
Floating Point Numbers 
 

 
 
 
Yes, this is the moon; our own moon. Not the final frontier but the first out post there to 
be exploited by our greed of consumable minerals. Soon we the human race will be there 
blasting the mines and depriving the orb with its riches. Do we know how much is there 
to steal? 
 
Pop Quiz:  What is the surface area of moon?  
 
 

Answer:  The surface area of a sphere is: 4 * π * R2
 

 
Radius of moon is about 1738.2 KM; plugging the values: 
 
4 * 3.14159265 * 1738.2 * 1738.2 = 37967268.598162344 KM2. 
 
That would be 37.9 million square kilometers.  
 
 
Two of our biggest states Texas and California are 1.7 and 0.7 million square kilometers 
respectively. Surface if the Moon would be about 2/3 of the area of North America or 
about the size of Russia, that is close to the 38 million Sq Km  
 
Now you, all mainframe assembly language tool developers i.e. old time MF 
programmers try doing this calculation in S/390 Assembly. Give yourself few minutes. 
 
 
 
 
 



 
 
Address Object Code S/390 Assembly Reg./ Memory after execution 
000036 
00003A 
000040 
000044 
000048 
00004C 
000050 
000054 

B375   0010      
ED10  C08C  0024 
7C10  C090      
7C10  C094      
7C10  C094      
B3C9  0011      
5010   C098      
4E10   C09C      

LZDR    R1          
LDE      R1,FOUR     
MDE     R1,PIE      
MDE     R1,RADIUS   
MDE     R1,RADIUS   
CGDR   R1,0,R1     
ST         R1,FIXED    
CVD    R1,DECIMAL 

FPR1  00000000_00000000 
FPR1  41400000_00000000 
FPR1  41C90FDC_00000000 
FPR1  445552DD_F73CD400 
FPR1  47243559_FE390700 
GR1  0243559F 
 
00000003 7967263C 

000088 
00008C 
000090 
000094 
000098 
00009C 

45B27570         
41400000         
413243F7         
436CA333         
00000000         
0000000000000000 

FLOAT                  DC 
FOUR                    DC 
PIE                         DC 
RADIUS                DC 
FIXED                   DC 
DECIMAL             DC 

X'45B27570'        
E'4'               
E'3.14159265E+0'   
E'1.7382E+3'       
F'0'               
2F'0'              

 
 
This is one way of solving the problem mentioned on previous slide and, of course, we all 
know that there are several different ways to solve any programming problem and your 
way is always better than mine. This is presented here as an example. 
 
In the bottom part of the screen we have the data definitions. First at address x’88’ is a 
dummy definition; this is meant as an example that we can actually define everything 
manually as hexadecimal. Next is the “FOUR” from our formula. This is defined as 
Floating-point-short. (Four bytes or one word). Instead of first E, I could have used D for 
double word (eight bytes) or X for quad word (16 bytes). The second E is the same as 
normal scientific notation; it denotes the exponent of the current radix. Next two items 
are standard one word binary. 
 
Pie is 3.14 multiplied by 10 to power zero because we did not move the decimal point. 
However, Radius is 1.7 to the power three because we moved the decimal point three 
places to the left. Going back to the variable Four; the Floating Point value in Object 
column is 41400000. Bit zero of byte zero is zero signifying a positive number, for 
negative number it would be one. Bit 1 to 7 of byte one is 100 0001 that is x’41’ or one 
plus decimal 64 or one plus x’40’. We will come back to this 64 business in detail later 
but for the time being all the exponent values in bit 1-7 of HFP are added 64 to indicate if 
exponent is positive or negative. 
         
Now coming to the instruction part in top half of the screen: 
 
The instruction on address x’36’ is Load Zero to a Long register – that is a full register – 
bit 0 to 63. As you can see, the content of FPR1 after the execution is all zero. 
 



LDE is Load Lengthened that is take a Short Floating Point number from storage at x’8C’ 
and put it in full 64 bit FP register. Content of FPR1 is the same as the storage location 
identified as Four. 
 
Next three instructions are to multiply a Short number from storage to a Long number in 
FP register. You can see that register content kept multiplying. 
 
CGDR is Convert-to-Fixed register to register. Both the register mentioned have 
positional meaning; a one in both places will translate FPR1 as operand two and GR1 as 
operand one. If it was a real life program I would have defined different equate 
instructions, but the point here is to give you an example and then explain, so I used same 
equate as operands one and operand two and Assembly still took different meanings. The 
content of GR1 is in Fixed Point format. Again, I could have taken care of exponent 
portion by adding more instructions to separate exponent and significand portions but that 
would have lengthened the example.  
 
Next two instructions are self explanatory; a) store R1 to Fixed (don’t know why I did it, 
may be yet another example ;-) b) Convert fixed to Decimal. You can see that the 
location identified as Decimal is 37.9 millions. 
 
Now that I got your attention without using any funny joke here is what we are going to 
do today: 
 

Agenda 
 
1. Number representation for FP arithmetic 
2. Floating Point Overview 
3. Floating-Point Registers 
4. Floating Point Support Instructions (FPS) 
5. Hexadecimal-Floating-Point Instructions (HFP) 
6. Brief introduction to Binary and Decimal Floating-Point instructions 

 
 
This is a complex subject and requires not only detail explanation but I do expect lots of 
questions and answers to help clear understanding. There are three distinct types of 
Floating Point Instructions HFP, BFP, and DFP instructions. Today I will only talk about 
Support instructions and HFP instructions and give a brief intro on the other two. For 
those who are interested in going further, please contact John Ehrman of IBM to schedule 
one more presentation in next SHARE. 
 
Disclaimer: Not all, but most of this information came from manual “z/Architecture -  
Principles of Operation” part number SA22-7832-07 for which IBM has the copyright. 
 
 
 
 



 
 
 
 
 
Before we get too much confused about the calculation, let us see how different data 
looks like. 
 
We know that in Assembly there are four basic data format in mainframe environment.  
 
 

1. Signed Binary 
2. Unsigned Binary 
3. Unstructured Logical data 
4. Decimal data  

 
For arithmetic operations, the decimal data is further divided as: 
 
Zoned Decimal format:  
Z N Z N //// Z N Z/S N 

 
Packed decimal format: 
D D D D //// D D D S 

 
 
 
 
These formats are very good for commercial - let us say - banking type of applications: 
 
Account balance:   12345.91 
Interest rate:             5% 
Interest to be paid:   617.2955 
 
We know that for amount figures, there are only two digits after decimal point. So we 
will treat this number as $617.30 
 
4 * 3.14159265 * 1738.2 * 1738.2 = 37967268.598162344 KM2. 
 
However, our moon calculation is not that straight forward. The decimal point is floating 
all over, hence, a floating-point-decimal number. To help computers do the calculations 
on a fixed placement of decimal point the above calculation can be rewritten in scientific 
notation (SI) as: 
 
4.000 * 3.1416 * 1.7382 * 103 * 1.7382 * 103 = 3.79 X 107 
 



This gives a harmonic view of all numbers – decimal point at the right of the left most 
significant digit. This view - also called scientific notation - is represented in computers 
as “Floating Point”. This describes a system of representing numbers that are too large or 
too small. It must be noted that the numbers represents approximately to a fix number of 
significant digits and scaled using an exponent. Remember; this is all about 
approximation hence not proper to be used for monetary calculation. 
 
