
SHARE Assembler BootCamp Starter Kit

Feb./Mar. 2011, Sessions 8534-8540

 ADVICE!

Don't use the ASSIST/I built-in editor; it's awkward and unforgiving. Use NOTEPAD instead.

For readability, when you start cas.exe, right-click on the top bar, click on Properties, and set the font to
the largest value.

 Synopsis:

This document describes several useful tools for Assembler Language beginners:

 1. ASSIST/I, a PC-based program that edits, assembles, and simulates execution of simple Assembler
Language programs, with extensive debugging facilities.

 2. Two sets of host-system macros:

a. Macros that provide the functions of the “X” macros supported by ASSIST/I (and more!).

b. Basic I/O macros that print data items and registers, dump storage contents, read 80-byte record
images, print lines, and do simple conversions.

 3. The source code and documentation for ASSIST, a mainframe-based student-oriented
assembler/interpreter.

 Disclaimer

The examples and programs described in this document are for purposes of illustration only, and no
warranty of correctness or applicability is implied or expressed.

Sample Programs and Other Materials

The programs described in this document are available:

• Mike Stack's web site (see the front cover)

• A CD-ROM or flash drive containing a large amount of useful material, in the ABC directory. That directory
contains many of the following folders and files:

 1. ASReview, which contains these folders:
− ASSIST Source for Review

— Doc Files
— Sample Assignments
— Source Files
— Test Programs
— X-Macros

 2. ASReview.zip
− A “zip” file containing the materials in the “ASReview” folder.

 3. BOOTASST
− CAS.EXE and demo programs

 4. BootMacs
− The “Simple I/O Macros” (These macros, unlike the PSUMACS, do not require additional run-time

routines for link-time inclusion in an executable program.)
 5. Presentations

− The presentation-slides handout from the Boot Camp sessions, in PDF format. (Note: your CD-ROM
may have materials from a previous Boot Camp.)

 6. Problem Sheets
− The “BOOTLAB1” exercise.
− The “BOOTLAB2” exercise.

 7. PSUMACS
− The Penn State University X-Macros, for use in an IBM mainframe environment.

 8. PSUPROGS
− The Penn State University X-Macros runtime support routines, for use in an IBM mainframe environ-

ment.
 9. Starter Kit

− This document, in PDF format.

• All materials are available at http://www.kcats.org/assist/ and http://www.kcats.org/share/.

 Acknowledgments
• Michael Stack provided advice, code, and documentation.

• John Ganci's meticulous proofreading was very helpful.

• John Ehrman was the editorial hack.

(Revised 14 Jan 2011, Formatted 17 Jan 2011, 1623.)

ii SHARE Assembler BootCamp Starter Kit

Contents

Figures . v

ASSIST/I . 1

A Brief Introduction to ASSIST/I . 2
Getting Started with ASSIST/I . 2
Getting Printed Output . 7

Interactive Debugging With ASSIST/I . 8
Introduction . 8
A Sample Program . 8
Interactive Debugging with ASSIST/I . 10

ASSIST/I User's Guide . 17
Editing Programs . 17

Starting the Editor . 17
Entering Editor Commands . 18
Cursor Movement . 18
Insert Mode . 19
Deleting Data . 20
Scrolling . 20
Saving Files and Exiting the Editor . 21
Other Useful Editor Commands . 21
Other Menus . 21

More on the Editor: Block and File Commands . 22
Block Operations . 22
File Operations . 23

Advanced Features of the Editor: the QUICK Commands 23
Cursor Movement . 24
Delete Operations . 24
Search Operations . 24

ASSIST/I Pseudo-Instructions . 25
XREAD and XDECI Instructions . 25

XREAD Instruction . 26
XPRNT Instruction . 27

XREAD/XPRNT Sample Program . 28
XDECI Instruction . 29

XREAD/XDECI Sample Program . 30
XDECO Instruction . 32
XDUMP Instruction . 33
XSAVE Instruction . 33
XRETURN Instruction . 33

The $ENTRY Record . 33
Running Programs . 34
Making Final Runs . 35

Printing Programs and Listings . 35
Using the ASSIST/I Debugger . 35
Altering ASSIST/I Options . 38

Other Helpful Information . 39
DC Instruction for Character Data . 39
Continued Statements . 40

