Floating Point Assembly – Don't let your precision float away

Mohammed "Saif" Saifullah

SHARE 116 Anaheim, CA Session 8542, March 1, 2011

Yes, this is the moon. Our own moon.

Pop Quiz: What is the surface area of the moon? How many countries of this world can fit into that area?

The surface area of a sphere is: $4 * \pi * R^2$

The radius of moon is about 1738.2 KM.

Now, let's plug in the values:

4 * 3.14159265 * 1738.2 * 1738.2 = 37967268.598162344 KM²

- That would be 37.9 million square kilometers.

3

Address	Object Code	S/390 Assembly	Reg./ Memory after execution
000036	B375 0010	LZDR R1	FPR1 00000000_00000000
00003A	ED10 C08C 0024	LDE R1,FOUR	FPR1 41400000_00000000
000040	7C10 C090	MDE R1,PIE	FPR1 41C90FDC_00000000
000044	7C10 C094	MDE R1,RADIUS	FPR1 445552DD_F73CD400
000048	7C10 C094	MDE R1,RADIUS	FPR1 47243559_FE390700
00004C	B3C9 0011	CGDR R1,0,R1	GR1 0243559F
000050	5010 C098	ST R1,FIXED	
000054	4E10 C09C	CVD R1,DECIMAL	00000003 7967263C
000088	45B27570	FLOAT DC	X'45B27570'
00008C	41400000	FOUR DC	E'4'
000090	413243F7	PIE DC	E'3.14159265E+0'
000094	436CA333	RADIUS DC	E'1.7382E+3'
000098	0000000	FIXED DC	F'0'
00009C	00000000000000000	DECIMAL DC	2F'0'

Agenda

- 1. Number Representation for Floating Point (FP) Arithmetic
- 2. Floating Point Overview
- 3. Floating-Point Registers
- 4. Floating-Point Support Instructions (FPS)
- 5. Hexadecimal Floating-Point Instructions (HFP)
- 6. Intro: Binary and Decimal Floating-Point Instructions

Number Representation

Four Basic Data Formats

- 1. Signed Binary
- 2. Unsigned Binary
- 3. Unstructured logical data
- 4. Decimal data

For arithmetic operations, the decimal data is further divided as:

Zoned decimal format:

Ζ	N	Ζ	N	////	Ζ	N	Ζ/	N
							S	

Packed decimal format:

D	D	D	D	////	D	D	D	S

These formats are very good for commercial applications:

Account balance:	12345.91
Interest rate:	5%
Interest to be paid:	617.2955
In banking terms, the amount will be:	\$617.30

However, our Moon calculation is not that straight forward.:

4 * 3.14159265 * 1738.2 * 1738.2 = 37967268.598162344 KM²

Can be rewritten as:

 $4.000 \times 3.1416 \times 1.7382 \times 10^3 \times 1.7382 \times 10^3 = 37.9 \times 10^6$

Signed Binary Integer:

+26 is 0000 0000 0001 0101 -26 is 1111 1111 1110 0110

Unsigned Binary Integer:

199 is 1100 0111 221 is 1101 1101

All unsigned binary numbers are considered positive.

Packed Decimal Integers

+123 is 12 3C -123 is 12 3D

Floating Point – Overview

Floating-Point Numbers

- 1. Hexadecimal Floating-Point (HFP) Numbers
- 2. Binary Floating-Point (BFP) Numbers
- 3. Decimal Floating-Point (DFP) Numbers

Short HFP Number

One Word

S	Characteristic	6-Digit Fraction
0	1 8	31

Long HPF Number

	Two	Word
--	-----	------

S	Characteristic	14-Digit Fraction	14-Digit Fraction (Continued)	
0	1 8	31	32	63

Extended HPF	S	High Ord Chst	Leftmost 14-Digit Fraction	Leftmost 14-Digit Fraction (Continued)	
Number	0	1 8	31	32	63

Four Word

S	Low Ord Chst	Rightmost 14-Digit Fraction	Rightmost 14-Digit Fraction (Continued)	
64	72	95	96	127

The following example is from IBM's PoP:

1.0	+1/16x16 ¹	$0\ 100\ 0001\ 0001\ 0000\ 0000\ 0000\ 0000\ 0000\ _2$
0.5	+8/16x16 ⁰	$0\ 100\ 0000\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ _2$
1/64	+4/16x16 ⁻¹	$0\ 011\ 1111\ 0100\ 0000\ 0000\ 0000\ 0000\ 0000\ _2$
0.0	+0 x16 ⁻⁶⁴	$0\ 000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _2$
-15.0	-15/16x16 ¹	$1\ 100\ 0001\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ _2$
5.4x10 ⁻⁷⁹	+1/16x16 ⁻⁶⁴	$0\ 000\ 0000\ 0001\ 0000\ 0000\ 0000\ 0000\ 0000\ _2$
7.2x10 ⁷⁵	(1-16-6)x16 ⁶³	0 111 1111 1111 1111 1111 1111 1111 11

Conversion from decimal to HFP:

- a) Split the number into decimal integer and decimal fraction:
 61.25 = 61 plus 0.25
- b) Convert both the components into hexadecimal representation: 61 = 3Cx0.25 = 0.4x (A shortcut is to multiply by 16)
- c) Put them back together as hexadecimal number: $3C.4x = 0.3C4x * 16^{2}$
- d) Develop characteristic by adding 64 in the actual location of radix point: 64 + 2 = 66 binary =100 0010
- e) Put them together with a sign bit at bit position zero:
 - S Char Fraction
 - 0 1000010 0110 1100 0100 0000 0000 0000

Hexadecimal Floating-Point Numbers

Hexadecimal-floating-point (HFP) operands have formats that provide for exponents that specify powers of the radix 16 and significands that are hexadecimal numbers.