Number System 
 
Integers 
 
Signed Binary Integers 
 
Signed binary integers are most commonly represented in16 bits as Halfwords or in 32 
bits as Words. In both of these the leftmost bit (bit 0) is the sign of the number. The 
remaining bits (bits 1-15 for halfwords and 1-31 for fullwords) are used to specify the 
magnitude or value of the number. Binary integers are also referred to as fixed-point 
numbers, because the radix point is considered to be fixed at the right, and any scaling is 
done by the programmer. Positive binary integers are in true binary notation with a zero 
sign bit. Negative binary integers are in two’s-complement notation with sign bit On. 
Negative binary integers are represented as two’s compliment – all the bit are inverted 
and a one is added after inverting the bits. 
 
Signed Binary Integer: 
 
+26 is 0000 0000 0001 0101 
-26 is 1111 1111 1110 0110 
 
Unsigned Binary Integer: 
199 is 1100 0111 
221 is 1101 1101 
 
All unsigned binary numbers are considered positive. 
 
Packed Decimal Integers 
 
+123 is 12  3C 
-123 is 12  3D 
 
 
 
Unsigned Binary Integers 
 
Unsigned binary integers are presented in the same format as just mentioned, except that 
the leftmost signed bit is also treated as number, hence, giving a larger magnitude.  
 



Packed Decimal Integers 
 
Decimal integers are represented by a 4-bit code. The decimal digits are in binary-coded 
decimal (BCD) format, with the values 0-9 encoded as 0000-1001. The sign is usually 
represented xC for plus and xD for minus. These are the preferred sign codes, but there 
are also several alternate sign codes (xA, xE, and xF for plus; xB for minus).  Decimal 
integers may have different lengths, from one byte to one word or a multiple of words 
lengths.  
 
There are different decimal formats but two most popular are: Signed-Packed and Zoned. 
In the signed-packed-decimal format, each byte contains two decimal digits, except for 
the rightmost byte, which contains the sign code in the right half. In the zoned format, 
each byte consists of a decimal digit on the right and the zone code xF on the left, except 
for the rightmost byte where the sign code replaces the zone code. 
 
Floating Point Numbers 
 

1. Hexadecimal Floating-Point Numbers   (HFP) 
2. Binary Floating-Point Numbers  (BFP) 
3. Decimal Floating-Point Numbers  (DFP) 

 
Floating-point operands have formats based on three radixes: 2, 10, or 16. These radix 
values lead to the terminology “binary,” “decimal,” and “hexadecimal” floating point 
(BFP, DFP, and HFP), respectively. The formats are also based on three operand lengths: 
short (32 bits), long (64 bits), and extended (128 bits). Short operands require less storage 
than long or extended operands. On the other hand, long and extended operands permit 
greater precision in computation. 
 
A finite floating-point number has three components: a sign bit, an exponent, and a 
significand. The magnitude (an unsigned value) of the number is the product of the 
significand and the radix raise to the power of the exponent. The number is positive or 
negative depending on whether the sign bit is zero or one, respectively. The significand 
consists of a string of digits, where each digit is an integral value from zero to one less 
than the radix (2, 10, or 16). (Thus, a BFP digit is one bit, an HFP digit is four bits, and a 
DFP digit is a value from zero to nine.)  
 
The number of digit positions in the significand is called the precision of the floating-
point number. The significand has an implied radix point, which, depending on the view, 
may be considered to be on the left, to the right of the leftmost digit, on the right, or 
elsewhere.  
 
The exponent, a signed value, is represented as an unsigned binary value by adding a 
bias; the result, for BFP and DFP, is called the biased exponent; for HFP, it is called the 
characteristic (bias 64). The value of the bias depends on the view. In the fraction view, 
the radix point is considered to be the left of the significand. In the left-units view, the 
radix point is considered to be to the right of the leftmost digit. In the right-units view, 



the radix point is considered to be on the right of the significand. By choosing the 
appropriate bias, any finite floating-point number can be considered in any of these 
views, or even in another view. For the first three of these views, the bias is called the 
fraction view bias, left-units-view bias, and right-units-view bias, respectively. Except 
where otherwise indicated, HFP is defined in terms of the fraction view, BFP terms of the 
left-units view, and DFP in terms of the right-units view. For HFP, the significand is 
considered to be a fraction with the implied radix point on the left. In this view, the 
significand is referred to as the fraction. For BFP, the significand consists of an implicit 
unit digit to the left of an implied radix point and an explicit fraction field to the right. 
For DFP, the significand is considered to be an integer with the implied radix point on the 
right. 
 
Hexadecimal-Floating-Point Numbers 
 
Same as decimal floating point numbers are expressed as a fraction multiplied by power 
of 10, Hexadecimal Floating Point (HFP) are expressed in fraction multiplied by the 
power of 16. The term floating point (HFP) indicates that the hexadecimal point (radix) is 
maintained by calculation, in this case by machine.  
 
The part of an HFP number which represents the fraction digits of the number is called 
the significand. A second part the number raised to the 16 is called exponent. It indicates 
the location of the radix point of the number. The significand and exponent together may 
be represented by short format (32 bits or one word), long format (64 bits double word), 
or extended format (128 bits quad word). 
 
Short HFP Number 
 
One Word 
S Characteristic 6-Digits Fraction 
0 1                      8 31 
 
Long HPF Number 
 
Two Word 
S Characteristic 14-Digits Fraction 
0 1                      8 31 
 
14-digit Fraction (Continued from above) 
32                                                                           63 
 
 
Extended HPF Number 
 
Four Word 
S Hgh Order Chst Leftmost14-Digits Fraction 
0 1                      8 31 



 
Leftmost 14-digit Fraction (Continued from above) 
32                                                                           63 
 
S Low Order Chst Rightmost 14-Digits Fractn 
64 72 95 
 
Rightmost 14-digit Fraction (Continued from above) 
96                                                                         127 
 
 
Like its real world counter part a HFP number has two signs: one for the fraction and 
another one for the exponent. The fraction sign is also the sign of the entire number is the 
leftmost bit of each format (0 for plus, 1 for minus). The numeric part of the fraction is in 
true notation regardless of the sign.  
 
This numeric - also called the significand - part is contained in bits 8-31 for the short 
format, in bits 8-63 for the long format, and in bits 8-63 followed by bits 72-127 for the 
extended format.  The exponent sign is obtained by expressing the exponent in excess-64 
notation; that is, a 64 is added in the exponent. The resulting number is called the 
characteristic. It is located in bits 1-7 for all formats. The characteristic can vary from 0 
to 127, permitting the exponent to vary from -64 to +63. This provides a scale multiplier 
in the range of 16-64 to 16+63. 
 
Two types of instructions are available, a) to work on normalized or b) to work on un-
normalized fraction. Normalization is a process where all the zeros are removed from the 
left of the fraction and actual number is moved to the left most position – that is bit 
position 8-11 are nonzero. It is un-normalized if the leftmost digit contains all zeros.  An 
HFP operation will provide the greatest precision if the fraction is normalized.  
 