HOST-SYSTEM MACROS . 41
Origins . 41

Contents iii

ASSIST Input/Output and Debugging Instructions/Macros 42
Input/Output Instructions - XREAD, XPRNT, XPNCH 42

Condition Code . 42
Carriage Control . 42
Examples of XREAD, XPRNT, XPNCH Usage . 42

Debugging Instruction - XDUMP . 43
General Purpose Register Dump . 43
Storage Dump . 43
Examples of XDUMP Usage . 44

Decimal Conversion Instructions - XDECI, XDECO . 44
XDECI . 44
XDECO . 44
Sample Usage of XDECI . 45
Sample Usage of XDECO . 45

Hexadecimal Conversion Instructions - XHEXI, XHEXO 45
XHEXI . 45
XHEXO . 46
Sample Program Using XHEXI and XHEXO . 46

Limit Dump Instruction - XLIMD . 46
Sample Usage of XLIMD . 47

Optional Input/Output Instructions - XGET AND XPUT 47
Condition Code . 48
Carriage Control . 48
Closing of File . 48
Example of XGET and XPUT Usage . 48

Useful I/O Macros . 50
Macro Facilities . 51

The READCARD Macro-Instruction . 51
The PRINTLIN Macro-Instruction . 51
The CONVERTO Macro-Instruction . 52
The CONVERTI Macro-Instruction . 53
The PRINTOUT Macro-Instruction . 54
The DUMPOUT Macro-Instruction . 56
PRINTOUT and DUMPOUT Header . 56
Usage Notes . 56
Operating System Environment and Installation Considerations 57

Assembler Boot Camp: PC and Lab Usage Notes . 59
Running a Program . 59
Program Entry and Editing . 59
Program Printing . 59

iv SHARE Assembler BootCamp Starter Kit

Figures
 1. ASSIST/I Main Screen . 2
 2. Sample ADD2 Program . 3
 3. Screen After Assembly . 4
 4. Screen After First Instruction is Executed . 5
 5. Screen After Third Instruction is Executed . 6
 6. Screen After Fourth Instruction is Executed . 6
 7. ASSIST/I Execution Options . 7
 8. Program to Read/Add Numbers . 9
 9. Listing of Program to Read/Add Numbers . 10
10. Screen at First Breakpoint . 12
11. Screen After Instruction is Corrected . 13
12. Screen After Corrected Instruction is Executed . 14
13. Breakpoint Display After Second Card is Processed . 14
14. Instruction Trace . 15
15. Branch Trace . 15
16. Editor Main Help Menu . 18
17. Editor Cursor-Movement Keys . 19
18. Editor Cursor-Movement Keys . 19
19. Block and File Operations Help Menu . 22
20. QUICK Commands Help Menu . 23
21. Sample Character Representations . 26
22. XREAD/XPRNT Sample Program to Read and Print Cards 28
23. Listing of Program to Read/Add Numbers . 29
24. XREAD/XDECI Sample Program . 31
25. Listing of Program to Read/Add Numbers . 32
26. Screen Prior to Execution, Showing Debug Options . 35
27. Example of Instruction Trace Display . 38
28. ASSIST/I Execution Options . 38

Figures v

vi SHARE Assembler BootCamp Starter Kit

ASSIST/I
ASSIST (or ASSIST/360) was written at the Pennsylvania State University by John Mashey. It

executed on host mainframe systems, and supported a large set of “X” macros; these are described
at “ASSIST Input/Output and Debugging Instructions/Macros” on page 42. Later, a PC-based
version of ASSIST called ASSIST/I was written at Northern Illinois University. This is the
program described in this document.

ASSIST/I has a number of limitations you should be aware of:

• It is based on an early System/360 instruction set, and therefore does not support many
instructions that may currently be available on your host system.

• Sometimes the listing may show base-register resolutions different from what's in the assem-
bled code. Check the storage displays at the beginning of execution to be safe; the code is
probably OK.

• You will find that there are tradeoffs between working with ASSIST/I on your PC, or
between the PC and the host system. The text assumes you are using the PC only.

