
Assembler University 302Assembler University 302

zNextGen User Experience: p
I'm Losing My Mind Trying to Figure Out

Cross-Memory Routines!

SHARE in Anaheim
March 1, 2011
Session 8541

zNextGen

© 2011 zNextGen 0

Session 8541

AuthorAuthor

This presentation was prepared by:

Kristine M. Harper
IMS R&D

NEON E i S fNEON Enterprise Software
14100 Southwest Freeway
Suite 400
Sugar Land, TX 77478
Tel: 281-207-4978el: 8 0 9 8
E-mail: kristine.harper@neon.com

zNextGen

© 2011 zNextGen 1

Agenda ge da

 Terminology

Why Cross-Memory?

 Cross Memory Environments

 Important Macros & Instructions

 Stacking PCs

 Address Space Swapping

Overview of Locking

 Final Tips and Recommendations

zNextGen

© 2011 zNextGen 2

Agenda ge da

Other important XMS topics we will not get to today: p p g y
storage control, MVCP/MVCS, linkage conventions,
system parameters, z/OS macros available/unavailable
while in XM mode recovery data spaces hiperspaces while in XM mode, recovery, data spaces, hiperspaces
and many more XMS topics!

— Maybe a two-part session in Orlando!

 In this session, we’ll be specifically covering
Synchronous XMS

Th th XMS th d i l SCHEDULEi SRB t i th — The other XMS method involves SCHEDULEing an SRB to run in another
address space and that is called Asynchronous XMS

zNextGen

© 2011 zNextGen 3

T i l gTerminology

zNextGen

© 2011 zNextGen 4

Terminologye ology

What is Cross Memory?
 Cross Memory Services, or XMS

— Technique that MVS and z/OS applications use to invoke programs in
other address spacesother address spaces

— Provides a synchronous method of communications between address
spaces

In other words the invoked routine resides in a different address — In other words, the invoked routine resides in a different address
space than the invoking program

Address
S 1

Invoking
Routine

Address

Invoked
Routine

zNextGen

© 2011 zNextGen 5

Space 1 Space 2

Terminologye ology

What is Cross Memory?C y
 From the MVS Programming Extended Addressability

Guide:
— Synchronous cross memory communication enables one program to

provide services synchronously to other programs

— Takes place between a user and a service provider when the user Takes place between a user and a service provider when the user
issues a PC (program call) instruction

 Cross Memory Environment occurs between a Primary
Address Space and a Service Address SpaceAddress Space and a Service Address Space

— Requires authorization, linkage and entry tables

zNextGen

© 2011 zNextGen 6

Terminologye ology
What is Cross Memory?
 The caller runs under the same unit of work (UOW, TCB The caller runs under the same unit of work (UOW, TCB

or SRB) in the same or a different address space

 For synchronous, at any given moment, the UOW is
ith i i dd th b t either running in one address space or another, but

never in two different ones at the same time

 The UOW is just an operating system concept – the The UOW is just an operating system concept the
hardware is unaware of such a thing

 So this is why the set of services you can request in XM
d i li it d d/ i i l i t f mode is limited and/or require special interfaces:

because the UOW addressability may be in multiple
address spaces!

zNextGen

© 2011 zNextGen 7

Terminologye ology

Home Address Space
 Address space to which a unit of work is associated with and whose

address is pointed to by the PSA field PSAAOLD when the unit of work
is executing*

 Address space in which the TCB or SRB are initially dispatched Address space in which the TCB or SRB are initially dispatched
 Remains the same during the life of work unit
 ASID of the Home Address Space = HASID
 Also known as HASN (Home Address Space Number)
 In Home Address Space mode, instructions and data are fetched from

home

*Advanced Assembler Language and MVS Interfaces

zNextGen

© 2011 zNextGen 8

Terminology

Primary Address Space
 Address space whose segment table (pointed to by CR1) is used to access instructions

and data when the CPU is in primary modep y
 Can be changed
 ASID of the Primary Address Space = PASID
 Also known as PASN (Primary Address Space Number)
 In Primary Address Space mode, instructions and data are fetched from primary