Following example came straight from IBM’s PoP. 
 
1.0 +1/16x161 0 100 0001 0001 0000 0000 0000 0000 00002 
0.5 +8/16x160 0 100 0000 1000 0000 0000 0000 0000 00002 
1/64 +4/16x16-1 0 011 1111 0100 0000 0000 0000 0000 00002 
0.0 +0 x16-64 0 000 0000 0000 0000 0000 0000 0000 00002 
-15.0 -15/16x161 1 100 0001 1111 0000 0000 0000 0000 00002 
5.4x10-79 +1/16x16-64 0 000 0000 0001 0000 0000 0000 0000 00002 
7.2x1075 (1-16-6)x1663 0 111 1111 1111 1111 1111 1111 1111 11112 
 
 
Conversion from decimal to HFP 
 
a) The number is split into decimal integer and decimal fraction 
 61.25 = 61 plus 0.25 
 
b) Both of the components are converted into hexadecimal representation 



 61 = 3Cx 
 0.25 = 0.4x (A shortcut is to multiply by 16) 
 
c) Put them back together as hexadecimal number 
 3C.4x = 0.3C4x  *  162 
 
c) Characteristic is developed by adding 64 in the actual location of radix point 
 64 + 2 = 66 binary = 100  0010 
 
d) Put them together with a sign bit at bit position zero. 
 
 S Char  Fraction 
 0 1000010 0110  1100  0100 0000  0000  0000 
 
 
Hexadecimal-floating-point (HFP) operands have formats which provide for exponents 
that specify powers of the radix 16 and significands that are hexadecimal numbers. The 
exponent range is the same for the short, long, and extended formats. It is important to 
note that the results of most operations on HFP data are truncated to fit into the target 
format and are approximation to the actual decimal number. There are instructions 
available to round the result when converting to a narrower format. For HFP operands, 
the implicit unit digit of the significand is always zero. Please note that the value of the 
significand and fraction are the same. Although HFP fraction is traditionally described as 
significand, I will use the term fraction and the term significand interchangeably.  
 
Either normalized or un-normalized numbers may be used as operands for any HFP or 
DFP operation.  Where, for HFP, a normalized number is one having a nonzero leftmost 
fraction digit, or, for DFP, a normalized number is one having a nonzero leftmost 
significand digit. Most HFP instructions generate normalized results for greatest 
precision. HFP add and subtract instructions that generate un-normalized results are also 
available. 
 
Binary Floating-Point (BFP) 
 
Binary-floating-point (BFP) operands have formats that provide for exponents that 
specify powers of the radix 2 and significands that are binary numbers. The exponent 
range differs for different formats, the range being greater for the longer formats. In the 
long and extended formats, the exponent range is significantly greater for BFP data than 
for HFP data. The results of operations performed on BFP data are rounded automatically 
to fit into the target format; the manner of rounding is determined by a program-settable 
BFP rounding mode. There are no un-normalized operands for BFP operations. 
 
For BFP numbers, the implicit unit digit of the significand is one. For values too small in 
magnitude to be represented in normalized form, the implicit unit digit is zero. These 
numbers are called “subnormal” numbers (these were originally called de-normalize 
numbers) Unlike the HFP and DFP formats, where the same value can have multiple 



representations in a given format because of the possibility of un-normalized numbers, 
the BFP format does not allow such redundancy. 
 
Decimal Floating-Point (DFP) 
 
Decimal-floating-point (DFP) operands have formats that provide for exponents which 
specify powers of the radix 10 and significands that are decimal numbers. The exponent 
range differs for different formats, the range being greater for the longer formats. Please 
note that the exponent range is greater for DFP data than for BFP data. The results of 
operations performed on DFP data are rounded automatically to fit into the target format; 
the manner of rounding is determined by a program-selectable DFP rounding mode. Like 
HFP, DFP numbers can be normalized or un-normalized. Either normalized or un-
normalized numbers may be used as operands for any DFP operation. For DFP, a 
normalized number is one having a nonzero leftmost significand digit. Because of the 
possibility of un-normalized numbers, the same value can have multiple representations 
in a given DFP format. The representations having the same value are called members of 
a cohort. Unlike HFP, DFP instructions generate normalized results for greater precision 
only when the result is inexact. When the result is exact, most DFP instructions produce a 
value in the form that preserves information called the quantum. 
 
Floating-Point Data in Storage and Registers 
 
All floating-point data formats appear in storage in the same left-to-right sequence as all 
other data formats. (No little-endian big-endian argument here ;-) data of the higher 
significance are written in the lowest numbered bytes and bits. The data that is of lower 
value is written in higher number bytes / address numbers. 
 
Other non-number constructs for BFP and DFP 
 
Sign Bit 
 
All floating-point data have a sign bit. The sign bit is zero for plus and one for minus. 
 
Infinities 
 
BFP and DFP data include an infinite numeric datum, called infinity. Infinities can 
participate in most arithmetic operations and give a consistent result, usually infinity. An 
infinity has a sign bit. In comparisons, infinities of the same sign compare equal, +∞ 
compares greater than any finite number, and -∞ compares less than any finite number. 
 
Not-A-Number (NaN) 
BFP and DFP data types include a nonnumeric datum, called not-a-number (or NaN). A 
NaN is produced in place of a numeric result after an invalid operation when there is no 
IEEE trap action. NaNs may also be used by the program to flag special operands, such 
as the contents of an uninitialized storage area. A NaN has a sign bit, a NaN-type bit, and 
a payload.  



 
Normally, QNaNs are just propagated during computations so that they will remain 
visible at the end; 
 
Signaling and Quiet NaNs 
 
There are two types of NaNs, signaling and quiet. A signaling NaN (SNaN) is 
distinguished from the corresponding quiet NaN (QNaN) by the NaN-type bit. For BFP, 
the NaN-type bit is the leftmost bit of the fraction field, and is called the QNaN bit: a 
BFP NaN is an SNaN, or a QNaN, depending on whether the QNaN bit is zero, or one, 
respectively. For DFP, the NaN-type bit is in bit position 6 in all three formats, and is 
called the SNaN bit: a DFP NaN is a QNaN, or an SNaN, depending on whether the 
SNaN bit is zero, or one, respectively. 
 
Payload 
 
NaNs include diagnostic information called the payload. For BFP, the payload has two 
fewer bits than the precision and is considered to be a left-aligned bit-reversed binary 
integer. For DFP, the payload has one fewer digit than the precision and is considered to 
be a right-aligned decimal integer. For both BFP and DFP the payload of a NaN is 
considered to be an unsigned integer. 
 
