Assembler University 302

zZNextGen User Experience:
I'm Losing My Mind Trying to Figure Out
Cross-Memory Routines!

SHARE in Anaheim
March 1, 2011
Session 8541

© 2011 zNext Gen 0

Author

This presentation was prepared by:

Kristine M. Harper
IMS R&D

NEON Enterprise Software

14100 Southwest Freeway

Suite 400

Sugar Land, TX 77478

Tel: 281-207-4978

E-mail: kristine.harper@neon.com

=B

—

SHARE

Technplpgy - Cannpciigns - Resulls

© 2011 zNextGen

Agenda

B Terminology

B Why Cross-Memory?

M Cross Memory Environments

¥ Important Macros & Instructions
W Stacking PCs

M Address Space Swapping

M Overview of Locking

® Final Tips and Recommendations

e
Y

SHARE

—

© 2011 zNextGen

Agenda <

B Other important XMS topics we will not get to today:
storage control, MVCP/MVCS, linkage conventions,
system parameters, z/0S macros available/unavailable
while in XM mode, recovery, data spaces, hiperspaces
and many more XMS topics!

— Maybe a two-part session in Orlando! ©

M In this session, we’ll be specifically covering
Synchronous XMS

— The other XMS method involves SCHEDULEiIng an SRB to run in another
address space and that is called Asynchronous XMS

Y

SHARE

—

© 2011 zNextGen 3

Terminology

© 2011 zNextGen

Terminology <

What is Cross Memory?

™ Cross Memory Services, or XMS

— Technique that MVS and z/0S applications use to invoke programs in
other address spaces

— Provides a synchronous method of communications between address
spaces

— In other words, the invoked routine resides in a different address
space than the invoking program

Invoking
Routine

Invoked
Routine

Address
Space 1

Address
Space 2

Technology - Cannections - Rasults © 2011 zNextGen 5

Terminology <

What Is Cross Memory?

¥ From the MVS Programming Extended Addressability
Guide:

— Synchronous cross memory communication enables one program to
provide services synchronously to other programs

— Takes place between a user and a service provider when the user
issues a PC (program call) instruction

B Cross Memory Environment occurs between a Primary
Address Space and a Service Address Space

— Requires authorization, linkage and entry tables
S H .A H._ E

© 2011 zNextGen 6

Terminology <

What Is Cross Memory?

® The caller runs under the same unit of work (UOW, TCB
or SRB) Iin the same or a different address space

M For synchronous, at any given moment, the UOW is
either running in one address space or another, but
never in two different ones at the same time

® The UOW is just an operating system concept - the
hardware is unaware of such a thing

M So this i1s why the set of services you can request in XM
mode is limited and/or require special interfaces:
because the UOW addressability may be in multiple

_-am address spaces!

==

SHARE

© 2011 zNextGen 7

Terminology <

Home Address Space

W Address space to which a unit of work is associated with and whose
address is pointed to by the PSA field PSAAOLD when the unit of work
IS executing*

M Address space in which the TCB or SRB are initially dispatched
B Remains the same during the life of work unit

m ASID of the Home Address Space = HASID

®m Also known as HASN (Home Address Space Number)

® In Home Address Space mode, instructions and data are fetched from
home

_ ,’,..- *Advanced Assembler Language and MVS Interfaces

Y

SHARE

—

© 2011 zNextGen 8

A
Q’\
Terminology Q:é{* “,

Primary Address Space

M Address space whose segment table (pointed to by CR1) is used to access instructions
and data when the CPU is in primary mode

Can be changed

ASID of the Primary Address Space = PASID

Also known as PASN (Primary Address Space Number)

® [n Primary Address Space mode, instructions and data are fetched from primary

Secondary Address Space

M Address space whose segment table (pointed to by CR7) is used to access data when
the CPU is in secondary mode

Can be changed
ASID of the Secondary Address Space = SASID
Also known as SASN (Secondary Address Space Number)

In Secondary Address Space mode, instructions are fetched from primary and data is
fetched from secondary

.
R
Il

SHARE

© 2011 zNextGen 9

Terminology <

ASC (Address Space Control) mode

B Determined by PSW bits 16-17 and tells the system where to find
the referenced data (the data referenced by the address in the
GPRs)

® When ASC mode is secondary (and hence Cross Memory Mode), the
SAC is set to 256, and the data resides in the secondary address
space