Binary Floating-Point (BFP)

Binary-floating-point (BFP) operands have formats that provide for exponents that specify powers of the radix 2 and significands that are binary numbers.

Decimal Floating-Point (DFP)

Decimal-floating-point (DFP) operands have formats that provide for exponents that specify powers of the radix 10 and significands that are decimal numbers.

Floating-Point Data in Storage and Registers

Other non-number constructs for BFP and DFP

Sign Bit

Infinities

Not-a-Number (NaN)

Signaling NaNs

Quiet NaNs

Payload

Floating–Point Registers (FPR)

Registers and Controls

Floating-Point Registers

All floating-point instructions (FPS, BFP, DFP, and HFP) use the same 16 floating-point registers. The floating-point registers are identified by the numbers 0-15. A datum in the long format uses all the 64 bits. A datum in the extended (128-bit) format occupies a register pair. Register pairs are formed by coupling the 16 registers as follows: 0 and 2, 4 and 6, 8 and 10, 12 and 14, 1 and 3, 5 and 7, 9 and 11, and 13 and 15. Each of the eight pairs is referred to by the number of the lower-numbered register of the pair.

0	2	4	6	8	10	12	14
1	3	5	7	9	11	13	15

Floating-Point-Control (FPC) Register

The floating-point-control (FPC) register is a 32-bit register that contains mask bits, flag bits, a data exception code, IEEE exception trap code, and two rounding-mode fields. The bits of the FPC register are often referred to as, for example, FPC 1.0, meaning bit 0 of byte 1 of the register.

IEEE Invalid Operation

An IEEE invalid operation exception is recognized when, in the execution of an IEEE computational operation, any of the following occurs:

- 1. An SNaN is encountered in an IEEE computational operation.
- 2. A QNaN is encountered in an unordered-signaling comparison (COMPARE AND SIGNAL with a QNaN operand).
- 3. An IEEE difference is undefined (addition of infinities of opposite sign, or subtraction of infinities of like sign).
- 4. An IEEE product is undefined (zero times infinity).
- 5. An IEEE quotient is undefined (DIVIDE instruction with both operands zero or both operands infinity).
- 6. A BFP remainder is undefined (DIVIDE TO INTEGER with a dividend of infinity or a divisor of zero).
- 7. A BFP square root is undefined (negative nonzero operand).
- 8. Any other IEEE computational operation whose result is either undefined or not representable in the target format.

Control Instructions

All floating-point-support instructions are subject to the AFP-register-control bit, bit 45 of control register 0. The AFP-register-control bit must be one when an AFP register is specified as an operand location; otherwise, an AFP-register data exception, DXC 1, is recognized. Mnemonics for the floating-point instructions have an R as the last letter when the instruction is in the RR, RRE, or RRF format. Certain letters are used for floating-point instructions to represent operand-format length, as follows:

D	Long
E	Short
Х	Extended

Condition Codes for IEEE Instructions

For those operations which set the condition code to indicate the value of an IEEE result, condition codes 0, 1, and 2 are set to indicate that the result is a zero of either sign, less than zero, or greater than zero, respectively.

CONVERT BFP TO HFP

Mnemonic R1,R2 [RRE]

Op Code	//////	R ₁	R ₂	
0	16	24	28	31

Mnemonic	Op Code	Operands
THDER	'B358'	Short BFP operand, long HFP result
THDR	'B359'	Long BFP operand, long HFP result

The second operand (the source operand) is converted from the binary-floating-point (BFP) format to the hexadecimal-floating-point (HFP) format, and the normalized result is placed at the first-operand location. The sign and magnitude of the source operand are tested to determine the setting of the condition code.

CONVERT HFP TO BFP

Mnemonic R1,R2 [RRE]

Op Code	M3	/////	R ₁	R ₂	
0	16	20	24	28	31

Mnemonic	Op Code	Operands
TBEDR	'B350'	Long HFP operand, short BFP result
TBDR	'B351'	Long HFP operand, long BFP result

The second operand (the source operand) is converted from the hexadecimal-floating-point (HFP) format to the binary-floating-point (BFP) format. The result rounded according to the rounding method specified by the M3 field is placed at the first-operand location. The sign and magnitude of the source operand are tested to determine the setting of the condition code.