Secondary Address Space
 Address space whose segment table (pointed to by CR7) is used to access data when

the CPU is in secondary modethe CPU is in secondary mode
 Can be changed
 ASID of the Secondary Address Space = SASID
 Also known as SASN (Secondary Address Space Number)
 In Secondary Address Space mode, instructions are fetched from primary and data is

fetched from secondary

zNextGen

© 2011 zNextGen 9

Terminologye ology
ASC (Address Space Control) mode

 Determined by PSW bits 16-17 and tells the system where to find Determined by PSW bits 16-17 and tells the system where to find
the referenced data (the data referenced by the address in the
GPRs)

 When ASC mode is secondary (and hence Cross Memory Mode) the When ASC mode is secondary (and hence Cross Memory Mode), the
SAC is set to 256, and the data resides in the secondary address
space

AR (Access Register) Mode
 Data referenced by a program resides in the address or data space

pointed to by the ARs (instructions are fetched from primary)pointed to by the ARs (instructions are fetched from primary)

 PSW bit 17 is 1

zNextGen

© 2011 zNextGen 10

Terminologye ology

A note about the PSW for Home, Primary and
Secondary address spaces:Secondary address spaces:

Mode PSW Bits 16 and 17

Home Space 11

Primary Space 00Primary Space 00

Secondary Space 10

AR Mode 01

zNextGen

© 2011 zNextGen 11

Terminologye ology

Space Switch Routine
 Code that is the target of the PC instruction that

executes in another address space

Service Provider
 The program (ie, an address space) that provides

services synchronously to other program (ie, other
address spaces or users)

zNextGen

© 2011 zNextGen 12

Terminologye ology
PC Routine

 When the user program issues the PC instruction, the PC instruction
t f t l t th PC titransfers control to the PC routine

 PC routine is a service provider program that provides the
requested service (or invokes other programs to provide the
service) and then returns control to the userservice), and then returns control to the user

 The PC routine executes under the same UOW as the user, which is
where the synchronous part comes from

 PC Number
— Identifies a specific PC routine

— Created by the service provider and supplied to the user that issues the PC
instructioninstruction

 PC routines can access data in the user’s address space using ARs or
by using the MVCP/MVCS instructions

F hi i ’ll f i AR
zNextGen

© 2011 zNextGen 13

— For this presentation, we’ll focus on using ARs

Terminologye ology

A note about H/P/SASID and H/P/SASN

 The xASN is more of a hardware term (ie, Principles of Operation)

 The xASID is more of a software term

 But they are interchangeable and refer to the same thing. xASN will
be used in this presentation

HASN = HASID

PASN = PASID

SASN = SASID

zNextGen

© 2011 zNextGen 14

Terminologye ology

When the Job Step is initially dispatched:S p y p :

HASN = PASN = SASN

And so another way to think about XMS, Cross
Memory mode exists when one or more of these
conditions is true:conditions is true:

 Current PASN NE current HASN

 Current SASN NE current HASN Current SASN NE current HASN

 ASC mode is secondary

zNextGen

© 2011 zNextGen 15

Wh C M ?Why Cross Memory?

zNextGen

© 2011 zNextGen 16

Why Cross Memory?W y C oss Me o y?

 Can provide virtual storage constraint relief
Data can be copied moved or referenced by the server program — Data can be copied, moved or referenced by the server program
directly from the client address space without having a buffer in
common

 Can improve the integrity of the service and its data Can improve the integrity of the service and its data
— Code is isolated from the calling program (service and data separate

from the user)

Most efficient way to transfer data between address Most efficient way to transfer data between address
spaces

 Provide authorized services to problem state programsp p g
— Unauthorized callers can have controlled access to authorized services

— Would otherwise have to fully authorize the caller

zNextGen

© 2011 zNextGen 17

Why Cross Memory?W y C oss Me o y?