Editorial Comments

 1. The editor program provided with ASSIST/I is flexible and can do many useful things,
but is quite awkward to use. Programs and data for input to ASSIST/I can be prepared
on host systems; tab characters are OK. Save your host files as variable-length (V-format)
records, and then download them to your chosen workstation directory. Also, you can
use any PC-based line editor to create and modify files.

 2. The programming styles used in the sample programs is not what most people would con-
sider “correct”. Rather than using conditional branch masks like B'1011', most program-
mers would prefer to use an extended branch mnemonic like BNM (“Branch if Not
Minus”). Similarly, manually counting lengths of character strings and offsets into other
fields (as in many examples) is poor practice; it is much better to use length-attibute nota-
tion (L') or an equated length.

 3. Not all the sample programs on the diskette in the \BootAsst\ directory will assemble
without diagnostics on host systems using the High Level Assembler (but the diagnostics
are typically low-level warnings).

 4. The assembled code from ASSIST/I starts at address zero, which is not an available area
of main storage on host systems.

ASSIST/I 1

A Brief Introduction to ASSIST/I
This chapter provides a very brief introduction to some of the basic functions of ASSIST/I and

to the text editor that is an integral part of this package. “Interactive Debugging With ASSIST/I”
on page 8 expands upon this material to provide enough information for you to work effectively
with ASSIST/I. Chapter “ASSIST/I User's Guide” on page 17 is a quick reference for this soft-
ware.

Several notational conventions are used. These are

 1. User responses to ASSIST/I are shown in capital letters.

 2. The symbol <cr> is used to indicate that the Return key is to be depressed.

 3. Editor commands require use of the Control key. The symbol ^ indicates that the Control (or
Ctrl) key is to be held down while the letter immediately following this symbol is typed. For
example, ^K may be thought of as a single keystroke that requires two keys to be depressed,
much as the Shift key on a standard typewriter is used with a letter key to produce uppercase.
The instruction ^K is pronounced “control K”, and ^QX is pronounced “control Q X”.

 4. The General Purpose Registers are simply called “registers”, and specific registers are typically
referred to as “Rn”, as in R2 for register 2.

 5. Addresses, register contents, and memory contents are shown in hexadecimal.

Getting Started with ASSIST/I
ASSIST/I may be invoked by typing

CAS<cr>

The screen shown in Figure 1 will appear:

IIIIIIII
II

A S S I S T / II
II

IIIIIIII

E ===> Edit a program
R ===> Run a program
F ===> Execute a program Final Run
P ===> Print a program or listing
A ===> Alter ASSIST/I options
Q ===> Quit

Enter desired function: ___

ASSIST/I Version 2.03 Serial #: AIM000000
Copyright (C) 1984 BDM Software

Figure 1. ASSIST/I Main Screen

This is the main ASSIST/I menu; its presence indicates that the system is ready for use. Note the
options offered on this menu; only the E and R options are discussed in this chapter.

We'll show how to create a simple program, save it on disk, assemble the program, and then
execute it one instruction at a time. The ASSIST/I text editor may be used to create the
program; to do so, choose the Edit option from the main menu by typing:
E

When you enter the editor mode, the prompt
Enter name of file to edit:

2 SHARE Assembler BootCamp Starter Kit

asks you for the name of the file to edit. Respond to this prompt by typing the file identifier of
the program, for example:
B:TEST.ASM<cr>

The file name entered must be valid; its validity depends upon the operating system under
which ASSIST/I is running. In this case, B: designates the B drive. If no drive is specified, the
program defaults to the current logged drive.

After the editor has initialized this new file, you can begin typing in a program. So long as you
make no errors, you can just type in the text of your program, using <cr> to end each line. The
editor commands are described later. (If you inadvertently introduce an error, skip ahead to
Section “Editing Programs” on page 17 to learn how to correct it.) For now we assume that you
can type in the following program ADD2 without making any errors:

ADD2 CSECT
L 1,16(,15) LOAD 1ST NUMBER INTO R1
L 2,20(,15) LOAD 2ND NUMBER INTO R2
AR 1,2 ADD THE TWO NUMBERS IN R1
ST 1,24(,15) STORE RESULT INTO 7TH

* WORD IN PROGRAM
BCR B'1111',14 EXIT FROM PROGRAM
DC F'4'
DC F'6'
DS F
END ADD2

$ENTRY

Figure 2. Sample ADD2 Program

Now, save a copy of this program to the disk in drive B, by typing:
^KX

Remember to hold down the Control key while typing K, then type X. The editor saves the
program and returns to the ASSIST/I menu. (This program is in the \BootAsst\ directory as file
DEMOA.ASM.)

