
Assembler University 302Assembler University 302

zNextGen User Experience: p
I'm Losing My Mind Trying to Figure Out

Cross-Memory Routines!

SHARE in Anaheim
March 1, 2011
Session 8541

zNextGen

© 2011 zNextGen 0

Session 8541

AuthorAuthor

This presentation was prepared by:

Kristine M. Harper
IMS R&D

NEON E i S fNEON Enterprise Software
14100 Southwest Freeway
Suite 400
Sugar Land, TX 77478
Tel: 281-207-4978el: 8 0 9 8
E-mail: kristine.harper@neon.com

zNextGen

© 2011 zNextGen 1

Agenda ge da

 Terminology

Why Cross-Memory?

 Cross Memory Environments

 Important Macros & Instructions

 Stacking PCs

 Address Space Swapping

Overview of Locking

 Final Tips and Recommendations

zNextGen

© 2011 zNextGen 2

Agenda ge da

Other important XMS topics we will not get to today: p p g y
storage control, MVCP/MVCS, linkage conventions,
system parameters, z/OS macros available/unavailable
while in XM mode recovery data spaces hiperspaces while in XM mode, recovery, data spaces, hiperspaces
and many more XMS topics!

— Maybe a two-part session in Orlando! 

 In this session, we’ll be specifically covering
Synchronous XMS

Th th XMS th d i l SCHEDULEi SRB t i th — The other XMS method involves SCHEDULEing an SRB to run in another
address space and that is called Asynchronous XMS

zNextGen

© 2011 zNextGen 3

T i l gTerminology

zNextGen

© 2011 zNextGen 4

Terminologye ology

What is Cross Memory?
 Cross Memory Services, or XMS

— Technique that MVS and z/OS applications use to invoke programs in
other address spacesother address spaces

— Provides a synchronous method of communications between address
spaces

In other words the invoked routine resides in a different address — In other words, the invoked routine resides in a different address
space than the invoking program

Address
S 1

Invoking
Routine

Address

Invoked
Routine

zNextGen

© 2011 zNextGen 5

Space 1 Space 2

Terminologye ology

What is Cross Memory?C y
 From the MVS Programming Extended Addressability

Guide:
— Synchronous cross memory communication enables one program to

provide services synchronously to other programs

— Takes place between a user and a service provider when the user Takes place between a user and a service provider when the user
issues a PC (program call) instruction

 Cross Memory Environment occurs between a Primary
Address Space and a Service Address SpaceAddress Space and a Service Address Space

— Requires authorization, linkage and entry tables

zNextGen

© 2011 zNextGen 6

Terminologye ology
What is Cross Memory?
 The caller runs under the same unit of work (UOW, TCB  The caller runs under the same unit of work (UOW, TCB

or SRB) in the same or a different address space

 For synchronous, at any given moment, the UOW is
ith i i dd th b t either running in one address space or another, but

never in two different ones at the same time

 The UOW is just an operating system concept – the The UOW is just an operating system concept the
hardware is unaware of such a thing

 So this is why the set of services you can request in XM
d i li it d d/ i i l i t f mode is limited and/or require special interfaces:

because the UOW addressability may be in multiple
address spaces!

zNextGen

© 2011 zNextGen 7

Terminologye ology

Home Address Space
 Address space to which a unit of work is associated with and whose

address is pointed to by the PSA field PSAAOLD when the unit of work
is executing*

 Address space in which the TCB or SRB are initially dispatched Address space in which the TCB or SRB are initially dispatched
 Remains the same during the life of work unit
 ASID of the Home Address Space = HASID
 Also known as HASN (Home Address Space Number)
 In Home Address Space mode, instructions and data are fetched from

home

*Advanced Assembler Language and MVS Interfaces

zNextGen

© 2011 zNextGen 8

Terminology

Primary Address Space
 Address space whose segment table (pointed to by CR1) is used to access instructions

and data when the CPU is in primary modep y
 Can be changed
 ASID of the Primary Address Space = PASID
 Also known as PASN (Primary Address Space Number)
 In Primary Address Space mode, instructions and data are fetched from primary