AR (Access Register) Mode

W Data referenced by a program resides in the address or data space
pointed to by the ARs (instructions are fetched from primary)

B PSWhbitl7is 1
gl

_F==
C
anans

© 2011 zNextGen 10

£
X
Terminolo é%f‘/
gy

A note about the PSW for Home, Primary and
Secondary address spaces:

Mode PSW Bits 16 and 17
Home Space 11
Primary Space 00
Secondary Space 10
AR Mode 01

B]
SHARE

2222222222222

A
S
- Q:‘é]lﬁ g’
Terminology

Space Switch Routine

M Code that is the target of the PC instruction that
executes in another address space

Service Provider

M The program (ie, an address space) that provides
services synchronously to other program (ie, other
address spaces or users)

© 2011 zNextGen 12

Terminology <
PC Routine

B When the user program issues the PC instruction, the PC instruction
transfers control to the PC routine

® PC routine is a service provider program that provides the
requested service (or invokes other programs to provide the
service), and then returns control to the user

B The PC routine executes under the same UOW as the user, which is
where the synchronous part comes from

B PC Number

— ldentifies a specific PC routine

— Created by the service provider and supplied to the user that issues the PC
instruction

® PC routines can access data in the user’s address space using ARs or
’ by using the MVCP/MVCS instructions

— For this presentation, we’ll focus on using ARs

—

]
SHARE

© 2011 zNextGen 13

Terminology <

A note about H/P/SASID and H/P/SASN

@ The xXASN is more of a hardware term (ie, Principles of Operation)
B The xASID is more of a software term

W But they are interchangeable and refer to the same thing. XASN will
be used in this presentation

HASN = HASID
PASN = PASID
SASN = SASID

Technplpgy - Cannpciigns - Resulls

© 2011 zNextGen 14

£
A
Terminology *<:‘(4//\”

When the Job Step is initially dispatched:

HASN = PASN = SASN

And so another way to think about XMS, Cross
Memory mode exists when one or more of these
conditions Is true:

B Current PASN NE current HASN
B Current SASN NE current HASN

® ASC mode is secondary

Y

SHARE

—

© 2011 zNext Gen

Why Cross Memory?

© 2011 zNextGen

16

Why Cross Memory? <

M Can provide virtual storage constraint relief

— Data can be copied, moved or referenced by the server program
directly from the client address space without having a buffer in
common

® Can improve the integrity of the service and its data

— Code is isolated from the calling program (service and data separate
from the user)

™ Most efficient way to transfer data between address
spaces

¥ Provide authorized services to problem state programs

— Unauthorized callers can have controlled access to authorized services
— Would otherwise have to fully authorize the caller

—

==
SHARE .

© 2011 zNextGen 17

PN
s/
Why Cross Memory? %{MV v

B Common space can be preserved because large
structures can be referenced in the Service Provider’s
address space

M Code path is much shorter than the SVC method for
Cross memory

® Compared to the limit of 256 SVC’s, the number of
possible PCs is very large

© 2011 zNextGen 18

£
o o,
Cross Memory in Motion 64/ |

Here is a basic example:

Program PC Routine

Caller Service Provider

Th&f'PJPﬂ{eaﬁb' Poﬁlﬁwﬂ%(eﬁ&‘é R SRR ﬁﬂésu?sues

4—. PG BRUMSHRHEA BT ERR AT ISR A LRE AR
Y the &eyratee Provider’s address space

Technplpgy - Cannpctigns - Aesulls

2222222222222

Cross Memory Environments

rsghnology - Canniclions - Rasults

© 2011 zNextGen 20

R
L\
Cross Memory Environments %\AV Z

The Cross Memory Environment includes tables
and linkages that connect the service provider’s
address space to:

M The user’s address space

M The tables and linkages that provide the necessary
authorization for the service provider

Multi-level authorization facility

B
n
o

© 2011 zNextGen 21

Cross Memory Environments <

Three main areas to consider for the XM
environment:

M Cross Memory Authorization

— Defines program and address space authorization

M Cross Memory Linkage

— Defines data structures and tables

M Linkage Conventions

— Defines programming conventions
SHARE

© 2011 zNextGen 22

Cross Memory Environments <

Cross Memory Authorization

B Program authorization

— The PKM (PSW key mask) is a 16-bit value (bits 0-15 of CR3) that is
used to authorize problem state programs to use XMS

Represents PSW storage protections keys that are valid for programs to use

Used in an authority check (along with the AKM) to determine if a specific
PC number is authorized