M3 Effective Rounding Method

- 0 Round toward 0
- 1 Round to nearest with ties away from 0
- 4 Round to nearest with ties to even
- 5 Round toward 0
- 6 Round toward $+\infty$
- 7 Round toward $-\infty$

COPY SIGN

CPSDR R1,R3, R2 [RRF]

'B372'	R ₃	/////	R ₁	R ₂	
0	16	20	24	28	31

The second operand is placed at the first-operand location with the sign bit set to the sign of the third operand. The first, second, and third operands are each in a 64-bit floating-point register. The sign bit of the second operand and bits 1-63 of the third operand are ignored.

EXTRACT FPC

EFPC R1 [RRE]

'B38C'	/////	/////	R ₁	/////	
0	16	20	24	28	31

The contents of the FPC (floating-point-control) register are placed in bit positions 32-63 of the general register designated by R1. Bit positions 0-31 of the general register remain unchanged.

LOAD

Mnemonic R1,R2 [RR]

Op Code	R ₁	R ₂	
0	8	12	15

Mnemonic	Op Code	Operands
LER	'38'	Short
LDR	'28'	Long

Mnemonic2 R1,R2 [RRE]

Op Code	//////	R ₁	R ₂	
0	16	24	28	31

Mnemonic	Op Code
LXR	'B365'

Operands Extended

Mnemonic3	R1,D2(X2,B2)) [RX

Op Code	R ₁	X ₂	B ₁	D ₂	
0	8	12	16	20	31
Mnomonic	2 On	Codo	\cap	norando	

Milemonics	Op Code	Operands
LE	'78'	Short
LD	'68'	Long

LOAD

Mnemonic4 R1,D2(X2,B2) [RXY]

 Op Code
 R₁
 X₂
 B₂
 DL₂
 DH₂
 Op Code

 0
 8
 12
 16
 20
 32
 40
 47

Mnemonic3	Op Code	Operands
LEY	'ED64'	Short
LDY	'ED65'	Long

The second operand is placed unchanged at the first operand location.

The operation is performed without inspecting the contents of the second operand; no arithmetic exceptions are recognized.

For LXR, the R fields must designate valid floating-point-register pairs; otherwise, a specification exception is recognized.

LOAD COMPLEMENT

LCDFR R1,R2 [RRE]

Op Code	//////	R ₁	R ₂	
0	16	24	28	31

The second operand is placed at the first-operand location with the sign bit inverted. Both the first and second operands are each in a 64-bit floating-point register.

LOAD FPC

LFPC D2(B2) [S]

'B29D'	B ₂	D ₂	
0	16	20	31

The four-byte second operand in storage is loaded into the FPC (floating-point-control) register.

Bits corresponding to unsupported bit positions in the FPC register must be zero; otherwise, a specification exception is recognized.

LOAD FPC AND SIGNAL

LFAS D2(B2) [S]

'B2BD'	B ₂	D ₂	
0	16	20	31

First, bits 0-4 of byte 1 of the floating-point-control (FPC) register at the beginning of the operation are preserved to be used as signaling flags. Next, the contents of the source operand are placed in the FPC register; then, the flags in the FPC register are set to the logical OR of the signaling flags and the source flags. Finally, the conditions for simulated- IEEE-exception trap action are examined. The source operand is the second operand in storage.

LOAD FPR FROM GR

LDGR R1,R2 [RRE]

'B3C1'	//////	R ₁	R ₂	
0	16	24	28	31

The second operand is placed at the first-operand location. The second operand is in a general register, and the first operand is in a floating-point register.

LOAD GR FROM FPR

LGGR R1,R2 [RRE]

'B3CD'	//////	R ₁	R ₂	
0	16	24	28	31

The second operand is placed at the first-operand location. The second operand is in a floating-point register, and the first operand is in a general register.

LGGR R1,R2 [RRE]

'B371'	//////	R ₁	R ₂	
0	16	24	28	31

The second operand is placed at the first-operand location with the sign bit set to one. Both the first and second operands are each in a 64-bit floating-point register.

LOAD POSITIVE

LPDFR R1,R2 [RRE]

'B370'	//////	R ₁	R ₂	
0	16	24	28	31

The second operand is placed at the first-operand location with the sign bit set to zero. Both the first and second operands are each in a 64-bit floating-point register.

LOAD ZERO

Mnemonic R1 [RRE]

Op Code	///////	R ₁	/////		
0	16	24	28	31	
Mnemonic	(Op Code			Operands
LZER	۴E	3374'			Short
LZDR	"[3375 '			Long
LZXR	'E	3376'			Extended

All bits of the first operand are set to zeros.

For LZXR, the R1 field must designate a valid floating-point-register pair; otherwise, a specification exception is recognized.

PERFORM FLOATING-POINT OPERATION

Ρ	FPO	[E]
	'010A'		
0		15	

The operation specified by the function code in general register 0 is performed and the condition code is set to indicate the result. When there are no exceptional conditions, condition code 0 is set. When an IEEE nontrap exception is recognized, condition code 1 is set. When an IEEE trap exception with alternate action is recognized, condition code 2 is set. A 32-bit return code is placed in bits 32-63 of general register 1; bits. Powerful instruction see PoP. One usage is to convert among different FP formats.

SET BFP ROUNDING MODE

SRNM D2(B2) [S]

'B299'	B ₂	D ₂	
0	16	20	31

The BFP rounding-mode bits are set from the second-operand address.