Secondary Address Space
 Address space whose segment table (pointed to by CR7) is used to access data when

the CPU is in secondary modethe CPU is in secondary mode
 Can be changed
 ASID of the Secondary Address Space = SASID
 Also known as SASN (Secondary Address Space Number)
 In Secondary Address Space mode, instructions are fetched from primary and data is

fetched from secondary

zNextGen

© 2011 zNextGen 9

Terminologye ology
ASC (Address Space Control) mode

 Determined by PSW bits 16-17 and tells the system where to find  Determined by PSW bits 16-17 and tells the system where to find
the referenced data (the data referenced by the address in the
GPRs)

 When ASC mode is secondary (and hence Cross Memory Mode) the  When ASC mode is secondary (and hence Cross Memory Mode), the
SAC is set to 256, and the data resides in the secondary address
space

AR (Access Register) Mode
 Data referenced by a program resides in the address or data space

pointed to by the ARs (instructions are fetched from primary)pointed to by the ARs (instructions are fetched from primary)

 PSW bit 17 is 1

zNextGen

© 2011 zNextGen 10

Terminologye ology

A note about the PSW for Home, Primary and
Secondary address spaces:Secondary address spaces:

Mode PSW Bits 16 and 17

Home Space 11

Primary Space 00Primary Space 00

Secondary Space 10

AR Mode 01

zNextGen

© 2011 zNextGen 11

Terminologye ology

Space Switch Routine
 Code that is the target of the PC instruction that

executes in another address space

Service Provider
 The program (ie, an address space) that provides

services synchronously to other program (ie, other
address spaces or users)

zNextGen

© 2011 zNextGen 12

Terminologye ology
PC Routine

 When the user program issues the PC instruction, the PC instruction
t f t l t th PC titransfers control to the PC routine

 PC routine is a service provider program that provides the
requested service (or invokes other programs to provide the
service) and then returns control to the userservice), and then returns control to the user

 The PC routine executes under the same UOW as the user, which is
where the synchronous part comes from

 PC Number
— Identifies a specific PC routine

— Created by the service provider and supplied to the user that issues the PC
instructioninstruction

 PC routines can access data in the user’s address space using ARs or
by using the MVCP/MVCS instructions

F hi i ’ll f i AR
zNextGen

© 2011 zNextGen 13

— For this presentation, we’ll focus on using ARs

Terminologye ology

A note about H/P/SASID and H/P/SASN

 The xASN is more of a hardware term (ie, Principles of Operation)

 The xASID is more of a software term

 But they are interchangeable and refer to the same thing. xASN will
be used in this presentation

HASN = HASID

PASN = PASID

SASN = SASID

zNextGen

© 2011 zNextGen 14

Terminologye ology

When the Job Step is initially dispatched:S p y p :

HASN = PASN = SASN

And so another way to think about XMS, Cross
Memory mode exists when one or more of these
conditions is true:conditions is true:

 Current PASN NE current HASN

 Current SASN NE current HASN Current SASN NE current HASN

 ASC mode is secondary

zNextGen

© 2011 zNextGen 15

Wh C M ?Why Cross Memory?

zNextGen

© 2011 zNextGen 16

Why Cross Memory?W y C oss Me o y?

 Can provide virtual storage constraint relief
Data can be copied moved or referenced by the server program — Data can be copied, moved or referenced by the server program
directly from the client address space without having a buffer in
common

 Can improve the integrity of the service and its data Can improve the integrity of the service and its data
— Code is isolated from the calling program (service and data separate

from the user)

Most efficient way to transfer data between address Most efficient way to transfer data between address
spaces

 Provide authorized services to problem state programsp p g
— Unauthorized callers can have controlled access to authorized services

— Would otherwise have to fully authorize the caller

zNextGen

© 2011 zNextGen 17

Why Cross Memory?W y C oss Me o y?