Registers And Controls  
 
Floating-Point Registers 
 
All floating-point instructions (FPS, BFP, DFP, and HFP) use the same 16 floating-point 
registers. The floating-point registers are identified by the numbers 0-15 and are 
designated by a four-bit R field in floating-point instructions. Each floating-point register 
is 64 bits long and can either work on a short (32-bit) or a long (64-bit) floating-point 
operand or a long (64 bits) operand. A short floating-point datum requires only the 
leftmost 32 bit (lower numbered) positions of a floating-point register. The rightmost 32 
bit positions of the register are ignored when the register is the source of an operand in 
the short format, and they remain unchanged when a short result is placed in the register. 
A datum in the Long format uses all the 64 bits. A datum in the extended (128-bit) format 
occupies a register pair. Register pairs are formed by coupling the 16 registers as follows: 
0 and 2, 4 and 6, 8 and 10, 12 and 14, 1 and 3, 5 and 7, 9 and 11, and 13 and 15. Each of 
the eight pairs is referred to by the number of the lower-numbered register of the pair. 
 
To visualize consider the following: only the adjacent of the following table can be used 
as pair. 
 
0 2 4 6 8 10 12 14 
1 3 5 7 9 11 13 15 
 



An instruction specifying a floating-point operand in the extended format must designate 
register 0, 1, 4, 5, 8, 9, 12, or 13 (again adjacent); otherwise, a specification exception is 
recognized. 
 
Floating-Point-Control (FPC) Register 
  
The floating-point-control (FPC) register is a 32-bit register that contains mask bits, flag 
bits, a data exception code, IEEE exception trap code, and two rounding-mode fields. The 
bits of the FPC register are often referred to as, for example, FPC 1.0, meaning bit 0 of 
byte 1 of the register. 
 
IEEE Invalid Operation 
An IEEE-invalid-operation exception is recognized when, in the execution of an IEEE 
computational operation, any of the following occurs: 
 

1. An SNaN is encountered in an IEEE computational operation. 
2. A QNaN is encountered in an unordered-signaling comparison (COMPARE AND 

SIGNAL with a QNaN operand). 
3. An IEEE difference is undefined (addition of infinities of opposite sign, or 

subtraction of infinities of like sign). 
4. An IEEE product is undefined (zero times infinity). 
5. An IEEE quotient is undefined (DIVIDE instruction with both operands zero or 

both operands infinity). 
6. A BFP remainder is undefined (DIVIDE TO INTEGER with a dividend of 

infinity or a divisor of zero). 
7. A BFP square root is undefined (negative nonzero operand). 
8. Any other IEEE computational operation whose result is either undefined or not 

represent able in the target format. 
 
Control Instructions 
 
The floating-point-support instructions and their mnemonics and operation codes are 
listed in the following Figure. All floating-point-support instructions are subject to the 
AFP-register-control bit, bit 45 of control register 0. The AFP-register-control bit must be 
one when an AFP register is specified as an operand location; otherwise, an AFP-register 
data exception, DXC 1, is recognized. 
 
Mnemonics for the floating-point instructions have an R as the last letter when the 
instruction is in the RR, RRE, or RRF format. Certain letters are used for floating-point 
instructions to represent operand-format length, as follows: 
 
D  Long 
E  Short 
X  Extended 
 
Condition Codes for IEEE Instructions 



 
For those operations which set the condition code to indicate the value of an IEEE result, 
condition codes 0, 1, and 2 are set to indicate that the result is a zero of either sign, less 
than zero, or greater than zero, respectively. The condition-code setting depends only on 
an inspection of the rounded result. For comparison operations, condition codes 0, 1, and 
2 indicate equal, low, or high, respectively. These settings are the same as for the HFP 
instructions.  
 
Condition code 3 can also be set. After an arithmetic operation, condition code 3 
indicates a NaN result of either sign. After a comparison, it indicates that a NaN was 
involved in the comparison (the unordered condition).  
 
 
CONVERT BFP TO HFP 
 
Mnemonic R1,R2 [RRE] 
 
Op Code //////// R1 R2 
0 16 24 28                              31 

 
Mnemonic  Op Code  Operands 
THDER  'B358'   Short BFP operand, long HFP result 
THDR   'B359'   Long BFP operand, long HFP result 
 
The second operand (the source operand) is converted from the binary-floating-point 
(BFP) format to the hexadecimal-floating-point (HFP) format, and the normalized result 
is placed at the first-operand location. The sign and magnitude of the source operand are 
tested to determine the setting of the condition code. 
 
For numeric operands, the sign of the result is the sign of the source operand. If the 
source operand has a sign bit of one and all other operand bits are zeros, the result also is 
a one followed by all zeros. When, for THDR, the characteristic of the result would be 
negative, the result is made all zeros but with the same sign as that of the source operand, 
and condition code 1 or 2 is set to indicate the sign of the source operand. 
 
Resulting Condition Code: 
0  Source was zero 
1  Source was less than zero 
2  Source was greater than zero 
3  Special case 
 
CONVERT HFP TO BFP 
 
Mnemonic R1,R2 [RRE] 
 
Op Code M3 ///// R1 R2 
0 16 20 24 28                              31 



 
Mnemonic  Op Code  Operands 
TBEDR ‘B350'  Long HFP operand, short BFP result 
TBDR  ‘B351'  Long HFP operand, long BFP result 
 
The second operand (the source operand) is converted from the hexadecimal-floating-
point (HFP) format to the binary-floating-point (BFP) format, and the result rounded 
according to the rounding method specified by the M3 field is placed at the first-operand 
location. The sign and magnitude of the source operand are tested to determine the setting 
of the condition code. 
The M3 field contains a modifier specifying a rounding method, as follows: 
M3 Effective Rounding Method 
0  Round toward 0 
1  Round to nearest with ties away from 0 
4  Round to nearest with ties to even 
5  Round toward 0 
6  Round toward +∞ 
7  Round toward -∞ 
 
COPY SIGN 
 
CPSDR                      R1,R3, R2 [RRF] 
 

‘B372’ R3 ///// R1 R2 
0 16 20 24 28                              31 

 
The second operand is placed at the first-operand location with the sign bit set to the sign 
of the third operand. The first, second, and third operands are each in a 64-bit floating-
point register. The sign bit of the second operand and bits 1-63 of the third operand are 
ignored. 
 
EXTRACT FPC 
 
EFPC  R1 [RRE] 
 

‘B38C’ ///// ///// R1 ///// 
0 16 20 24 28                              31 

 
 

The contents of the FPC (floating-point-control) register are placed in bit positions 32-63 
of the general register designated by R1. Bit positions 0-31 of the general register remain 
unchanged. 
 
LOAD  
 
Mnemonic R1,R2    [RR] 
 



Op Code R1 R2 
0 8 12                      15 

 
Mnemonic  Op Code  Operands 
LER  '38'   Short  
LDR  '28'   Long  
 
Mnemonic2    R1,R2 [RRE] 
 

Op Code //////// R1 R2 
0 16 24 28                              31 

 
Mnemonic  Op Code  Operands 
LXR   'B365'   Extended 
 
Mnemonic3    R1,D2(X2,B2)          [RX] 
 

Op Code R1 X2 B1 D2 
0 8 12 16 20                              31 

 
Mnemonic3  Op Code  Operands 
LE   '78'   Short 
LD   '68'   Long  
 
Mnemonic4    R1,D2(X2,B2)          [RXY] 
 
Op Code R1 X2 B2 DL2 DH2 Op Code 
0 8 12 16 20                  32 40                    47 

 
Mnemonic3  Op Code  Operands 
LEY   ‘ED64’ Short 
LDY  ‘ED65’ Long  
 
The second operand is placed unchanged at the first operand location. 
 