The second-operand address is not used to address data; instead, the BFP rounding-mode bits in the FPC register are set with bits 62 and 63 of the address.

Bits other than 62 and 63 of the second-operand address are ignored.

SET DFP ROUNDING MODE

SRNMT D2(B2) [S]

'B2B9'	B ₂	D ₂
0	16	20 31

The DFP rounding-mode bits are set from the second-operand address.

The second-operand address is not used to address data; instead, the DFP rounding-mode bits in the FPC register are set with bits 61-63 of the address. Bits other than 61-63 of the second-operand address are ignored.

SET FPC

SFPC R1 [RRE]

'B284'	/////	R ₁	/////	
0	16	24	28	31

The contents of bit positions 32-63 of the general register designated by R1 are placed in the FPC (floating-point-control) register.

All of bits 32-63 corresponding to unsupported bit positions in the FPC register must be zero; otherwise, a specification exception is recognized. For purposes of this checking, a bit position is considered to be unsupported only if it is either unassigned or assigned to a facility which is not installed in any architectural mode of the configuration.

SET FPC AND SIGNAL

SFASR R1 [RRE]

'B385'	/////	R ₁	/////	
0	16	24	28	31

First, bits 0-4 of byte 1 of the floating-point-control (FPC) register at the beginning of the operation are preserved to be used as signaling flags. Next, the contents of the source operand are placed in the FPC register; then, the flags in the FPC register are set to the logical OR of the signaling flags and the source flags. Finally, the conditions for simulated-IEEE-exception trap action are examined. The source operand is in bits 32-63 of the general register designated by R1.

STORE

Mnemonic F	R1,D2	(X2,B2)	[RX]						
Op Code	R ₁		X ₂		B ₁		D ₂		
0	8		12		16		20		31
Mnemonic		Ор(Code			Оре	rands		
STE '7			0'			S	hort		
STD		'6	0'			Lo	ong		
Mnemonic R1,D2(X2,B2) [RXY]									
Mnemonic F	R1,D2	(X2,B2)	[RX]	Y]					
Mnemonic F	R1,D2 R ₁	(X2,B2) X ₂	[RX [*] B ₂	Y] DI	-2	DH ₂		Op Co	ode
MnemonicFOp CodeJ08	R1,D2 R ₁ 3	(X2,B2) X ₂ 12	[RX] B ₂ 16	Y] DI 20	-2	DH ₂ 32		Op Co 40	ode 47
Mnemonic F Op Code J 0 8 Mnemonic	R1,D2 R ₁ 3	(X2,B2) X ₂ ¹² Op Co	[RX) B ₂ ¹⁶ de	Y] DI 20	-22	DH ₂ 32	ands	Op Co 40	ode 47
Mnemonic F Op Code J 0 8 Mnemonic STEY	R1,D2 R ₁ 3	(X2,B2) X ₂ ¹² Op Co 'ED66'	[RX) B ₂ 16 de	Y] DI 20	-2	DH ₂ ³² Opera Short	ands	Op Co 40	ode 47

The first operand is placed unchanged in storage at the second-operand location.

The displacement for STE and STD is treated as a 12-bit unsigned binary integer. The displacement for STEY and STDY is treated as a 20-bit signed binary integer.

STORE FPC STFPC D2(B2) [S]

'B29C'	B ₂	D ₂	
0	16	20 3	1

The contents of the FPC (floating-point-control) register are placed in storage at the secondoperand location. The operand is four bytes in length. All 32 bits of the FPC register are stored.

Hexadecimal Floating-Point Instructions (HFP)

Normalization

A quantity can be represented with the greatest precision by an HFP number of a given fraction length when that number is normalized. A normalized HFP number has a nonzero leftmost hexadecimal fraction digit. If one or more leftmost fraction digits are zeros, the number is said to be un-normalized. Un-normalized numbers are normalized by shifting the fraction left, one digit at a time, until the leftmost hexadecimal digit is nonzero and reducing the characteristic by the number of hexadecimal digits shifted.

HFP Data Formats

HFP numbers have a 32-bit (short) format, a 64-bit (long) format, or a 128-bit (extended) format. Numbers in the short and long formats may be designated as operands both in storage and in the floating-point registers, whereas operands having the extended format can be designated only in the floating-point registers. In all formats, the first bit (bit 0) is the sign bit (S). The next seven bits are the characteristic. In the short and long formats, the remaining bits constitute the fraction, which consists of six or 14 hexadecimal digits, respectively.

Short HFP Number

One Word

S	Characteristic	6-Digit Fraction
0	1 8	31

Long HPF Number

Two Word

S	Characteristic	14-Digit Fraction	14-Digit Fraction (Continued)	
0	1 8	31	32	63

Extended HPF	S	High Ord Chst	Leftmost 14-Digit Fraction	Leftmost 14-Digit Fraction (Continued)	
Number	0	1 8	31	32	63

Four Word

S	Low Ord Chst	Rightmost 14-Digit Fraction		Rightmost 14-Digit Fraction (Continued)	
64	72	(95	96	127

ADD NORMALIZED

MnemonicR1,R2[RR]Op Code R_1 R_2 0162031

Mnemonic	Op Code	Operands
AER	'3A'	Short HFP
ADR	'2A'	Long HPF
AXR	'36'	Extended HPF

Mnemonic R1,D2(X2,B2) [RX]

Op Code	R ₁	X ₂	B ₂	D ₂	
0	8	12	16	20	31
Mnemonic	Op Cod	e Op	erands		
AE	'74'	Sh	ort HFP		
AD	'6A'	Lo	ng HFP		

The second operand is added to the first operand, and the normalized sum is placed at the firstoperand location.