 Common space can be preserved because large p p g
structures can be referenced in the Service Provider’s
address space

C d h i h h h h SVC h d f  Code path is much shorter than the SVC method for
cross memory

 Compared to the limit of 256 SVC’s the number of  Compared to the limit of 256 SVC s, the number of
possible PCs is very large

zNextGen

© 2011 zNextGen 18

Cross Memory in Motion
Here is a basic example:

C oss Me o y Mot o

PC RoutineProgram

Caller Service ProviderCaller Service Provider

After the PC routine executes, the stacking PC issues
a PR instruction to return control back to the user’s

The program in the user’s address space issues a
PC instruction to pass control to the PC routine in
the Service Provider’s address space

zNextGen

© 2011 zNextGen 19

programthe Service Provider s address space

C M E i tCross Memory Environments

zNextGen

© 2011 zNextGen 20

Cross Memory EnvironmentsC oss Me o y v o e ts

The Cross Memory Environment includes tables C y
and linkages that connect the service provider’s
address space to:

 The user’s address space

 The tables and linkages that provide the necessary  The tables and linkages that provide the necessary
authorization for the service provider

Multi level authorization facilityMulti-level authorization facility

zNextGen

© 2011 zNextGen 21

Cross Memory EnvironmentsC oss Me o y v o e ts

Three main areas to consider for the XM
environment:

 Cross Memory Authorization Cross Memory Authorization

— Defines program and address space authorization

 Cross Memory Linkage Cross Memory Linkage

— Defines data structures and tables

 Linkage Conventions Linkage Conventions

— Defines programming conventions

zNextGen

© 2011 zNextGen 22

Cross Memory EnvironmentsC oss Me o y v o e ts

Cross Memory AuthorizationC y

 Program authorization

The PKM (PSW key mask) is a 16 bit value (bits 0 15 of CR3) that is — The PKM (PSW key mask) is a 16-bit value (bits 0-15 of CR3) that is
used to authorize problem state programs to use XMS

– Represents PSW storage protections keys that are valid for programs to use

d i h i h k (l i h h A) d i if ifi – Used in an authority check (along with the AKM) to determine if a specific
PC number is authorized

– Can be changed by the PC and PT instructions

S i d d PKM h i i– Supervisor state programs do not need PKM authorization

zNextGen

© 2011 zNextGen 23

Cross Memory EnvironmentsC oss Me o y v o e ts

Cross Memory AuthorizationC y

 Address space authorization

System Authorization Table (SAT)— System Authorization Table (SAT)

– Entries define the PT and SSAR authority that another address space has,
with respect to the address space that owns the SAT

E t i i d d b th i ti i d (AX)– Entries are indexed by authorization indexes (AX)

– AX entry indicates if an address space is authorized to access other
address spaces

If AX 1 th t h b th PT d SSAR th it– If AX = 1, the entry has both PT and SSAR authority

– If AX = 0, the entry has neither PT nor SSAR authority

zNextGen

© 2011 zNextGen 24

Cross Memory EnvironmentsC oss Me o y v o e ts

Cross Memory Linkage

 Each address has a system linkage table and a linkage
table associated with it

— System linkage table: defines the XMS available to all address spaces

– System LX’s

— Linkage table: defines the XMS available to a specific address space— Linkage table: defines the XMS available to a specific address space

– Non-system LX’s

 Linkage table entries are referenced by a linkage index Linkage table entries are referenced by a linkage index
(LX)

— LX values are unique across the system and can be reserved thru the
LXRES

zNextGen

© 2011 zNextGen 25

LXRES macro

Cross Memory EnvironmentsC oss Me o y v o e ts

Cross Memory LinkageC y g

 Each LX points to an entry table

Each entry table describes one or more services (i e programs call by — Each entry table describes one or more services (i.e., programs call by
the PC instruction) offered by the service provider’s address space

— And each program description is reference by an entry index (EX)

— The EX is used to locate an entry (ETE) in the entry table

— The program described by the ETE is the one that will receive
control as a result of the PC instruction

zNextGen

© 2011 zNextGen 26

Cross Memory EnvironmentsC oss Me o y v o e ts
Cross Memory Linkage

 PC i t ti f t PC D (B)  PC instruction format: PC D2(B2)