The operation is performed without inspecting the contents of the second operand; no 
arithmetic exceptions are recognized. 
 
For LXR, the R fields must designate valid floating-point-register pairs; otherwise, a 
specification exception is recognized. 
 
LOAD COMPLEMENT  
 
LCDFR    R1,R2 [RRE] 
 
Op Code //////// R1 R2 
0 16 24 28                              31 

 



The second operand is placed at the first-operand location with the sign bit inverted. Both 
the first and second operands are each in a 64-bit floating-point register. 
 
LOAD FPC  
 
LFPC    D2(B2)    [S] 
 

‘B29D’ B2 D2 
0 16 20                      31 

 
The four-byte second operand in storage is loaded into the FPC (floating-point-control) 
register. 
 
Bits corresponding to unsupported bit positions in the FPC register must be zero; 
otherwise, a specification exception is recognized. 
 
LOAD FPC AND SIGNAL  
 
LFAS    D2(B2)    [S] 
 

‘B2BD’ B 2 D2 
0 16 20                      31 

 
First, bits 0-4 of byte 1 of the floating-point-control (FPC) register at the beginning of the 
operation are preserved to be used as signaling flags. Next, the contents of the source 
operand are placed in the FPC register; then the flags in the FPC register are set to the 
logical OR of the signaling flags and the source flags. Finally, the conditions for 
simulated- IEEE-exception trap action are examined. The source operand is the second 
operand in storage. 
 
If any signaling flag is one and the corresponding source mask is also one, simulated-
IEEE-exception trap action occurs. The data-exception code (DXC) in the FPC register is 
updated to indicate the specific cause of the interruption and a data-exception program 
interruption occurs at completion of the instruction execution.   
 
If no signaling flag is enabled, the DXC in the FPC register remains as loaded from the 
source and instruction execution completes with no trap action. 
 
Bits in the source operand that correspond to unsupported bit positions in the FPC 
register must be zero; otherwise, a specification exception is recognized. 
 
LOAD FPR FROM GR 
 
LDGR     R1,R2 [RRE] 
 

‘B3C1’ //////// R1 R2 
0 16 24 28                              31 



 
The second operand is placed at the first-operand location. The second operand is in a 
general register, and the first operand is in a floating-point register. 
 
LOAD GR FROM FPR 
 
LGGR     R1,R2 [RRE] 
 

‘B3CD’ //////// R1 R2 
0 16 24 28                              31 

 
The second operand is placed at the first-operand location. The second operand is in a 
floating-point register, and the first operand is in a general register. 
 
LOAD NEGATIVE 
 
LGGR     R1,R2 [RRE] 
 

‘B371’ //////// R1 R2 
0 16 24 28                              31 

 
The second operand is placed at the first-operand location with the sign bit set to one. 
Both the first and second operands are each in a 64-bit floating-point register. 
 
LOAD POSITVE 
 
LPDFR     R1,R2 [RRE] 
 

‘B370’ //////// R1 R2 
0 16 24 28                              31 

 
The second operand is placed at the first-operand location with the sign bit set to zero. 
Both the first and second operands are each in a 64-bit floating-point register. 
 
LOAD ZERO 
 
Mnemonic      R1  [RRE] 
 
Op Code //////// R1 ////// 
0 16 24 28                              31 

 
Mnemonic  Op Code  Operands 
LZER  ‘B374' ‘ Short 
LZDR  ‘B375' ‘ Short 
LZXR  ‘B376' ‘ Short 
 
All bits of the first operand are set to zeros. 



For LZXR, The R1 field must designate a valid floating-point-register pair; otherwise, a 
specification exception is recognized. 
 
 
PERFORM FLOATING-POINT OPERATION 
 
PFPO          [E] 
 

‘010A’ 
0                           15 

 
 
The operation specified by the function code in general register 0 is performed and the 
condition code is set to indicate the result. When there are no exceptional conditions, 
condition code 0 is set. When an IEEE nontrap exception is recognized, condition code 1 
is set. When an IEEE trap exception with alternate action is recognized, condition code 2 
is set. A 32-bit return code is placed in bits 32-63 of general register 1; bits 0-31 of 
general register 1 remain unchanged. 
 
The PERFORM FLOATING-POINT OPERATION (PFPO) instruction is subject to the 
AFP-register control bit bit 45 of control register 0. For PFPO to be executed successfully 
the AFP-register-control bit must be one; otherwise, an AFP-register data exception, 
DXC 1, is recognized. Bit 32 of general register 0 is the test bit. When bit 32 is zero, the 
function specified by bits 33-63 of general register 0 is performed; each field in bits 33-
63 must be valid and the combination must be a valid and installed function; otherwise a 
specification exception is recognized. When bit 32 is one, the function specified by bits 
33-63 is not performed but, instead, the condition code is set to indicate whether these 
bits specify a valid and installed function; the condition code is set to 0 if the function is 
valid and installed or to 3 if the function is invalid or not installed. This will be useful if 
additional functions are assigned in the future. This definition is written as if the test bit is 
zero except when stated otherwise. 
 
Bits 33-39 of GR0 specify the operation type. Only one operation type is currently 
defined: 01, hex, is PFPO Convert Floating-Point Radix. 
 
Note: See page 658 of PoP 
 
SET BFP ROUNDING MODE 
 
SRNM    D2(B2)    [S] 
 

‘B299’ B2 D2 
0 16 20                      31 

 
The BFP rounding-mode bits are set from the second-operand address. 
 



The second-operand address is not used to address data; instead, the BFP rounding-mode 
bits in the FPC register are set with bits 62 and 63 of the address. 
 
Bits other than 62 and 63 of the second-operand address are ignored. 
 
SET DFP ROUNDING MODE 
 
SRNMT    D2(B2)    [S] 
 

‘B2B9’ B2 D2 
0 16 20                      31 

 
The DFP rounding-mode bits are set from the second-operand address. 
 
The second-operand address is not used to address data; instead, the DFP rounding-mode 
bits in the FPC register are set with bits 61-63 of the address. 
 
Bits other than 61-63 of the second-operand address are ignored. 
 
SET FPC 
 
SFPC    R1    [RRE] 
 

‘B284’ ////// R1 ////// 
0 16 24 28                      31 

 
The contents of bit positions 32-63 of the general register designated by R1 are placed in 
the FPC (floating-point-control) register. 
 
All of bits 32-63 corresponding to unsupported bit positions in the FPC register must be 
zero; otherwise, a specification exception is recognized. For purposes of this checking, a 
bit position is considered to be unsupported only if it is either unassigned or assigned to a 
facility which is not installed in any architectural mode of the configuration. Bits 0-31 of 
the general register are ignored. 
 
SET FPC AND SIGNAL 
 
SFASR    R1    [RRE] 
 

‘B385’ ////// R1 ////// 
0 16 24 28                      31 

 
First, bits 0-4 of byte 1 of the floating-point-control (FPC) register at the beginning of the 
operation are preserved to be used as signaling flags. Next, the contents of the source 
operand are placed in the FPC register; then the flags in the FPC register are set to the 
logical OR of the signaling flags and the source flags. Finally, the conditions for 
simulated-IEEE-exception trap action are examined. 