Addition of two HFP numbers includes characteristic comparison, fraction alignment, and signed fraction addition. The characteristics of the two operands are compared, and the fraction accompanying the smaller characteristic is aligned with the other fraction.

ADD UNNORMALIZED

Mnemonic F	R1,R2 [RR]			
Op Code	R ₁	R ₂		
0	16	20 31		
Mnemonic AUR AWR	Op Code '3E' '2E'	Ope Sho Lon	erands rt HFP g HPF	
Mnemonic R	R1,D2(X2,B2)	[RX]		
Op Code	R ₁	X ₂	B ₂	D ₂
0	8	12	16	20
Mnemonic	Op Code	0	perands	

The second operand is added to the first operand, and the un-normalized sum is placed at the first-operand location.

31

COMPARE

Mnemonic R1,R2 [RR]

Op Code R_1 R₂ 0 20 31 16 Mnemonic Op Code Operands **'**39' Short HFP CFR **'**29' CDR Long HPF Mnemonic R1,R2 [RRE] Op Code ////// R_1 R₂ 28 0 16 24 31 Mnemonic Op Code Operands 'B369' Extended HFP CXR Mnemonic R1,D2(X2,B2) [RX]

Op Code	R ₁	X ₂	B ₂	D ₂	
0	8	12	16	20	31

Mnemonic	Op Code	Operands
CE	'79'	Short HFP
CD	'69'	Long HFP

The first operand is compared with the second operand, and the condition code is set to indicate the result. The comparison is algebraic and follows the procedure for normalized subtraction, except that the difference is discarded after setting the condition code and both operands remain unchanged. When the difference, including the guard digit, is zero, the operands are equal.

CONVERT FROM FIXED

R1.R2 [RRE]

Mnemonic

Op Code	/////	R ₁	R ₂
0	16	24	28 31
Mnemonic		Op Code	Operands
CEFR		'B3B4'	32-bit binary-integer operand, Short HFP result
CDFR		'B3B5'	32-bit binary-integer operand, Long HFP result
CXFR		'B3B6'	32-bit binary-integer operand, Extended HFP result
CEGR		'B3C4'	64-bit binary-integer operand, Short HFP result
CDGR		'B3C5'	64-bit binary-integer operand, Long HFP result
CXGR		'B3C4'	64-bit binary-integer operand. Extended HFP result

The fixed-point second operand is converted to the HFP format, and the normalized result is placed at the first-operand location. A nonzero result is normalized. A zero result is made a positive true zero. Very small number is rounded to 1 or zero depending on the rounding mode. Very large number gives Condition Code 3.

The second operand is a signed binary integer that is located in the general register designated by R2. A 32-bit operand is in bit positions 32-63 of the register.

CONVERT TO FIXED

Mnemonic R1,M1,R2 [RRF]

Op Code	M ₁	/////	R ₁	R ₂		
0	16	20	24	28	31	
Mnemonic		Op Code	Operands			
CEER		'B3B8'	Short HFP o	perand	, 32	2-bit binary-integer result
CFDR		'B3B9'	Long HFP o	perand,	, 32	-bit binary-integer result
CFXR		'B3BA'	Extended H	IFP oper	ran	d, 32-bit binary-integer result
CGER		'B3C8'	Short HFP o	perand	, 64	4-bit binary-integer result
CGDR		'B3C9'	Long HFP o	perand,	, 64	-bit binary-integer result
CGXR		'B3CA'	Extended H	IFP oper	ran	d, 64-bit binary-integer result

The HFP second operand is rounded to an integer value and then converted to the fixed-point format. The result is placed at the first-operand location. The result is a signed binary integer that is placed in the general register designated by R1. A 32-bit result replaces bits 32-63 of the register, and bits 0-31 of the register remain unchanged.

The second operand is rounded to an integer value by rounding as specified by the modifier in the M3 field: M3 Effective Rounding Method

- 0 Round toward 0
- 1 Round to nearest with ties away from 0
- 4 Round to nearest with ties to even
- 5 Round toward 0
- 6 Round toward +∞
- 7 Round toward -∞

DIVIDE

Mnemonic	R1,R2 [RR]			
Op Code	R ₁	R ₂]	
0	16	20 31]	
Mnemonic	Ор Сос	le Ope	erands	
DER	'3D'	Short	HFP	
DDR	'2D'	Long	HPF	
Mnemonic2	R1,R2 [RF	RE]		
Op Code	/////	R ₁	R ₂	
0	16	24	28 31	
Mnemonic DXR	Op Cod 'B22D'	e Operar Extend	nds ed HFP	
Mnemonic3	R1,D2(X2,B2	2) [RX]		
Op Code	R ₁	X ₂	B ₂	D ₂
0	8	12	16	20
Mnemonic DE DD	Op '7D '6D	Code Oj ' Sh ' Lo	perands Iort HFP ng HFP	

The first operand (the dividend) is divided by the second operand (the divisor), and the normalized quotient is placed at the first-operand location. No remainder is preserved.