 The PC number comes from bits 12-31 of the address of
th ifi d dthe specified operand:

LX EX

 Bits 12-23 specify the LX value

0 12 24 31
p y

 Bits 24-31 specify the EX value

zNextGen

© 2011 zNextGen 27

Cross Memory in MotionC oss Me o y Mot o
Cross Memory Linkage

Li k T bl E t T bl PC R tiLinkage Table Entry Table PC Routine

LX EX
zNextGen

© 2011 zNextGen 28

LX EX

PC Instruction

I t t M d I t tiImportant Macros and Instructions

zNextGen

© 2011 zNextGen 29

Important Macros and InstructionsImportant Macros and Instructions

Macros used for XMS
 ATSET: Sets the authority of the PT and SSAR

instructions in the HASN’s authority table entry

 AXEXT: Sets the AX value for an address space

 AXFRE: Frees up an AX value for reuse

 AXRES: Reserves an AX in the authorization table

 AXSET: Sets the AX value for the home address space

 ETCON: Connects an entry table to a linkage table at
the specified LX (linkage index) in the home address
space

zNextGen

© 2011 zNextGen 30

space

Important Macros and InstructionsImportant Macros and Instructions

Macros used for XMS
 ETCRE: Creates a PC entry table from PC routine

definitions

 ETDEF: Defines a program in the entry table – the PC
routine definitions that are used by ETCRE as input

 ETDES: Destroys an entry table ETDES: Destroys an entry table

 ETDIS: Disconnects an entry table from a linkage table

 LXFRE F LX l f  LXFRE: Frees up an LX value for reuse

 LXRES: Reserves an LX in the linkage table

zNextGen

© 2011 zNextGen 31

Important Macros and InstructionsImportant Macros and Instructions

Example*, using AXSET to obtain PT and SSAR authority to
all address spaces:all address spaces:

*Note that all the examples included here are in reference to space switching PC routines

zNextGen

© 2011 zNextGen 32

p p g

Important Macros and InstructionsImportant Macros and Instructions

Example, using LXRES to reserve an LX:

zNextGen

© 2011 zNextGen 33

Important Macros and InstructionsImportant Macros and Instructions

Where KMH123_LXWA and KMH123_LXRESWA:

zNextGen

© 2011 zNextGen 34

Important Macros and InstructionsImportant Macros and Instructions

Example, using LXFRE to release an LX:

zNextGen

© 2011 zNextGen 35

Important Macros and InstructionsImportant Macros and Instructions

Where AUTHDL_LXWA and AUTHDL_LXFREWA:

zNextGen

© 2011 zNextGen 36

Important Macros and InstructionsImportant Macros and Instructions

Example, using ETDEF to build an Entry Table Entry:

This PC routine is
defined as a space

switch routine

zNextGen

© 2011 zNextGen 37

Important Macros and InstructionsImportant Macros and Instructions

Where ETDEF_AREA:

 ETDEFLN is the total size of all the entry table entries

 ETEADR points to R7 in the example, and R7 points to
ETRTN0, which is the routine that will be invoked

zNextGen

© 2011 zNextGen 38

Important Macros and InstructionsImportant Macros and Instructions

Example, using ETCRE to create the Entry Table:

zNextGen

© 2011 zNextGen 39

Important Macros and InstructionsImportant Macros and Instructions

Where ETDEF_CNT:

zNextGen

© 2011 zNextGen 40

Important Macros and InstructionsImportant Macros and Instructions

Example, using ETCON to connect the Entry Table to
the LX:the LX:

zNextGen

© 2011 zNextGen 41

Important Macros and InstructionsImportant Macros and Instructions

Where ETCONWA:

zNextGen

© 2011 zNextGen 42

Important Macros and InstructionsImportant Macros and Instructions

Instructions used for XMS
 PC: Program Call

— Causes a program (the PC routine) in another address space to receive
controlcontrol

 SSAR: Set Secondary ASN
— Used to set an address space to the Secondary Address Spacep y p

