDR ‘B37F Long HFP
LIXR '‘B367' Extended HFP

The second operand is truncated (rounded towad) #®an integer value in the same
floating-point format and the normalized resulpliaced at the first-operand location. A
nonzero result is normalized. A zero result is mag@esitive true zero.

LOAD LENGTHENED

Mnemonic R1,R2 [RRE]

Op Code 1 R R,
0 16 24 28 31
Mnemonic  Op Code Operands
LDER '‘B324' Short HFP operand 2, Long HFP operha
LXDR '‘B325' Long HFP operand 2, extended HFErapd 1
LXER '‘B326' Short HFP operand 2, Extended Hp&and 1
Mnemonic  R1,D2(X2,b2) [RXE]

OpCode | R [Xo [B, |D» 11 | Op Code |




[0

| 12

[ 16

| 20

Mnemonic
LDE
LXD
LXE

The second operand is extended to a longer foandtthe result is placed at the first-

Op Code

'ED24
'ED25'
'ED26'

operand location.

LOAD NIGATIVE

Operands

Short HFP operand 2, Long HFP opérhn
Long HFP operand 2, extended HFPrape 1
Short HFP operand 2, Extended HF€rapd 1

Mnemonic R1,R2 [RR]

OpCode | R Ro
0 16 20 31
Mnemonic  Op Code Operands
LNER ‘31 Short HFP
LDDR 21 Long HPF
Mnemonic2 R1,R2 [RRE]

Op Code 1 R R,
0 16 24 28
Mnemonic  Op Code Operands
LNXR '‘B361" Extended HFP

The second operand is placed at the first-operacatibn with the sign bit made one.

LOAD POSITIVE

Mnemonic R1,R2 [RR]

OpCode | R Ro
0 8 12 15
Mnemonic  Op Code Operands
LPER ‘30 Short HFP
LPDR 20 Long HPF
Mnemonic2 R1,R2 [RRE]

Op Code 1 R R,
0 16 24 28
Mnemonic  Op Code Operands




LPXR

The second operand is placed at the first-operacatibn with the sign bit made zero.

'‘B360"

LOAD ROUNDED

Extended HFP

Mnemonic R1,R2 [RR]
OpCode | R Ro
0 8 12 15
Mnemonic  Op Code Operands
LEDR '35 Long HFP operand 2, Short HFP operand
LDXR '25' Extended Long HPF operand 2, Longrapd 1
Mnemonic2 R1,R2 [RRE]
Op Code 1 R R,
0 16 24 28
Mnemonic  Op Code Operands
LEXR '‘B366'

Extended HFP 2, short HFP operand 1

The second operand is placed at the first-operacatibn with the sign bit made zero.

MULTIPLY
Mnemonic R1,R2 [RR]
OpCode | R Ro
0 8 12 15
Mnemonic  Op Code Operands
MDR '2C Long HFP
MXR '26' Short HFP multiplier, Long HFP product
MDER '3C Short HFP multiplier and multiplicaridgng HFP product
MXER 27 Long HFP multiplier and multiplicanBxtended HFP
product
Mnemonic2 R1,R2 [RRE]
Op Code 1 R R,
0 16 24 28
Mnemonic  Op Code Operands
MEER '‘B337" Short HFP




Mnemonic  R1,D2(X2,b2) [RXE]

OpCode | R X2 B, D, i Op Code
0 8 12 16 20 22 40 47
Mnemonic  Op Code Operands
MEE '‘ED37 Short HFP
Mnemonic3 R1,D2(X2,B2) [RX]

Op Code R Xz B2 D,
0 8 12 16 20 3L
Mnemonic  Op Code Operands
MD '6C' Long HFP
MDE 7C' Short HFP multiplier and multiplicariextended HFP
product
MXD 67" Long HFP multiplier and multiplicanBxtended HFP
product

The normalized product of the second operand (thiépther) and the first operand (the
multiplicand) is placed at the first-operand looati

MULTIPLY AND ADD

Mnemonic R1,R2 [RRF]
Op Code R i Rs R,
0 16 20 24 28 3n
Mnemonic  Op Code Operands
MAER ‘B32E’ Short HFP
MADR ‘B33E' Long HFP
Mnemonic  R1,R2,D2(X2,b2) [RXF]

OpCode | R X2 B, D, Ry | /lllll | Op Code
0 8 12 16 20 32 36 40 4y
Mnemonic  Op Code Operands
MAE 'ED2E' Short HFP
MAD 'ED3E' Long HFP

The third operand is multiplied by the second opédyand then the first operand is added
to from the product. The sum is placed at the-brstrand location.

MULTIPLY AND SUBTRACT



Mnemonic R1,R2 [RRF]
Op Code R i Rs R,
0 16 20 24 28 3
Mnemonic  Op Code Operands
MSER ‘B32F Short HFP
MSDR ‘B33F' Long HFP
Mnemonic  R1,R2,D2(X2,b2) [RXF]

Op Code | R Xz B, D, Ri | /lllll | Op Code
0 8 12 16 20 32 36 40 4y
Mnemonic  Op Code Operands
MSE 'ED2F' Short HFP
MSD 'ED3F' Long HFP

The third operand is multiplied by the second opédrand then the first operand is
subtracted to from the product. The differencdased at the first-operand location.