Can be changed by the PC and PT instructions

Supervisor state programs do not need PKM authorization

© 2011 zNextGen 23

Cross Memory Environments <

Cross Memory Authorization

M Address space authorization

— System Authorization Table (SAT)

Entries define the PT and SSAR authority that another address space has,
with respect to the address space that owns the SAT

Entries are indexed by authorization indexes (AX)

AX entry indicates if an address space is authorized to access other
address spaces

If AX = 1, the entry has both PT and SSAR authority
If AX = 0, the entry has neither PT nor SSAR authority

© 2011 zNextGen 24

Cross Memory Environments <

Cross Memory Linkage

M Each address has a system linkage table and a linkage
table associated with it

— System linkage table: defines the XMS available to all address spaces
- System LX’s
— Linkage table: defines the XMS available to a specific address space

- Non-system LX’s

M Linkage table entries are referenced by a linkage index
(LX)

_= LX values are unique across the system and can be reserved thru the
LXRES macro
SHARE

© 2011 zNextGen 25

Cross Memory Environments <

Cross Memory Linkage

M Each LX points to an entry table

— Each entry table describes one or more services (i.e., programs call by
the PC instruction) offered by the service provider’s address space

— And each program description is reference by an entry index (EX)
— The EX is used to locate an entry (ETE) in the entry table

— The program described by the ETE is the one that will receive
control as a result of the PC instruction

.,r—#-’-’-

_E==

SHARE

© 2011 zNextGen 26

/"F'(Q}'\’\
: ¢, &/\,
Cross Memory Environments < |

Cross Memory Linkage
® PC instruction format: PC D,(B,)

B The PC number comes from bits 12-31 of the address of
the specified operand:

0 12 24 31
M Bits 12-23 specify the LX value

M Bits 24-31 specify the EX value
.a#""'
_F==
Il

Technology - Canneclions - Rasults

© 2011 zNextGen 27

£
o o,
Cross Memory in Motion 64/ |

Cross Memory Linkage

Linkage Table Entry Table

SHARE PC Instruction

© 2011 zNextGen 28

f SRy
</}

Important Macros and Instructions

© 2011 zNextGen 29

Important Macros and Instructions <

Macros used for XMS

W ATSET: Sets the authority of the PT and SSAR
Instructions in the HASN’s authority table entry

W AXEXT: Sets the AX value for an address space

W AXFRE: Frees up an AX value for reuse

W AXRES: Reserves an AX in the authorization table

W AXSET: Sets the AX value for the home address space

W ETCON: Connects an entry table to a linkage table at
the specified LX (linkage index) in the home address
e
7y space
-]

SHARE

© 2011 zNextGen 30

Important Macros and Instructions <

Macros used for XMS

W ETCRE: Creates a PC entry table from PC routine
definitions

W ETDEF: Defines a program in the entry table - the PC
routine definitions that are used by ETCRE as input

W ETDES: Destroys an entry table

W ETDIS: Disconnects an entry table from a linkage table
W LXFRE: Frees up an LX value for reuse

IFI:XRES: Reserves an LX in the linkage table

==
=
Bt

© 2011 zNextGen 31

PN
- o /]
Important Macros and Instructions < L/

Example*, using AXSET to obtain PT and SSAR authority to
all address spaces:

St my SS5AR authority index

'_"'" *Note that all the examples included here are in reference to space switching PC routines

S_ I-I.A_R.E

© 2011 zNextGen 32

Important Macros and Instructions <

Example, using LXRES to reserve an LX:

LELIST=EMH123 LXWA, CObtain an LX
SYSTEM=YES, make 1t a Sy=tem LE
ME=(E. PHHlLJ_LEEESHé}

(LTE,R15. K15, HZ)
LEXEES FAILED

EMH123_ 9000

© 2011 zNextGen 33

Important Macros and Instructions <

Where KMH123 LXWA and KMH123 LXRESWA:

LEXRES Worlk Area

a0
EMH123 LERESWA LELIST=0,

SYSTEM=YES,
ME=L
EMH123_ LERESLH *—[KMH1 23 LERESWA

33 I

EMH123 LHWA I 13 LELIST Area

EMH1 23 LECE 23 Humber of LE's regquested
EMH123_T1TEVA 33 LX Humber

EMH123 _ETWA i 13 ETCEE Worl area
EMH123 ETCHT 23 Humber of ET's created
EMH123 ETTOK 33 ET Token from ETCEE

© 2011 zNextGen 34

O
| GO
Important Macros and Instructions <

Example, using LXFRE to release an LX:

(ICH,RO0,15,CSVTAUTH, HE)
AUTHDI, TLXCHT.=F'1'

Do we hawve

a PC Humber*

S=t the number of 1LE's acguire
R0, AUTHDI, LEVA

P |

Save the PC Humber
LELIST=AUTHDL LXWA,

Since thi=s 1= a non-svstem LE, +
FORCE=YES, the only address =pace that -+
ME=(E. L AUTHDL LEFEEWA) should be connected 1= u=s.