 Common space can be preserved because large p p g
structures can be referenced in the Service Provider’s
address space

C d h i h h h h SVC h d f Code path is much shorter than the SVC method for
cross memory

 Compared to the limit of 256 SVC’s the number of Compared to the limit of 256 SVC s, the number of
possible PCs is very large

zNextGen

© 2011 zNextGen 18

Cross Memory in Motion
Here is a basic example:

C oss Me o y Mot o

PC RoutineProgram

Caller Service ProviderCaller Service Provider

After the PC routine executes, the stacking PC issues
a PR instruction to return control back to the user’s

The program in the user’s address space issues a
PC instruction to pass control to the PC routine in
the Service Provider’s address space

zNextGen

© 2011 zNextGen 19

programthe Service Provider s address space

C M E i tCross Memory Environments

zNextGen

© 2011 zNextGen 20

Cross Memory EnvironmentsC oss Me o y v o e ts

The Cross Memory Environment includes tables C y
and linkages that connect the service provider’s
address space to:

 The user’s address space

 The tables and linkages that provide the necessary The tables and linkages that provide the necessary
authorization for the service provider

Multi level authorization facilityMulti-level authorization facility

zNextGen

© 2011 zNextGen 21

Cross Memory EnvironmentsC oss Me o y v o e ts

Three main areas to consider for the XM
environment:

 Cross Memory Authorization Cross Memory Authorization

— Defines program and address space authorization

 Cross Memory Linkage Cross Memory Linkage

— Defines data structures and tables

 Linkage Conventions Linkage Conventions

— Defines programming conventions

zNextGen

© 2011 zNextGen 22

Cross Memory EnvironmentsC oss Me o y v o e ts

Cross Memory AuthorizationC y

 Program authorization

The PKM (PSW key mask) is a 16 bit value (bits 0 15 of CR3) that is — The PKM (PSW key mask) is a 16-bit value (bits 0-15 of CR3) that is
used to authorize problem state programs to use XMS

– Represents PSW storage protections keys that are valid for programs to use

d i h i h k (l i h h A) d i if ifi – Used in an authority check (along with the AKM) to determine if a specific
PC number is authorized

– Can be changed by the PC and PT instructions

S i d d PKM h i i– Supervisor state programs do not need PKM authorization

zNextGen

© 2011 zNextGen 23

Cross Memory EnvironmentsC oss Me o y v o e ts

Cross Memory AuthorizationC y

 Address space authorization

System Authorization Table (SAT)— System Authorization Table (SAT)

– Entries define the PT and SSAR authority that another address space has,
with respect to the address space that owns the SAT

E t i i d d b th i ti i d (AX)– Entries are indexed by authorization indexes (AX)

– AX entry indicates if an address space is authorized to access other
address spaces

If AX 1 th t h b th PT d SSAR th it– If AX = 1, the entry has both PT and SSAR authority

– If AX = 0, the entry has neither PT nor SSAR authority

zNextGen

© 2011 zNextGen 24

Cross Memory EnvironmentsC oss Me o y v o e ts

Cross Memory Linkage

 Each address has a system linkage table and a linkage
table associated with it

— System linkage table: defines the XMS available to all address spaces

– System LX’s

— Linkage table: defines the XMS available to a specific address space— Linkage table: defines the XMS available to a specific address space

– Non-system LX’s

 Linkage table entries are referenced by a linkage index Linkage table entries are referenced by a linkage index
(LX)

— LX values are unique across the system and can be reserved thru the
LXRES

zNextGen

© 2011 zNextGen 25

LXRES macro

Cross Memory EnvironmentsC oss Me o y v o e ts

Cross Memory LinkageC y g

 Each LX points to an entry table

Each entry table describes one or more services (i e programs call by — Each entry table describes one or more services (i.e., programs call by
the PC instruction) offered by the service provider’s address space

— And each program description is reference by an entry index (EX)

— The EX is used to locate an entry (ETE) in the entry table

— The program described by the ETE is the one that will receive
control as a result of the PC instruction

zNextGen

© 2011 zNextGen 26

Cross Memory EnvironmentsC oss Me o y v o e ts
Cross Memory Linkage

 PC i t ti f t PC D (B) PC instruction format: PC D2(B2)