 EPAR: Extract Primary ASN
— Places the PASID into a GPR

 ESAR: Extract Secondary ASN
— Places the SASID into a GPR

zNextGen

© 2011 zNextGen 43

Important Macros and InstructionsImportant Macros and Instructions

Instructions used for XMS
 MVCK M ith K MVCK: Move with Key

— Moves data between storage areas that have different storage protection keys

 MVCP: Move to Primary*
— Moves data from the SASN to the PASN

 MVCS: Move to Secondary*
— Moves data from the PASN to the SASN

 IAC: Insert Address Space Control
— Indicates current ASC mode

 SAC/SACF: Set Address Space Control/FAST SAC/SACF: Set Address Space Control/FAST
— Sets bits 16-17 for the ASC mode

*Alternative way for PC routines to access from other address spaces or data spaces vs
i AR’

zNextGen

© 2011 zNextGen 44

using AR’s

Important Macros and InstructionsImportant Macros and Instructions

Example, using IAC and SACF to set the ASC mode to
primary:primary:

Th l t b k t th i i l dThen you can later go back to the original mode:

zNextGen

© 2011 zNextGen 45

St ki g PCStacking PCs

zNextGen

© 2011 zNextGen 46

Stacking PCsStac g Cs

PC LinkagesC g

 Types of PC Linkage used to invoke PC Routines
— Stacking PCStacking PC

– The user’s environment is saved by the system on the linkage
stack

When the PC routine is done it issues the PR instruction to restore – When the PC routine is done, it issues the PR instruction to restore
the user’s environment and control is returned to the user

– Stacking PC Linkage is highly recommended and is what we’ll
focus on for this presentationfocus on for this presentation

zNextGen

© 2011 zNextGen 47

Stacking PCsStac g Cs
Basic and Stacking PC
Shared Functionality

Stacking PC Only
Functionalityy

 The PKM (PSW key mask)
authority of the PC routine
can be increased

y
 The PKM authority of the PC

routine can be decreased

 Th PSW k f th PC
 The PC routine can receive

control in problem or
supervisor state

 The PSW key of the PC
routine can be set from data
in the entry table

 Th PC ti i supervisor state

 The PC routine can be a
space switch routine or a
non-space switch routine

 The PC routine can receive
control in AR mode

 Linkage stack is
t ti ll d t non space switch routine automatically used to save

and restore user’s
environment

zNextGen

© 2011 zNextGen 48

Add S S i gAddress Space Swapping

zNextGen

© 2011 zNextGen 49

Address Space Swappingdd ess Space Swapp g

What is swapping?pp g
Used by SRM (System Resource Manager) to control

which address spaces should have access to system
resources

 Swapping helps to balance the use of resources

 Can help with performance and throughput

 There are several kinds of domain-related swaps and
l d system-related swaps

zNextGen

© 2011 zNextGen 50

Address Space Swappingdd ess Space Swapp g

Stacking PCs  Space Switch  Swapping
 If a stacking PC routine causes a space switch (when the

primary address space changes), it must be running in a
non-swappable address spacenon swappable address space

 To make an address space non-swappable (before you
create the space switching PC), you need to use the p g), y
SYSEVENT macro

 Then after you are done with your space switching PC,
 k i bl i i h S S you can make it swappable again using the SYSEVENT

macro

zNextGen

© 2011 zNextGen 51

Address Space Swappingdd ess Space Swapp g

SYSEVENT Macro
 SYSEVENT DONTSWAP

— This will make your address space non-swappable

Notifies the SRM that the address space can’t be swapped out— Notifies the SRM that the address space can’t be swapped out

 SYSEVENT OKSWAP
— This will make your address space swappable againThis will make your address space swappable again

— Notifies the SRM that the address space is eligible for swapping

zNextGen

© 2011 zNextGen 52

Address Space Swappingdd ess Space Swapp g

SYSEVENT Macro Examples:

zNextGen

© 2011 zNextGen 53

When you specify ENTRY=BRANCH,
R13 must contain the address of a 72-byte save area