31

HAI VF

Mnemonic R1,R2 [RR]

Op Code	R ₁		R ₂		
0	16		20	31	
Mnemonic		Ор Сс	de	(Operands
HER			'34'		Short HFP
HDR			'24 '		Long HPF

The second operand is divided by 2, and the normalized quotient is placed at the first-operand location.

LOAD AND Mnemonic	R1,R2 [RR]			
Op Code	R ₁	R ₂		
0	16	20 31		
Mnemonic	Op Cod	e Opera	nds	
LTER	' 32 '	Short HI	FP	
LTDR	' 22 '	Long HF	PF	
Mnemonic2	<u>R1,R2 [RR</u>	<u>E]</u>		
Op Code	/////	R ₁	R_2	
0	16	24	28	31
Mnemonic LTXR	Op Code 'B362'	Operands Extended HF	Р	

'B362' Extended HFP

The second operand is placed at the first-operand location, and its sign and magnitude are tested to determine the setting of the condition code. The condition code is set the same as for a comparison of the second operand with zero.

LOAD COMPLEMENT

Mnemonic R1,R2 [RR]

Op Code	R ₁	R ₂		
0	16	20	31]
Mnemonic LCER LCDR	Op Cod '33 '23'	е	Operar Short F Long H	nds IFP IPF

Mnemonic2 R1,R2 [RRE]

Op Code	/////	R ₁	R ₂	
0	16	24	28	31
Mnemonic Op Cod		e	Opera	nds
LCXR	'B363	,	Extend	led HFP

The second operand is placed at the first-operand location with the sign bit inverted. The sign bit is inverted even if the operand is zero. For all operand lengths, the source fraction is placed unchanged in the result.

LOAD FP INTEGER

Mnemonic R1,R2 [RRE]

Op Code	/////	R ₁		R ₂		
0	16	24		28	31	
Mnemonic	Ор Сос	le	C)pera	nds	
LIER	'B377	79	Short HFP		HFP	
LIDR	'B37F'		L	Long HFP		
LIXR	'B367	79	Extended HF			

The second operand is truncated (rounded toward zero) to an integer value in the same floating-point format and the normalized result is placed at the first-operand location. A nonzero result is normalized. A zero result is made a positive true zero.

LOAD LENGTHENED

Mnemonic	R1,R2	[RRE]]						
Op Code	//////		R ₁	R ₂					
0	16		24	28	31				
Mnemonio LDER LXDR LXER	Ĉ	Op 'B3 'B3) Code 324' 325' 326'	Ope Sho Lon Sho	erands ort HFF og HFP ort HFF	5 2 op 2 op 2 op	erand erand erand	d 2, 2, d 2,	Long HFP operand 1 Extended HFP operand 1 Extended HFP operand 1
Mnemonic	R1,D2	(X2,b2)	[RXE]						_
Op Code	R ₁	X ₂	B ₂	D ₂			Op C	ode	
0	8	12	16	20	22		40	47]
MnemonicOp CodeOperandsLDE'ED24'Short HFP operand 2, Long HFP operand 1LXD'ED25'Long HFP operand 2, Extended HFP operand 1LXE'ED26'Short HFP operand 2, Extended HFP operand 1									

The second operand is extended to a longer format, and the result is placed at the first-operand location.

LOAD NEGATIVE

Mnemonic	R1,R2 [RR]			
Op Code	R ₁	R ₂		
0	16	20	31]
Mnemonic	Op Code	ē	Opera	inds
LNER	'31'		Short H	IFP
LDDR	' 21 '		Long H	IPF
			-	

WINEMONICZ RI, RZ [RR	Mnemonic2	R1,R2	[RRE
-----------------------	-----------	-------	------

Op Code	/////	R ₁	R ₂	
0	16	24	28	31
Mnemonic	On	Code	Opera	nds
	Opv	COUE	Opera	
LNXR	•B3	61'	Extend	1ed HFP

The second operand is placed at the first-operand location with the sign bit made one.

LOAD POSITIVE

Mnemonic R1,R2 [RR]

Op Code	R ₁	R ₂	
0	8	12	15

Mnemonic	Op Code	Operands
LPER	'30'	Short HFP
LPDR	' 20 '	Long HPF

Mnemonic2 R1,R2 [RRE]

Op Code	/////	R ₁		R ₂	
0	16	24		28	31
Mnemonic	Op Co	de	(Opera	ands
LPXR	'B360	0'	Exten	ded H	HFP

The second operand is placed at the first-operand location with the sign bit made zero.