 
The source operand is in bits 32-63 of the general register designated by R1; bits 0-31 of 
the general register are ignored.  
 
STORE  
 
Mnemonic    R1,D2(X2,B2)          [RX] 
 

‘Op Code R1 X2 B1 D2 
0 8 12 16 20                              31 

 
Mnemonic  Op Code  Operands 
STE   '70'   Short 
STD   '60'   Long  
 
Mnemonic    R1,D2(X2,B2)          [RXY] 
 

‘Op Code R1 X2 B2 DL2 DH2 Op Code 
0 8 12 16 20                  32 40                    47 

 
Mnemonic  Op Code  Operands 
STEY   ‘ED66’ Short 
STDY  ‘ED67’ Long  
 
The first operand is placed unchanged in storage at the second-operand location. 
The displacement for STE and STD is treated as a 12-bit unsigned binary integer. The 
displacement for STEY and STDY is treated as a 20-bit signed binary integer. 
 
STORE FPC  
 
STFPC     D2(B2)    [S] 
 

‘B29C’ B2 D2 
0 16 20                      31 

 
The contents of the FPC (floating-point-control) register are placed in storage at the 
second-operand location. The operand is four bytes in length. All 32 bits of the FPC 
register are stored. 
 
Hexadecimal-Floating-Point Instructions 
 
Normalization 
 
A quantity can be represented with the greatest precision by an HFP number of a given 
fraction length when that number is normalized. A normalized HFP number has a 
nonzero leftmost hexadecimal fraction digit. If one or more leftmost fraction digits are 
zeros, the number is said to be un-normalized. Un-normalized numbers are normalized by 
shifting the fraction left, one digit at a time, until the leftmost hexadecimal digit is 



nonzero and reducing the characteristic by the number of hexadecimal digits shifted. A 
number with a zero fraction cannot be normalized; either its characteristic remains 
unchanged or its characteristic is made zero when the result is forced to be a true zero. 
 
HFP Data Formats 
 
HFP numbers have a 32-bit (short) format, a 64-bit (long) format, or a 128-bit (extended) 
format. Numbers in the short and long formats may be designated as operands both in 
storage and in the floating-point registers, whereas operands having the extended format 
can be designated only in the floating-point registers. In all formats, the first bit (bit 0) is 
the sign bit (S). The next seven bits are the characteristic. In the short and long formats, 
the remaining bits constitute the fraction, which consists of six or 14 hexadecimal digits, 
respectively. 
 
Short HFP Number 
 
One Word 
S Characteristic 6-Digits Fraction 
0 1                      8 31 
 
Long HPF Number 
 
Two Word 
S Characteristic 14-Digits Fraction 
0 1                      8 31 
 
14-digit Fraction (Continued from above) 
32                                                                           63 
 
 
Extended HPF Number 
 
Four Word 
S Hgh Order Chst Leftmost14-Digits Fraction 
0 1                      8 31 
 
Leftmost 14-digit Fraction (Continued from above) 
32                                                                           63 
 
S Low Order Chst Rightmost 14-Digits Fractn 
64 72 95 
 
Rightmost 14-digit Fraction (Continued from above) 
96                                                                         127 
 
 



ADD NORMALIZED 
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 16 20                      31 

 
Mnemonic  Op Code  Operands 
AER   '3A'   Short HFP 
ADR   '2A'   Long HPF 
AXR   '36'   Extended HPF 
 
Mnemonic    R1,D2(X2,B2)          [RX] 
 

Op Code R1 X2 B2 D2 
0 8 12 16 20                              31 

 
Mnemonic  Op Code  Operands 
AE   '74'   Short HFP 
AD   '6A'   Long HFP 
 
The second operand is added to the first operand, and the normalized sum is placed at the 
first-operand location. 
 
Addition of two HFP numbers consists in characteristic comparison, fraction alignment, 
and signed fraction addition. The characteristics of the two operands are compared, and 
the fraction accompanying the smaller characteristic is aligned with the other fraction 
by a right shift, with its characteristic increased by one for each hexadecimal digit of shift 
until the two characteristics agree. 
 
When a fraction is shifted right during alignment, the leftmost hexadecimal digit shifted 
out is retained as a guard digit. The fraction that is not shifted is considered to be 
extended with a zero in the guard-digit position. When no alignment shift occurs, both 
operands are considered to be extended with zeros in the guard-digit position. The 
fractions with signs are then added algebraically to form a signed intermediate sum. 
 
The intermediate-sum fraction consists of seven (short format), 15 (long format), or 29 
(extended format) hexadecimal digits, including the guard digit, and a possible carry. If a 
carry is present, the sum is shifted right one digit position so that the carry becomes the 
leftmost digit of the fraction, and the characteristic is increased by one. If the addition 
produces no carry. 
 
ADD UNNORMALIZED 
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 



0 16 20                      31 

 
Mnemonic  Op Code  Operands 
AUR   '3E'   Short HFP 
AWR   '2E'   Long HPF 
 
Mnemonic    R1,D2(X2,B2)          [RX] 
 

Op Code R1 X2 B2 D2 
0 8 12 16 20                              31 

 
Mnemonic  Op Code  Operands 
AU   '7E'   Short HFP 
AW   '6E'   Long HFP 
 
The second operand is added to the first operand, and the un-normalized sum is placed at 
the first-operand location. 
 
COMPARE  
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 16 20                      31 

 
Mnemonic  Op Code  Operands 
CER   '39'   Short HFP 
CDR   '29'   Long HPF 
 
Mnemonic      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
CXR   ‘B369’  Extended HFP 
 
 
Mnemonic    R1,D2(X2,B2)          [RX] 
 

Op Code R1 X2 B2 D2 
0 8 12 16 20                              31 

 
Mnemonic  Op Code  Operands 
CE   '79'   Short HFP 
CD   '69'   Long HFP 
 



The first operand is compared with the second operand, and the condition code is set to 
indicate the result. The comparison is algebraic and follows the procedure for normalized 
subtraction, except that the difference is discarded after setting the condition code and 
both operands remain unchanged. When the difference, including the guard digit, is zero, 
the operands are equal. 
 
CONVERT FROM FIXED  
 
Mnemonic      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
CEFR   ‘B3B4’ 32-bit binary-integer operand, Short HFP result 
CDFR   ‘B3B5’ 32-bit binary-integer operand, Long HFP result 
CXFR   ‘B3B6’ 32-bit binary-integer operand, Extended HFP result 
CEGR   ‘B3C4’ 64-bit binary-integer operand, Short HFP result 
CDGR  ‘B3C5’ 64-bit binary-integer operand, Long HFP result 
CXGR  ‘B3C4’ 64-bit binary-integer operand, Extended HFP result 
 
The fixed-point second operand is converted to the HFP format, and the normalized result 
is placed at the first-operand location. A nonzero result is normalized. A zero result is 
made a positive true zero. 
 
The second operand is a signed binary integer that is located in the general register 
designated by R2. A 32-bit operand is in bit positions 32-63 of the register. 
 