 The PC number comes from bits 12-31 of the address of
th ifi d dthe specified operand:

LX EX

 Bits 12-23 specify the LX value

0 12 24 31
p y

 Bits 24-31 specify the EX value

zNextGen

© 2011 zNextGen 27

Cross Memory in MotionC oss Me o y Mot o
Cross Memory Linkage

Li k T bl E t T bl PC R tiLinkage Table Entry Table PC Routine

LX EX
zNextGen

© 2011 zNextGen 28

LX EX

PC Instruction

I t t M d I t tiImportant Macros and Instructions

zNextGen

© 2011 zNextGen 29

Important Macros and InstructionsImportant Macros and Instructions

Macros used for XMS
 ATSET: Sets the authority of the PT and SSAR

instructions in the HASN’s authority table entry

 AXEXT: Sets the AX value for an address space

 AXFRE: Frees up an AX value for reuse

 AXRES: Reserves an AX in the authorization table

 AXSET: Sets the AX value for the home address space

 ETCON: Connects an entry table to a linkage table at
the specified LX (linkage index) in the home address
space

zNextGen

© 2011 zNextGen 30

space

Important Macros and InstructionsImportant Macros and Instructions

Macros used for XMS
 ETCRE: Creates a PC entry table from PC routine

definitions

 ETDEF: Defines a program in the entry table – the PC
routine definitions that are used by ETCRE as input

 ETDES: Destroys an entry table ETDES: Destroys an entry table

 ETDIS: Disconnects an entry table from a linkage table

 LXFRE F LX l f LXFRE: Frees up an LX value for reuse

 LXRES: Reserves an LX in the linkage table

zNextGen

© 2011 zNextGen 31

Important Macros and InstructionsImportant Macros and Instructions

Example*, using AXSET to obtain PT and SSAR authority to
all address spaces:all address spaces:

*Note that all the examples included here are in reference to space switching PC routines

zNextGen

© 2011 zNextGen 32

p p g

Important Macros and InstructionsImportant Macros and Instructions

Example, using LXRES to reserve an LX:

zNextGen

© 2011 zNextGen 33

Important Macros and InstructionsImportant Macros and Instructions

Where KMH123_LXWA and KMH123_LXRESWA:

zNextGen

© 2011 zNextGen 34

Important Macros and InstructionsImportant Macros and Instructions

Example, using LXFRE to release an LX:

zNextGen

© 2011 zNextGen 35

Important Macros and InstructionsImportant Macros and Instructions

Where AUTHDL_LXWA and AUTHDL_LXFREWA:

zNextGen

© 2011 zNextGen 36

Important Macros and InstructionsImportant Macros and Instructions

Example, using ETDEF to build an Entry Table Entry:

This PC routine is
defined as a space

switch routine

zNextGen

© 2011 zNextGen 37

Important Macros and InstructionsImportant Macros and Instructions

Where ETDEF_AREA:

 ETDEFLN is the total size of all the entry table entries

 ETEADR points to R7 in the example, and R7 points to
ETRTN0, which is the routine that will be invoked

zNextGen

© 2011 zNextGen 38

Important Macros and InstructionsImportant Macros and Instructions

Example, using ETCRE to create the Entry Table:

zNextGen

© 2011 zNextGen 39

Important Macros and InstructionsImportant Macros and Instructions

Where ETDEF_CNT:

zNextGen

© 2011 zNextGen 40

Important Macros and InstructionsImportant Macros and Instructions

Example, using ETCON to connect the Entry Table to
the LX:the LX:

zNextGen

© 2011 zNextGen 41

Important Macros and InstructionsImportant Macros and Instructions

Where ETCONWA:

zNextGen

© 2011 zNextGen 42

Important Macros and InstructionsImportant Macros and Instructions

Instructions used for XMS
 PC: Program Call

— Causes a program (the PC routine) in another address space to receive
controlcontrol

 SSAR: Set Secondary ASN
— Used to set an address space to the Secondary Address Spacep y p