MULTIPLY AND ADD UNNORMALIZED

Mnemonic R1,R2 [RRF]
‘Op Code R1 i Rs R,

0 16 20 24 28 31
Mnemonic  Op Code Operands
MAYR ‘B32A Long HFP sources, extended HFP result
MAYHR ‘B33C' Long HFP sources, high-order parestended HFP result
MAYLR ‘B338 Long HFP sources, low-order part otended HFP result
Mnemonic  R1,R2,D2(X2,b2) [RXF]

OpCode | R X2 B, D, Ry | /lllll | Op Code
0 8 12 16 20 32 36 40 a4y
Mnemonic  Op Code Operands
MAY 'ED3A’ Long HFP sources, extended HFP resul
MAYH 'ED3C' Long HFP sources, high-order part efemded result
MAYL 'ED38 Long HFP sources, low-order partestended result

The second and third HFP operands are multipleaihg an intermediate product; the
first operand (addend) is then added algebraitaltite intermediate product to form an
intermediate sum; the intermediate-sum fractiamuscated on the left or on the right, if
need be, to form an intermediate extended restil{oAa part) of the intermediate
extended result is placed in the floating-pointistay pair (or floating-point register)



designated by the R1 field. The operands, interatedialues, and results are not

normalized to eliminate leading hexadecimal zeros.

MULTIPLY NORMALIZED

Mnemonic R1,R2 [RRF]

‘Op Code R1 i Rs R,
0 16 20 24 28 3n
Mnemonic  Op Code Operands
MYR ‘B33B’ Long HFP multiplier & multiplicand, ebended HFP
product
MYHR ‘B33D' Long HFP multiplier & multiplicand, Ilgh-order part of
extended HFP product
MYLR ‘B339 Long HFP multiplier & multiplicand,dw-order part of

extended HFP product

Mnemonic  R1,R2,D2(X2,b2) [RXF]

OpCode | R X2 B, D, Ry | /lllll | Op Code
0 8 12 16 20 32 36 40 4y
Mnemonic  Op Code Operands
MY 'ED3B' Long HFP multiplier & multiplicand x¢ended HFP
product
MYH 'ED3D' Long HFP multiplier & multiplicand, gh-order part of
extended product
MYL 'ED39’ Long HFP multiplier & multiplicandpw-order part of

extended product

The second and third HFP operands are multipleaihg an intermediate product,
which, in turn, is used to form an intermediatec@xied result. All (or a part) of the
intermediate extended result is placed in theifiggpoint-register pair (or floating-point
register) designated by the R1 field. The operaimisrmediate values, and results are
not normalized to eliminate leading hexadecimabzer

SQUARE ROOT

Mnemonic R1,R2 [RRF]
Op Code i R R,
0 16 24 28 31
Mnemonic  Op Code Operands
SQER ‘B245’ Short HFP
SQDR ‘B244' Long HFP
SQXR ‘B336' Extended HFP



Mnemonic  R1,D2(X2,b2) [RXF]

OpCode | R X2 B, D, IIl'] Op Code
0 8 12 16 20 32 40 47
Mnemonic  Op Code Operands
SQE 'ED34" Short HFP
SQD 'ED35' Long HFP

The normalized and rounded square root of the skoparand is placed at the first-
operand location. When the fraction of the secqmetand is zero, the sign and
characteristic of the second operand are ignoratiflae operation is completed by
placing a positive true zero at the first-operashtion.

SUBTRACT NORMALIZED

Mnemonic R1,R2 [RR]
OpCode | R Ro
0 16 20 31
Mnemonic  Op Code Operands
SER ‘3B Short HFP
SDR '2B' Long HPF
SXR ‘37 Extended HPF
Mnemonic R1,R2 [RRF]
Op Code R i Rs R,
0 8 12 16 28
Mnemonic  Op Code Operands
SE ‘7B’ Short HFP
SD ‘6B’ Long HFP

The second operand is subtracted from the firstaoyk and the normalized difference is
placed at the first-operand location.

The execution of SUBTRACT NORMALIZED is identical that of ADD
NORMALIZED, except that the second operand parétzp in the operation with its sign
bit inverted.

SUBTRACT UNNORMALIZED
R1,R2

Mnemonic [RR]



OpCode | R Ro
0 16 20 31
Mnemonic  Op Code Operands
SUR '3F' Short HFP
SWR 2F Long HPF
Mnemonic  R1,D2,(X2,B2) [RX]
Op Code R Xz B2 D,
0 8 12 16 28 31
Mnemonic  Op Code Operands
SuU ‘TF Short HFP
SwW ‘6F Long HFP

The second operand is subtracted from the firstaopk and the unnormalized difference
is placed at the first-operand location.

The execution of SUBTRACT UNNORMALIZED is identiced that of ADD
UNNORMALIZED, except that the second operand pgrétes in the operation with its
sign bit inverted.

Disclaimer:  Not, but most of this information cafmem “z/Architecture -
Principles of Operation” manual part number SA232/87 for which IBM has the

copyright.