 
CONVERT TO FIXED  
 
Mnemonic      R1,M1,R2    [RRF] 
 

Op Code M1 ////// R1 R2 
0 16 20 24 28                      31 

 
Mnemonic  Op Code  Operands 
CEER   ‘B3B8’ Short HFP operand, 32-bit binary-integer result 
CFDR   ‘B3B9’ Long HFP operand, 32-bit binary-integer result 
CFXR   ‘B3BA’ Extended HFP operand, 32-bit binary-integer result 
CGER   ‘B3C8’ Short HFP operand, 64-bit binary-integer result 
CGDR  ‘B3C9’ Long HFP operand, 64-bit binary-integer result 
CGXR  ‘B3CA’ Extended HFP operand, 64-bit binary-integer result 
 
The HFP second operand is rounded to an integer value and then converted to the fixed-
point format. The result is placed at the first-operand location. The result is a signed 



binary integer that is placed in the general register designated by R1. A 32-bit result 
replaces bits 32-63 of the register, and bits 0-31 of the register remain unchanged. 
 
The second operand is rounded to an integer value by rounding as specified by the 
modifier in the M3 field: 
 
M3 Effective Rounding Method 
0  Round toward 0 
1  Round to nearest with ties away from 0 
4  Round to nearest with ties to even 
5  Round toward 0 
6  Round toward +∞ 
7  Round toward -∞ 
 
DIVIDE 
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 16 20                      31 

 
Mnemonic  Op Code  Operands 
DER   '3D'   Short HFP 
DDR   '2D'   Long HPF 
 
Mnemonic2      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
DXR   ‘B22D’ Extended HFP 
 
Mnemonic3    R1,D2(X2,B2)          [RX] 
 

‘Op Code R1 X2 B2 D2 
0 8 12 16 20                              31 

 
Mnemonic  Op Code  Operands 
DE   '7D'   Short HFP 
DD   '6D'   Long HFP 
 
The first operand (the dividend) is divided by the second operand (the divisor), and the 
normalized quotient is placed at the first-operand location. No remainder is preserved. 
 
HFP division consists in characteristic subtraction and fraction division. The operands are 
first normalized to eliminate leading hexadecimal zeros. The difference between the 



dividend and divisor characteristics of the normalized operands, plus 64, is used as the 
characteristic of an intermediate quotient. 
 
HALVE 
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 16 20                      31 

 
Mnemonic  Op Code  Operands 
HER   '34'   Short HFP 
HDR   '24'   Long HPF 
 
The second operand is divided by 2, and the normalized quotient is placed at the first-
operand location. 
 
LOAD AND TEST 
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 16 20                      31 

 
Mnemonic  Op Code  Operands 
LTER   '32'   Short HFP 
LTDR   '22'   Long HPF 
 
Mnemonic2      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
LTXR   'B362'   Extended HFP 
 
The second operand is placed at the first-operand location, and its sign and magnitude are 
tested to determine the setting of the condition code. The condition code is set the same 
as for a comparison of the second operand with zero. 
 
LOAD COMPLEMENT  
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 16 20                      31 

 



Mnemonic  Op Code  Operands 
LCER   '33'   Short HFP 
LCDR   '23'   Long HPF 
 
Mnemonic2      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
LCXR   'B363'   Extended HFP 
 
The second operand is placed at the first-operand location with the sign bit inverted. 
The sign bit is inverted even if the operand is zero. For all operand lengths, the source 
fraction is placed unchanged in the result. 
 
LOAD FP INTEGER  
 
Mnemonic      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
LIER   'B377'   Short HFP 
LIDR   'B37F'   Long HFP 
LIXR   'B367'   Extended HFP 
 
The second operand is truncated (rounded toward zero) to an integer value in the same 
floating-point format and the normalized result is placed at the first-operand location. A 
nonzero result is normalized. A zero result is made a positive true zero. 
 
LOAD LENGTHENED 
 
Mnemonic      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
LDER   'B324'   Short HFP operand 2, Long HFP operand 1 
LXDR   'B325'   Long HFP operand 2, extended HFP operand 1 
LXER   'B326'   Short HFP operand 2, Extended HFP operand 1 
 
Mnemonic      R1,D2(X2,b2)   [RXE] 
 

Op Code R1 X2 B2 D2 ////// Op Code 



0 8 12 16 20 22 40               47 

 
Mnemonic  Op Code  Operands 
LDE   'ED24'   Short HFP operand 2, Long HFP operand 1 
LXD   'ED25'   Long HFP operand 2, extended HFP operand 1 
LXE   'ED26'   Short HFP operand 2, Extended HFP operand 1 
 
The second operand is extended to a longer format, and the result is placed at the first-
operand location. 
 
LOAD NIGATIVE  
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 16 20                      31 

 
Mnemonic  Op Code  Operands 
LNER   '31'   Short HFP 
LDDR   '21'   Long HPF 
 
Mnemonic2      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
LNXR   'B361'   Extended HFP 
 
The second operand is placed at the first-operand location with the sign bit made one. 
 
LOAD POSITIVE  
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 8 12                      15 

 
Mnemonic  Op Code  Operands 
LPER   '30'   Short HFP 
LPDR   '20'   Long HPF 
 
Mnemonic2      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 



LPXR   'B360'   Extended HFP 
 
The second operand is placed at the first-operand location with the sign bit made zero. 
 
LOAD ROUNDED  
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 8 12                      15 

 
Mnemonic  Op Code  Operands 
LEDR   '35'   Long HFP operand 2, Short HFP operand 1 
LDXR   '25'   Extended Long HPF operand 2, Long operand 1 
 
Mnemonic2      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
LEXR   'B366'   Extended HFP 2, short HFP operand 1 
 
The second operand is placed at the first-operand location with the sign bit made zero. 
 
MULTIPLY  
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 8 12                      15 

 
Mnemonic  Op Code  Operands 
MDR   '2C'   Long HFP  
MXR   '26'   Short HFP multiplier, Long HFP product 
MDER  '3C'   Short HFP multiplier and multiplicand, Long HFP product 
MXER  '27'   Long HFP multiplier and multiplicand, Extended HFP 
product 
 
Mnemonic2      R1,R2    [RRE] 
 

Op Code ////// R1 R2 
0 16 24 28                      31 

 
Mnemonic  Op Code  Operands 
MEER  'B337'   Short HFP 
 



Mnemonic      R1,D2(X2,b2)   [RXE] 
 

Op Code R1 X2 B2 D2 ////// Op Code 
0 8 12 16 20 22 40               47 

 
Mnemonic  Op Code  Operands 
MEE   'ED37'   Short HFP  
 
Mnemonic3    R1,D2(X2,B2)          [RX] 
 

Op Code R1 X2 B2 D2 
0 8 12 16 20                              31 

 
Mnemonic  Op Code  Operands 
MD   '6C'   Long HFP 
MDE   '7C'   Short HFP multiplier and multiplicand, Extended HFP 
product 
MXD   '67'   Long HFP multiplier and multiplicand, Extended HFP 
product 
 
The normalized product of the second operand (the multiplier) and the first operand (the 
multiplicand) is placed at the first-operand location. 
 