To run the program, select the Run a program option from the menu by typing
R

This option calls the ASSIST/I interpreter. The screen indicates when the first pass of the inter-
preter is complete and indicates the start of the second pass. In the second pass, the program is
actually assembled, and the program listing appears on the screen as each instruction is assembled.
If, for some reason, your program does not assemble, the editor can be recalled and the necessary
corrections made to the program. The editor commands are covered in Section “Editing
Programs” on page 17. Here we assume, for simplicity, that the assembly was successful. After
assembly is successfully completed, the debugger is automatically called and the screen shown in
Figure 3 on page 4 is displayed.

A Brief Introduction to ASSIST/I 3

PSW AT BREAK FFC50000 0F000000

R0-7 : F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 00000020 00000068 00000000

000000 5810F010 5820F014 1A125010 F01807FE *..0...0...&.0...*
000010 00000004 00000006 F5F5F5F5 F5F5F5F5 *........55555555*
000020 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000030 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000040 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000050 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000060 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000070 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000080 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000090 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000A0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000B0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000C0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000D0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000E0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000F0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 3. Screen After Assembly

This screen, which displays a snapshot of the current status of the program, should be studied
in some detail. Some observations may be made:

 1. The first line of the display shows the current contents of the Program Status Word. Note
that the rightmost three bytes of the PSW contain 000000. This is the Instruction Address,
which always contains the address of the next instruction to be executed. By convention,
ASSIST/I always indicates the address of the first instruction as address 0. This is a handy aid
in calculating the relative addresses of other memory locations in the program's memory area.

 2. The second and third lines show the contents of the 16 General Purpose Registers. Note that
only registers 13, 14, and 15 contain anything other than a sequence of F4s. These three regis-
ters are special registers used by IBM operating systems. Their contents must never be
changed by a programmer unless extreme caution is exercised. By an ASSIST/I convention,
the F4s in the other registers indicate that these registers have not been altered by the
program. This makes it easy to identify such unmodified registers.

 3. The next block of printed lines shows the current status of the program's memory space. The
first column of each of these lines contains the hexadecimal address of the first byte displayed
to its right in the second column. The next four columns each show the hexadecimal contents
of a four-byte fullword in memory. Finally, the lines in the rightmost column, enclosed
between asterisks, show the character representation of all printable characters in the respec-
tive memory locations; the periods indicate non-printable characters. Examine the contents of
the first four fullwords of this memory display, and observe that the executable instructions of
the program have been loaded into these words. You should take the time to disassemble
these instructions and convince yourself that they have been correctly assembled. Note also
that the fifth fullword in memory (at address 000010) contains the number corresponding to
the first DC instruction in the program and that the sixth fullword (at address 000014) con-
tains the second number. The remainder of the memory locations in this display are all filled
with F5s, which is the conventional way ASSIST/I displays unused memory locations. This
convention allows such locations to be readily identified.

 4. The last line of the display shows the options offered by ASSIST/I. Only the S(tep) option is
used in this section; the other options are covered in “Interactive Debugging With ASSIST/I”
on page 8.

We have verified that the program ADD2 has been correctly assembled and loaded into
memory. This program is now ready for execution. To observe the execution of the program in
detail, we can execute the program instructions one at a time, observing the effect of executing
each instruction. This is done using the S (Step) option. To execute the first instruction, type:

4 SHARE Assembler BootCamp Starter Kit

S

After execution of the first instruction, the screen depicted in Figure 4 should be displayed.

PSW AT BREAK FFC50000 8F000004

R0-7 : F4F4F4F4 00000004 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 00000020 00000068 00000000

000000 5810F010 5820F014 1A125010 F01807FE *..0...0...&.0...*
000010 00000004 00000006 F5F5F5F5 F5F5F5F5 *........55555555*
000020 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000030 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000040 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000050 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000060 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000070 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000080 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000090 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000A0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000B0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000C0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000D0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000E0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000F0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 4. Screen After First Instruction is Executed

Study this screen for a moment, and verify the following:

• The PSW has been updated, and the Instruction Address now contains the address (000004)
of the next instruction to be executed, the second Load instruction.