Address Space Swappingdd ess Space Swapp g

SYSEVENT Macro Examples:

zNextGen

© 2011 zNextGen 54

O i f L ki gOverview of Locking

zNextGen

© 2011 zNextGen 55

Overview of LockingOve v ew o oc g
Cross Memory Local (CML) Lock

 The local lock of an address space other than the home address  The local lock of an address space other than the home address
space

 Allows XMS to serializes functions and storage allocation

 One CML lock per address space

 This is a suspend lock, versus a spin lock

CML Address SpaceCML Address Space
 The address space, other than the home address space, whose local

lock is held as a CML lock

 After the CML lock is obtained, the CML address space doesn’t have
to remain the primary or secondary address space

zNextGen

© 2011 zNextGen 56

Overview of LockingOve v ew o oc g

 The CML lock is obtained by using the SETLOCK macro

 The issuing program must be in supervisor state and
PSW key 0

Owning the CML lock allows for address space level
synchronization

Owning the CML lock creates an active link between the Owning the CML lock creates an active link between the
CML address space and the address space that owns the
lock (usually the home address space) – and so neither
address space can swapped out

zNextGen

© 2011 zNextGen 57

Overview of LockingOve v ew o oc g

SETLOCK OBTAIN Example:

zNextGen

© 2011 zNextGen 58

Overview of LockingOve v ew o oc g

SETLOCK RELEASE Example:

zNextGen

© 2011 zNextGen 59

Overview of LockingOve v ew o oc g

SETLOCK vs. SYSEVENT
 SETLOCK obtains a lock for a very short period of time

(microseconds) and is used for serialization (not for
ki g dd bl)making an address space non-swappable)

 SYSEVENT can make an address space non-swappable
for a long period of time (hours days weeks)for a long period of time (hours, days, weeks)

zNextGen

© 2011 zNextGen 60

Fi l Ti d R d tiFinal Tips and Recommendations

zNextGen

© 2011 zNextGen 61

Final Tips and Recommendationsal ps a d eco e dat o s

 XMS is NOT an easy topic to learny p

 There are many different ways to establish and work
with XMS

— You should focus on the way that works best for your project

 Start with a sandbox-type of program to get the basics yp p g g
down

 If at first you don’t succeed, try, try, try and try again!

zNextGen

© 2011 zNextGen 62

Final Tips and Recommendationsal ps a d eco e dat o s

 Remember that resource management is different with
XMSXMS

— What happens if you invoke a program in another address and the
program terminates?

 You must consider where your resources came from –
your own resources vs. those that came from cross
memory users

 The PC routine execution time is tied to the home
address space, but that may not be where the routine
actually executes

zNextGen

© 2011 zNextGen 63

Final Tips and Recommendationsal ps a d eco e dat o s

 Programs running in XM mode don’t have access to MVS
 l th d t ti li itl ti itmacros unless the documentation explicitly mentions it

 Programs running in XM mode cannot issue any SVCs
except ABEND (i e if a macro is dependent on an SVC except ABEND (i.e., if a macro is dependent on an SVC,
you won’t be able to use it in XM mode)

zNextGen

© 2011 zNextGen 64

Resources esou ces

I am thankful to many people who helped me y p p p
learn XMS! I’m still learning, but without their
help, this presentation would have been
impossible.
 Tom Harper

 Dave Kreiss

 Tony Lubrano

Michael Stack

zNextGen

© 2011 zNextGen 65

Resources esou ces

Other resources:

 Advanced Assembler Language and MVS Interfaces (yes,
I am blessed to own a copy!)

MVS Programming Extended Addressability Guide
— http://publib.boulder.ibm.com/infocenter/zos/v1r11/index.jsp?topic=

/com ibm zos r11 ieaa500/cmc htm/com.ibm.zos.r11.ieaa500/cmc.htm

 Lend Me Your EAR: The ART of MVS/ESA Programming,
SHARE session by Joel Sarch

— http://www.cbttape.org/ftp/infolib/SHARE72-O324-O325-O326.pdf

zNextGen

© 2011 zNextGen 66

The Next Generation of Mainframe Professionals.

© 2011 zNextGen 67