MULTIPLY AND ADD 
 
Mnemonic      R1,R2    [RRF] 

Op Code R1 ////// R3 R2 
0 16 20 24 28                              31 

 
Mnemonic  Op Code  Operands 
MAER  ‘B32E’  Short HFP 
MADR ‘B33E'   Long HFP  
 
Mnemonic      R1,R2,D2(X2,b2)   [RXF] 
 

Op Code R1 X2 B2 D2 R1 ////// Op Code 
0 8 12 16 20 32 36 40               47 

 
Mnemonic  Op Code  Operands 
MAE   'ED2E'   Short HFP  
MAD   'ED3E'   Long HFP  
 
The third operand is multiplied by the second operand, and then the first operand is added 
to from the product. The sum is placed at the first-operand location. 
 
MULTIPLY AND SUBTRACT 
 



Mnemonic      R1,R2    [RRF] 
Op Code R1 ////// R3 R2 

0 16 20 24 28                              31 

 
Mnemonic  Op Code  Operands 
MSER   ‘B32F’  Short HFP 
MSDR  ‘B33F'   Long HFP  
 
Mnemonic      R1,R2,D2(X2,b2)   [RXF] 
 

Op Code R1 X2 B2 D2 R1 ////// Op Code 
0 8 12 16 20 32 36 40               47 

 
Mnemonic  Op Code  Operands 
MSE   'ED2F'  Short HFP  
MSD   'ED3F'  Long HFP  
 
The third operand is multiplied by the second operand, and then the first operand is 
subtracted to from the product. The difference is placed at the first-operand location. 
 
MULTIPLY AND ADD UNNORMALIZED 
 
Mnemonic      R1,R2    [RRF] 

‘Op Code R1 ////// R3 R2 
0 16 20 24 28                              31 

 
Mnemonic  Op Code  Operands 
MAYR  ‘B32A’ Long HFP sources, extended HFP result 
MAYHR ‘B33C'  Long HFP sources, high-order part of extended HFP result 
MAYLR ‘B338'  Long HFP sources, low-order part of extended HFP result 
 
Mnemonic      R1,R2,D2(X2,b2)   [RXF] 
 

Op Code R1 X2 B2 D2 R1 ////// Op Code 
0 8 12 16 20 32 36 40               47 

 
Mnemonic  Op Code  Operands 
MAY   'ED3A'  Long  HFP sources, extended HFP result 
MAYH 'ED3C'  Long HFP sources, high-order part of extended result 
MAYL  'ED38'   Long HFP sources, low-order part of extended result 
 
The second and third HFP operands are multiplied, forming an intermediate product; the 
first operand (addend) is then added algebraically to the intermediate product to form an 
intermediate sum; the intermediate-sum fraction is truncated on the left or on the right, if 
need be, to form an intermediate extended result. All (or a part) of the intermediate 
extended result is placed in the floating-point-register pair (or floating-point register) 



designated by the R1 field. The operands, intermediate values, and results are not 
normalized to eliminate leading hexadecimal zeros. 
 
MULTIPLY NORMALIZED 
 
Mnemonic      R1,R2    [RRF] 

‘Op Code R1 ////// R3 R2 
0 16 20 24 28                              31 

 
Mnemonic  Op Code  Operands 
MYR   ‘B33B’ Long HFP multiplier & multiplicand, extended HFP 
product 
MYHR ‘B33D'  Long HFP multiplier & multiplicand, high-order part of 
extended HFP product 
MYLR  ‘B339'  Long HFP multiplier & multiplicand, low-order part of 
extended HFP product 
 
Mnemonic      R1,R2,D2(X2,b2)   [RXF] 
 

Op Code R1 X2 B2 D2 R1 ////// Op Code 
0 8 12 16 20 32 36 40               47 

 
Mnemonic  Op Code  Operands 
MY   'ED3B'  Long  HFP multiplier & multiplicand, extended HFP 
product 
MYH  'ED3D'  Long HFP multiplier & multiplicand, high-order part of 
extended product 
MYL  'ED39'   Long HFP multiplier & multiplicand, low-order part of 
extended product 
 
The second and third HFP operands are multiplied, forming an intermediate product, 
which, in turn, is used to form an intermediate extended result. All (or a part) of the 
intermediate extended result is placed in the floating-point-register pair (or floating-point 
register) designated by the R1 field. The operands, intermediate values, and results are 
not normalized to eliminate leading hexadecimal zeros. 
 
SQUARE ROOT 
 
Mnemonic      R1,R2    [RRF] 

Op Code ////// R1 R2 
0 16 24 28                              31 

 
Mnemonic  Op Code  Operands 
SQER   ‘B245’  Short HFP 
SQDR  ‘B244'  Long HFP  
SQXR  ‘B336'  Extended HFP  
 



Mnemonic      R1,D2(X2,b2)   [RXF] 
 

Op Code R1 X2 B2 D2 ////// Op Code 
0 8 12 16 20 32 40               47 

 
Mnemonic  Op Code  Operands 
SQE   'ED34'   Short HFP  
SQD   'ED35'   Long HFP  
 
The normalized and rounded square root of the second operand is placed at the first-
operand location. When the fraction of the second operand is zero, the sign and 
characteristic of the second operand are ignored, and the operation is completed by 
placing a positive true zero at the first-operand location. 
 
 
 
SUBTRACT NORMALIZED 
 
Mnemonic      R1,R2    [RR] 
 

Op Code R1 R2 
0 16 20                      31 

 
Mnemonic  Op Code  Operands 
SER   '3B'   Short HFP 
SDR   '2B'   Long HPF 
SXR   '37'   Extended HPF 
 
Mnemonic      R1,R2    [RRF] 
 

Op Code R1 ////// R3 R2 
0 8 12 16 28                              31 

 
Mnemonic  Op Code  Operands 
SE   ‘7B’  Short HFP  
SD   ‘6B’  Long HFP  
 
The second operand is subtracted from the first operand, and the normalized difference is 
placed at the first-operand location. 
 
The execution of SUBTRACT NORMALIZED is identical to that of ADD 
NORMALIZED, except that the second operand participates in the operation with its sign 
bit inverted. 
 
SUBTRACT UNNORMALIZED 
 
Mnemonic      R1,R2    [RR] 



 
Op Code R1 R2 

0 16 20                      31 

 
Mnemonic  Op Code  Operands 
SUR   '3F'   Short HFP 
SWR   '2F'   Long HPF 
 
Mnemonic      R1,D2,(X2,B2)    [RX] 
 

Op Code R1 X2 B2 D2 
0 8 12 16 28                              31 

 
Mnemonic  Op Code  Operands 
SU   ‘7F’  Short HFP  
SW   ‘6F’  Long HFP  
 
The second operand is subtracted from the first operand, and the unnormalized difference 
is placed at the first-operand location. 
 
The execution of SUBTRACT UNNORMALIZED is identical to that of ADD 
UNNORMALIZED, except that the second operand participates in the operation with its 
sign bit inverted. 
 
 
 
Disclaimer: Not, but most of this information came from “z/Architecture -  
Principles of Operation” manual part number SA22-7832-07 for which IBM has the 
copyright. 
 
 
 
 
 