 EPAR: Extract Primary ASN
— Places the PASID into a GPR

 ESAR: Extract Secondary ASN
— Places the SASID into a GPR

zNextGen

© 2011 zNextGen 43

Important Macros and InstructionsImportant Macros and Instructions

Instructions used for XMS
 MVCK M ith K MVCK: Move with Key

— Moves data between storage areas that have different storage protection keys

 MVCP: Move to Primary*
— Moves data from the SASN to the PASN

 MVCS: Move to Secondary*
— Moves data from the PASN to the SASN

 IAC: Insert Address Space Control
— Indicates current ASC mode

 SAC/SACF: Set Address Space Control/FAST SAC/SACF: Set Address Space Control/FAST
— Sets bits 16-17 for the ASC mode

*Alternative way for PC routines to access from other address spaces or data spaces vs
i AR’

zNextGen

© 2011 zNextGen 44

using AR’s

Important Macros and InstructionsImportant Macros and Instructions

Example, using IAC and SACF to set the ASC mode to
primary:primary:

Th l t b k t th i i l dThen you can later go back to the original mode:

zNextGen

© 2011 zNextGen 45

St ki g PCStacking PCs

zNextGen

© 2011 zNextGen 46

Stacking PCsStac g Cs

PC LinkagesC g

 Types of PC Linkage used to invoke PC Routines
— Stacking PCStacking PC

– The user’s environment is saved by the system on the linkage
stack

When the PC routine is done it issues the PR instruction to restore – When the PC routine is done, it issues the PR instruction to restore
the user’s environment and control is returned to the user

– Stacking PC Linkage is highly recommended and is what we’ll
focus on for this presentationfocus on for this presentation

zNextGen

© 2011 zNextGen 47

Stacking PCsStac g Cs
Basic and Stacking PC
Shared Functionality

Stacking PC Only
Functionalityy

 The PKM (PSW key mask)
authority of the PC routine
can be increased

y
 The PKM authority of the PC

routine can be decreased

 Th PSW k f th PC
 The PC routine can receive

control in problem or
supervisor state

 The PSW key of the PC
routine can be set from data
in the entry table

 Th PC ti i supervisor state

 The PC routine can be a
space switch routine or a
non-space switch routine

 The PC routine can receive
control in AR mode

 Linkage stack is
t ti ll d t non space switch routine automatically used to save

and restore user’s
environment

zNextGen

© 2011 zNextGen 48

Add S S i gAddress Space Swapping

zNextGen

© 2011 zNextGen 49

Address Space Swappingdd ess Space Swapp g

What is swapping?pp g
Used by SRM (System Resource Manager) to control

which address spaces should have access to system
resources

 Swapping helps to balance the use of resources

 Can help with performance and throughput

 There are several kinds of domain-related swaps and
l d system-related swaps

zNextGen

© 2011 zNextGen 50

Address Space Swappingdd ess Space Swapp g

Stacking PCs Space Switch Swapping
 If a stacking PC routine causes a space switch (when the

primary address space changes), it must be running in a
non-swappable address spacenon swappable address space

 To make an address space non-swappable (before you
create the space switching PC), you need to use the p g), y
SYSEVENT macro

 Then after you are done with your space switching PC,
 k i bl i i h S S you can make it swappable again using the SYSEVENT

macro

zNextGen

© 2011 zNextGen 51

Address Space Swappingdd ess Space Swapp g

SYSEVENT Macro
 SYSEVENT DONTSWAP

— This will make your address space non-swappable

Notifies the SRM that the address space can’t be swapped out— Notifies the SRM that the address space can’t be swapped out

 SYSEVENT OKSWAP
— This will make your address space swappable againThis will make your address space swappable again

— Notifies the SRM that the address space is eligible for swapping

zNextGen

© 2011 zNextGen 52

Address Space Swappingdd ess Space Swapp g

SYSEVENT Macro Examples:

zNextGen

© 2011 zNextGen 53

When you specify ENTRY=BRANCH,
R13 must contain the address of a 72-byte save area