© 2011 zNextGen 35

Important Macros and Instructions

Where AUTHDL_LXWA and AUTHDL LXFREWA:

AUTHDL LEFEEWA LELIST=0,
FORCE=YES,
ME=L

AUTHDI, TLEFEELH *—ATTHDL LEFREWA

AUTHDL LEWA i 1.3
AUTHDL_ LECHT 23 Humber of
alUTHDL LEVAL 3.3 LE Humber

© 2011 zNextGen 36

Important Macros and Instructions <

Example, using ETDEF to build an Entry Table

RL, CEVTEMCHD Get PO Houtine Addres
Ee, CSVTEMARR Get ARR Address

8, ETDEF_AREA
E7? .ETRTHO-ETDEFWA(. B8}

TYFPE=5ET, S22t my values
ETEADE=(E7),

EOUTINE=({EL),

FE*E.H%L': R This PC routine is

_Tr .
SWITCH=YES defined as a space
PC=STACKING.
ASCHODE=PRIMARY switch routine
RAMODE=31,
STATE=SUPERVISOR,
: Ek=0,
— PKM=REPLACE,
J EKM=(0:15).
ealist AKM={0:15)

ntry:

Important Macros and Instructions <

Where ETDEF_AREA:

ETDEF_AREA CL{ETDEFLHN) ETDEF worlk ar

W ETDEFLN is the total size of all the entry table entries

M ETEADR points to R7 in the example, and R7 points to
ETRTNO, which is the routine that will be invoked

© 2011 zNextGen 38

Important Macros and Instructions <

Example, using ETCRE to create the Entry Table:

EHTEIES=ETDEF AREA Create my Entrv Table
T S R 3 R Any errors?
ELDETE EXIT Ye=, branch

I, ETTOK = thie Tol=n vealua=
ETCHT,=F'1"' S=t number of Entrv tables

e
A |
]

© 2011 zNextGen 39

Important Macros and Instructions <

Where ETDEF_CNT:

- ETI F'E T|T| |:|'_].- d1ea

PF; Humber of ET' ; created
“3d ET Token ftrom ETCEE

© 2011 zNextGen 40

A
A

/I|
Important Macros and Instructions v

Example, using ETCON to connect the Entry Table to
the LX:

TELIST=ETWA,
LELIST=LEWA,
HE=(E ETCONWA)

© 2011 zNext! Gen

Important Macros and Instructions

Where ETCONWA:

1N
ETCOHTTA TELIST=0,
LELIST=0,

MEF=L
ETCOHLH *¥_FTCOHTTA

2222222222222

Important Macros and Instructions <

Instructions used for XMS

® PC: Program Call

— Causes a program (the PC routine) in another address space to receive
control

M SSAR: Set Secondary ASN

— Used to set an address space to the Secondary Address Space

W EPAR: Extract Primary ASN
— Places the PASID into a GPR

B ESAR: Extract Secondary ASN
_gm__— Places the SASID into a GPR

===
-
EmAn

© 2011 zNextGen 43

Important Macros and Instructions <

Instructions used for XMS
@ MVCK: Move with Key

— Moves data between storage areas that have different storage protection keys
B MVCP: Move to Primary*

— Moves data from the SASN to the PASN
® MVCS: Move to Secondary*

— Moves data from the PASN to the SASN
M |AC: Insert Address Space Control

— Indicates current ASC mode

m SAC/SACF: Set Address Space Control/FAST
— Sets bits 16-17 for the ASC mode

. -“’-- *Alternative way for PC routines to access from other address spaces or data spaces vs

" using AR’s
Il
S H .A_ H._ E

© 2011 zNextGen 44

PN
- o /]
Important Macros and Instructions < g

Example, using IAC and SACF to set the ASC mode to
primary:

EZ. 0 I lilke 1t clean
EZ Current ASC mode

E2 WARTAC Sawve 1t
SACFE Into primary mode

Then you can later go back to the original mode:
B, WAKXTAC Original ASC mode
Bacl: to original mode

WANTAC A5SC mode

© 2011 zNextGen 45

Stacking PCs

© 2011 zNextGen

46

Stacking PCs <

PC Linkages

® Types of PC Linkage used to invoke PC Routines
— Stacking PC

- The user’s environment is saved by the system on the linkage
stack

- When the PC routine is done, it issues the PR instruction to restore
the user’s environment and control is returned to the user

- Stacking PC Linkage is highly recommended and is what we’ll
focus on for this presentation

SHARE

© 2011 zNextGen 47

Stacking PCs

Basic and Stacking PC
Shared Functionality

B The PKM (PSW key mask)
authority of the PC routine
can be increased

@ The PC routine can receive
control in problem or
supervisor state

B The PC routine can be a
space switch routine or a
non-space switch routine

Y

SHARE

—

© 2011 zNextGen

Stacking PC Only
Functionality

B The PKM authority of the PC
routine can be decreased

B The PSW key of the PC
routine can be set from data
In the entry table

B The PC routine can receive
control in AR mode

M Linkage stack is
automatically used to save
and restore user’s
environment

48

Address Space Swapping

rechnology - Canneclions - Retults

2222222222222

7%
Address Space Swapping %"AV 2

What Is swapping?

W Used by SRM (System Resource Manager) to control
which address spaces should have access to system
resources

B Swapping helps to balance the use of resources
M Can help with performance and throughput

M There are several kinds of domain-related swaps and
system-related swaps

gl
=

n

ool

© 2011 zNextGen 50

PN
4N

Address Space Swapping
Stacking PCs €-> Space Switch €-> Swapping

M If a stacking PC routine causes a space switch (when the
primary address space changes), it must be running in a
non-swappable address space

B To make an address space non-swappable (before you
create the space switching PC), you need to use the
SYSEVENT macro

¥ Then after you are done with your space switching PC,
you can make it swappable again using the SYSEVENT

Macro

B
SHARE .

© 2011 zNextGen 51

Address Space Swapping <

SYSEVENT Macro
W SYSEVENT DONTSWAP

— This will make your address space non-swappable
— Notifies the SRM that the address space can’t be swapped out

B SYSEVENT OKSWAP

— This will make your address space swappable again
— Notifies the SRM that the address space is eligible for swapping

© 2011 zNextGen 52

Address Space Swapping < v

SYSEVENT Macro Examples:

36 3 36 36 36 36 36 3 3 3 3 3 36 3 3 3 36 3 3 3 3E 36 36 3E 3E 36 3 36 3 3 3 3 3 3 36 36 3 3 36 3 36 36 36 3 3 3 3E 3 3 3 3 36 3 336 3
* Set Swappable *
DEF7100 0H
E14,H#DFP"1DD Save return addre=ss
BEEFOEE, SYSEVENT
ik _T'TJ.-J.E EHTF‘" ERAHCH {alke =wappable
AFTEE
(LTE,EK1,KE15,HZ) If error =ave HC
71 ACTIONS=! = Error QOESWAFP fﬂildwd
Eld4 DEFP000 I--uP ErTor
=X ET--TEHT
WAFLAG, 255-WAFLAGHUHST

ﬁ14,H#DEP?1DD Festore return address
El4 Feturn

When you specify ENTRY=BRANCH,
R13 must contain the address of a 72-byte save area

Address Space Swapping <

SYSEVENT Macro Examples:

3 36 3 3 336 3 36 35 3 36 36 3 3 36 5 36 36 36 3 36 36 3 36 3 3E 36 3E 3 36 3E 3E 3 3E 3E 3E 3E 3
* Set Hon Swappable *
36 36 36 36 36 36 35 36 36 36 3 36 36 36 36 36 36 3 36 36 36 6 36 36 36 36 36 36 36 36 36 36 636 36 36 36 36 36 6 36 36 36 3636 36 36 36 36 36 36 36 36 3 3636 3 3E O
DEEYO0D0 OH
El4, WEDEP7O0OD0 Sawve return address
BEFORE, SYSEVENT
DDHTLWHP,EHTF" ERANCH Malle non =wappable
AFTER
(LTE. K1, FlE,HE} If error =ave HC
X'70' ACTION=SETRC Error DONTSWAP failed
E14,DFP9DDD I==ue error mezzaqH
SYSEVENT =ful
WAFLAG, WAFLAGHOHSWE Indicate non ETT:|.1:I1:|-EI.]:IlE