LOAD ROUNDED

Mnemonic R1,R2 [RR]

Op Code	R ₁	R ₂	
0	8	12	15

Mnemonic	Op Code	Operands
LEDR	' 35'	Long HFP operand 2, Short HFP operand 1
LDXR	' 25'	Extended Long HPF operand 2, Long operand 1

Mnemonic2 R1,R2 [RRE]

Op Code	/////	R ₁	R ₂	
0	16	24	28 31	L

Mnemonic	Op Code	Operands
LEXR	'B366'	Extended HFP 2, Short HFP operand 1

The second operand is placed at the first-operand location rounded to the length of first operand.

MULTIPLY

Mnemonic	R1,R2	2 [RR]						
Op Code	R ₁		R ₂					
0	8		12	15				
Mnemoni	С	Ор Сос	de C	perands				
MDR		'2C'	Lo	ng HFP				
MXR		'26'	Ex	tended H	IFP			
MDER		'3C'	Sh	o <mark>rt</mark> HFP r	nultipli	ier a	nd mult	iplicand, Long HFP product
MXDR		' 27 '	Lo	ong HFP r	nultipli	ier a	nd mult	iplicand, Extended HFP product
Mnemonic2	R1,R	2 [RRE	Ξ]					
Op Code	//////		R ₁	R ₂				
0	16		24	28	31			
Mnemoni MEER	С	Op Co 'B33	de 7'	Opera Short	ands HFP			
Mnemonic	R1,D2	(X2,b2)	[RXE]					
Op Code	R ₁	X ₂	B ₂	D ₂	/////		Op Code	
0	8	12	16	20	22		40 47]
Mnemonic MEE		Op Co 'ED3	de 7'	Operar Short H	nds IFP			

MEE

MULTIPLY

Mnemonic3	R1,D2(X2,B2)	[RX]				
Op Code	R ₁	X ₂		B ₂	D ₂		
0	8	12		16	20	31	
Mnemonic	Op Cod	е	Opera	ands			
MD	'6C'		Long	HFP			
MDE	'7C'		Short	t HFP multi	plier ar	nd mult	tiplicand, Long HFP product
MXD	' 67 '		Long	HFP multip	olier an	d multi	iplicand, Extended HFP product

The normalized product of the second operand (the multiplier) and the first operand (the multiplicand) is placed at the first-operand location.

MULTIPLY AND ADD

Mnemonic	R1,R2	[RRF]				
Op Code	R ₁		/////	R ₃	R ₂	
0	16		20	24	28	31

Mnemonic	Op Code	Operands
MAER	'B32E'	Short HFP
MADR	'B33E'	Long HFP

Mnemonic R1,R2,D2(X2,b2) [RXF]

Op Code	R ₁	X ₂	B ₂	D ₂	R ₁	/////	Op Coc	le
0	8	12	16	20	32	36	40	47

Mnemonic	Op Code	Operands
MAE	'ED2E'	Short HFP
MAD	'ED3E'	Long HFP

The third operand is multiplied by the second operand, and then the first operand is added to from the product. The sum is placed at the first-operand location.

MULTIPLY AND SUBTRACT

Mnemonic	R1,R2	[RRF]						
Op Code	R ₁		/////		R ₃		R ₂		
0	16		20		24		28		31
Mnemonio MSER MSDR Mnemonic	R1,R2	Op Coo 'B32F' 'B33F' ,D2(X2,I	de b2) [RX	Oj Sho Lor F]	oeran ort HF ng HFI	ds P >			
Op Code	R ₁	X ₂	B ₂	D ₂		R ₁	/////	Op C	Code
0	8	12	16	20		32	36	40	47
Mnemonic MSE MSD	Op 'El	Code D2F' D3F'		0 S L(perar hort F ong H	ids IFP FP			

The third operand is multiplied by the second operand, and then the first operand is subtracted to from the product. The difference is placed at the first-operand location.

MULTIPLY AND ADD UNNORMALIZED

R1,R2	<u>2 [RRF</u>	-]					
R ₁		/////	R ₃		R ₂		
16		20	24		28		1
R1,R2,	Op Co 'B32A 'B33C 'B338 D2(X2,t	ode \' L 2' L 3' L 52) [RX	Operand ong HFP ong HFP ong HFP 5]	s sour sour sour	ces, e ces, h ces, lo	xtende igh-orc ow-ord	d HFP result ler part of extended HFP result er part of extended HFP result
R ₁	X ₂	B ₂	D ₂	R ₁	/////	Op Cod	e
8	12	16	20	32	36	40	47
	O 'E	p Code ED3A'	e Opera Long I	nds HFP s	source	es, exte	ended HFP result
	R1,R2 R ₁ 16 R1,R2, R ₁ 3	R1,R2 [RRF R_1 16 16 0p Co 'B32A 'B330 'B338 'B338 R1,R2,D2(X2,E) R R_1 X_2 3 12	R1,R2 [RRF] R_1 ////// 16 20 Op Code 'B32A' 'B33C' L 'B338' L R1,R2,D2(X2,b2) [RXI R1 X2 B2 3 12 16 Op Code 'ED3A'	R1,R2 [RRF] R1 ////// R3 16 20 24 Op Code Operands 'B32A' Long HFP 'B33C' Long HFP 'B338' Long HFP	R1,R2 [RRF] R1 ////// R3 16 20 24 Op Code Operands 'B32A' Long HFP sour 'B33C' Long HFP sour 'B338' Long HFP sour	R1,R2 [RRF] R_1 ////// R_3 R_2 16 20 24 28 0p Code Operands 28 0p Code Operands 6 'B32A' Long HFP sources, e 10 'B33C' Long HFP sources, h 10 'B338' Long HFP sources, h 10 'B112 16 20 32 Op Code Operands 10 'ED3A' Long HFP sources 10	R1,R2[RRF] R_1 ////// R_3 R_2 162024283Op CodeOperands'B32A'Long HFP sources, extende'B33C'Long HFP sources, high-ord'B338'Long HFP sources, low-ordeR1,R2,D2(X2,b2)[RXF] R_1 X_2 B_2 D_2 R_1 $I/////$ Op CodeOp CodeOperands'ED3A'Long HFP sources, extender