Address Space Swappingdd ess Space Swapp g

SYSEVENT Macro Examples:

zNextGen

© 2011 zNextGen 54

O i f L ki gOverview of Locking

zNextGen

© 2011 zNextGen 55

Overview of LockingOve v ew o oc g
Cross Memory Local (CML) Lock

 The local lock of an address space other than the home address The local lock of an address space other than the home address
space

 Allows XMS to serializes functions and storage allocation

 One CML lock per address space

 This is a suspend lock, versus a spin lock

CML Address SpaceCML Address Space
 The address space, other than the home address space, whose local

lock is held as a CML lock

 After the CML lock is obtained, the CML address space doesn’t have
to remain the primary or secondary address space

zNextGen

© 2011 zNextGen 56

Overview of LockingOve v ew o oc g

 The CML lock is obtained by using the SETLOCK macro

 The issuing program must be in supervisor state and
PSW key 0

Owning the CML lock allows for address space level
synchronization

Owning the CML lock creates an active link between the Owning the CML lock creates an active link between the
CML address space and the address space that owns the
lock (usually the home address space) – and so neither
address space can swapped out

zNextGen

© 2011 zNextGen 57

Overview of LockingOve v ew o oc g

SETLOCK OBTAIN Example:

zNextGen

© 2011 zNextGen 58

Overview of LockingOve v ew o oc g

SETLOCK RELEASE Example:

zNextGen

© 2011 zNextGen 59

Overview of LockingOve v ew o oc g

SETLOCK vs. SYSEVENT
 SETLOCK obtains a lock for a very short period of time

(microseconds) and is used for serialization (not for
ki g dd bl)making an address space non-swappable)

 SYSEVENT can make an address space non-swappable
for a long period of time (hours days weeks)for a long period of time (hours, days, weeks)

zNextGen

© 2011 zNextGen 60

Fi l Ti d R d tiFinal Tips and Recommendations

zNextGen

© 2011 zNextGen 61

Final Tips and Recommendationsal ps a d eco e dat o s

 XMS is NOT an easy topic to learny p

 There are many different ways to establish and work
with XMS

— You should focus on the way that works best for your project

 Start with a sandbox-type of program to get the basics yp p g g
down

 If at first you don’t succeed, try, try, try and try again!

zNextGen

© 2011 zNextGen 62

Final Tips and Recommendationsal ps a d eco e dat o s

 Remember that resource management is different with
XMSXMS

— What happens if you invoke a program in another address and the
program terminates?

 You must consider where your resources came from –
your own resources vs. those that came from cross
memory users

 The PC routine execution time is tied to the home
address space, but that may not be where the routine
actually executes

zNextGen

© 2011 zNextGen 63

Final Tips and Recommendationsal ps a d eco e dat o s

 Programs running in XM mode don’t have access to MVS
 l th d t ti li itl ti itmacros unless the documentation explicitly mentions it

 Programs running in XM mode cannot issue any SVCs
except ABEND (i e if a macro is dependent on an SVC except ABEND (i.e., if a macro is dependent on an SVC,
you won’t be able to use it in XM mode)

zNextGen

© 2011 zNextGen 64

Resources esou ces

I am thankful to many people who helped me y p p p
learn XMS! I’m still learning, but without their
help, this presentation would have been
impossible.
 Tom Harper

 Dave Kreiss

 Tony Lubrano

Michael Stack

zNextGen

© 2011 zNextGen 65

Resources esou ces

Other resources:

 Advanced Assembler Language and MVS Interfaces (yes,
I am blessed to own a copy!)

MVS Programming Extended Addressability Guide
— http://publib.boulder.ibm.com/infocenter/zos/v1r11/index.jsp?topic=

/com ibm zos r11 ieaa500/cmc htm/com.ibm.zos.r11.ieaa500/cmc.htm

 Lend Me Your EAR: The ART of MVS/ESA Programming,
SHARE session by Joel Sarch

— http://www.cbttape.org/ftp/infolib/SHARE72-O324-O325-O326.pdf

zNextGen

© 2011 zNextGen 66

The Next Generation of Mainframe Professionals.

© 2011 zNextGen 67