F14 WEDREEZ 000 Fe=ztore return addre=ss
F1l4 F:tuln

© 2011 zNextGen 54

Overview of Locking

© 2011 zNextGen

55

Overview of Locking <
Cross Memory Local (CML) Lock

® The local lock of an address space other than the home address
space

® Allows XMS to serializes functions and storage allocation
® One CML lock per address space
W This is a suspend lock, versus a spin lock

CML Address Space

® The address space, other than the home address space, whose local
lock is held as a CML lock

W After the CML lock is obtained, the CML address space doesn’t have
to remain the primary or secondary address space
_ aﬁ..-
-]
SHARE

© 2011 zNextGen 56

A
| | A,
Overview of Locking

® The CML lock is obtained by using the SETLOCK macro

M The issuing program must be in supervisor state and
PSW key 0

® Owning the CML lock allows for address space level
synchronization

® Owning the CML lock creates an active link between the
CML address space and the address space that owns the
lock (usually the home address space) - and so neither
address space can swapped out

e
==

=

oBakectcler

© 2011 zNextGen 57

Overview of Locking <

SETLOCK OBTAIN Example:

't PrimH1" H:CE =
ul E: —||j_|j_1
ACEE |

]

!.u !.u 1]

e
wE

R1l Rl
OETAIN, TYPE=CHL . HODE=UNCOND, REGS=USE. ASCE={11)

© 2011 zNextGen 58

Overview of Locking

SETLOCK RELEASE Example:

" RELEA

SE. TYPE=CHML, REGS=

© 2011 zNext! Gen

S=t 11_|__||_E| addr
USE, ASCE=(11}

59

A
3
] ' @é{« \:\/\/
Overview of Locking

SETLOCK vs. SYSEVENT

W SETLOCK obtains a lock for a very short period of time
(microseconds) and is used for serialization (not for
making an address space non-swappable)

B SYSEVENT can make an address space non-swappable
for a long period of time (hours, days, weeks)

© 2011 zNextGen 60

rechnology - Canneclions - Retults

Final Tips and Recommendations

© 2011 zNextGen 61

A
Final Tips and Recommendations *5{4/“\/

m XMS i1s NOT an easy topic to learn

M There are many different ways to establish and work
with XMS

— You should focus on the way that works best for your project

W Start with a sandbox-type of program to get the basics
down

W If at first you don’t succeed, try, try, try and try again!

N
[l
O

© 2011 zNextGen 62

A3
RS
Final Tips and Recommendations < v

B Remember that resource management is different with
XMS

— What happens if you invoke a program in another address and the
program terminates?

® You must consider where your resources came from -
your own resources vs. those that came from cross
memory users

® The PC routine execution time is tied to the home
address space, but that may not be where the routine

actually executes

3 .ﬁ...-
—]
shans

© 2011 zNextGen 63

A3
RS
Final Tips and Recommendations %"AV v

® Programs running in XM mode don’t have access to MVS
macros unless the documentation explicitly mentions it

M Programs running in XM mode cannot issue any SVCs
except ABEND (i.e., if a macro is dependent on an SVC,
you won’t be able to use it in XM mode)

© 2011 zNextGen 64

7k
Resources 634/“\/

| am thankful to many people who helped me
learn XMS! I’m still learning, but without their
help, this presentation would have been
Impossible.

B Tom Harper
M Dave Kreiss
M Tony Lubrano

B Michael Stack

_F==
C
pans

© 2011 zNext Gen 65

Resources <

Other resources:

W Advanced Assembler Language and MVS Interfaces (yes,
| am blessed to own a copy!)

B MVS Programming Extended Addressability Guide

— http://publib.boulder.ibm.com/infocenter/zos/vl1rll/index.jsp?topic=
/com.ibm.zos.rl1l.ieaa500/cmc.htm

¥ Lend Me Your EAR: The ART of MVS/ESA Programming,
SHARE session by Joel Sarch

— http://www.cbttape.org/ftp/infolib/SHARE72-0324-0325-0326.pdf

g
_F=3

Technplpgy - Cannpciigns - Resulls

© 2011 zNextGen 66

The Next Generation of Mainframe Professionals.

© 2011 zNextGen

67