The second and third HFP operands are multiplied, forming an intermediate product; the first operand (addend) is then added algebraically to the intermediate product to form an intermediate sum; the intermediate-sum fraction is truncated on the left or on the right, if need be, to form an intermediate extended result. The operands, intermediate values, and results are not normalized to eliminate leading hexadecimal zeros.

MULTIPLY UNNORMALIZED

Mnemonic	R1,R2	[RRF]				-			
'Op Code	R ₁		/////	R ₃		R ₂			
0	16		20	24		28		31	
Mnemonic	Ор С	ode	O	perands					
MYR	'B33B	'L	ong HF	P multipl	lier &	، mult	iplica	ınd,	extended HFP product
MYHR	'B33D	' L	.ong HF	P multipl	lier &	. mult	iplica	nd,	high-order part of extended HFP
		pr	oduct						
MYLR	'B339	' L	ong HF.	P multipl	lier &	mult	iplica	nd,	low-order part of extended HFP
		pr	oduct						
Mnemonic	R1,R2,	D2(X2,b	2) [RXF]					
Op Code	R ₁	X ₂	B ₂	D ₂	R ₁		Op C	ode	
0	8	12	16	20	32	36	40	47]
Mnomoni	c On	Code		Opera	ndc				
INTERIOR	c op	Coue		Opera	nus				
MY	•ED:	3B' L	ong HF	P multip	lier 8	k mult	tiplica	and,	extended HFP product
MYH	'ED	3D'L	ong HFI	P multipl	ier &	mult	iplica	nd,	high-order part of extended product
MYL	'ED	39' L	ong HFI	P multipl	ier &	multi	iplica	nd,	low-order part of extended product

The second and third HFP operands are multiplied, forming an intermediate product, which, in turn, is used to form an intermediate extended result. The intermediate extended result is placed in the floating-point-register designated by the R1 field. The operands, intermediate values, and results are not normalized to eliminate leading hexadecimal zeros.

SQUARE ROOT

Mnemonic	R1,R2	[RRF	F]				
'Op Code	/////		R ₁	R ₂			
0	16		24	28		31	
Mnemonic	0	p Cod	e Op	erands			
SQER	•B	245'	Sho	ort HFP			
SQDR	۴E	3244'	Lor	ng HFP			
SQXR	'B	336'	Ext	ended H	IFP		
Mnemonic	R1,D2(X2,b2)	[RXF]				
Op Code	R ₁	X ₂	B ₂	D ₂	/////	O	code
0	8	12	16	20	32	40	47
Mnemonic		Op C	ode C) perand	S		
SQE		۴E	ED34'	Sho	ort HFF)	
SQD		۴E	ED35'	Lon	g HFP		

The normalized and rounded square root of the second operand is placed at the first-operand location. When the fraction of the second operand is zero, the sign and characteristic of the second operand are ignored, and the operation is completed by placing a positive true zero at the first-operand location.

SUBTRACT NORMALIZED

Mnemonic R1,R2 [RR]

Op Code	R ₁	R ₂	
0	16	20	31

Mnemonic	Op Code	Operands
SER	'3B'	Short HFP
SDR	'2B'	Long HPF
SXR	' 37 '	Extended HPF

Mnemonic R1,R2 [RRF]

'Op Code	R ₁	/////	R ₃	R ₂	
0	8	12	16	28	31

Mnemonic Op Code Operands

SE'7B'Short HFPSD'6B'Long HFP

The second operand is subtracted from the first operand, and the normalized difference is placed at the first-operand location.

SUBTRACT UNNORMALIZED

Mnemonic R1,R2 [RR]

Op Code	R ₁	R ₂	
0	16	20	31

	///	
SWR	"2F"	Long HPF
SUR	'3F'	Short HFP
Mnemonic	Op Code	Operands

Mnemonic R1,D2,(X2,B2) [RX]

'Op Code	R ₁	X ₂	B ₂	D ₂	
0	8	12	16	28	31

Mnemonic	Op Code	Operands
SU	'7F'	Short HFP
SW	'6F'	Long HFP

The second operand is subtracted from the first operand, and the unnormalized difference is placed at the first-operand location.

The execution of SUBTRACT UNNORMALIZED is identical to that of ADD UNNORMALIZED, except that the second operand participates in the operation with its sign bit inverted.

THANK YOU