• A copy of the first number, which is in memory location 000010, has replaced the contents of
Register 1.

Execute the second Load instruction by typing:
S

Look at the displayed screen, and note that the Instruction Address now contains the address
(000008) of the Add instruction. Also note that the contents of Register 2 have been replaced by a
copy of the second number, which is located in the sixth fullword in memory.

Execute the Add instruction by typing:
S

You should now be looking at the screen depicted in Figure 5 on page 6. Note that R1 now
contains 0000000A, the hexadecimal equivalent of decimal 10. This indicates that the Add instruc-
tion has been successfully executed. Note also that execution of the instructions thus far has not
altered the contents of the memory locations. One more step will change this pattern. The
Instruction Address now contains the address of the STore instruction.

A Brief Introduction to ASSIST/I 5

PSW AT BREAK FFC50000 6F00000A

R0-7 : F4F4F4F4 0000000A 00000006 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 00000020 00000068 00000000

000000 5810F010 5820F014 1A125010 F01807FE *..0...0...&.0...*
000010 00000004 00000006 F5F5F5F5 F5F5F5F5 *........55555555*
000020 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000030 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000040 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000050 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000060 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000070 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000080 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000090 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000A0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000B0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000C0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000D0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000E0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000F0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 5. Screen After Third Instruction is Executed

To execute the STore instruction, type:
S

The screen shown in Figure 6 should now appear. Note the contents of the seventh fullword in
memory (at address 000018), and verify that a copy of the contents of R1 has been stored there.

PSW AT BREAK FFC50000 AF00000E

R0-7 : F4F4F4F4 0000000A 00000006 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 00000020 00000068 00000000

000000 5810F010 5820F014 1A125010 F01807FE *..0...0...&.0...*
000010 00000004 00000006 0000000A F5F5F5F5 *............5555*
000020 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000030 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000040 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000050 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000060 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000070 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000080 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000090 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000A0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000B0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000C0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000D0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000E0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000F0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 6. Screen After Fourth Instruction is Executed

You have now observed execution of the entire program, and all that remains is to return
control to the system.

Perform one final S. Information will be flashed on your screen, indicating that execution of
the program has been completed and that no warnings were issued or errors detected. No output
is displayed, since there were no instructions in the program that would produce output. The
ASSIST/I menu is again displayed. You can get a listing of the program by typing the F option

6 SHARE Assembler BootCamp Starter Kit

on the menu; you will be prompted for a string that will appear on the first line of the listing.
(The listing for the program just described is in the \BootAsst\ directory as file DEMOA.PRT.)

ASSIST/I supports the pseudo-instructions XREAD, XDECI, XDECO, and XPRNT, which perform
simple input and output functions. These instructions are illustrated in “Interactive Debugging
With ASSIST/I” on page 8 and are described in detail in “ASSIST/I Pseudo-Instructions” on
page 25.

Getting Printed Output
You will frequently wish to get a printed copy of an entire listing. To do so, set the ASSIST/I

options to cause a copy to be written to a disk file. The copy on the disk will include all of the
characters in each line and can easily be written to your printer.

To set options for ASSIST/I, respond to the main ASSIST/I menu with A (Alter options).
This causes the menu displayed in Figure 7 to appear.

A S S I S T / I Options

1) Save output listing - y
2) Maximum # lines - 500
3) Maximum # instructions - 5000
4) Maximum # pages - 100
5) Maximum size (in bytes) - 2700

Enter option number to alter (RETURN to quit): _

Figure 7. ASSIST/I Execution Options

By responding with a 1, you can toggle the option to cause a disk file to be created whenever
you assemble and execute a program. Thus, if the option is already set to Y, you can just use
<cr> to go back to the main menu; otherwise, typing 1 will change the setting from N to Y (and
then a <cr> can be used to go back to the main menu). The default options for ASSIST/I are set
so that this first option is usually the only one that you alter.

Assuming that the option is set to cause a disk file to be created, a disk file will be produced
whenever you assemble and execute a program. The disk file will be given a name based on the
name of the file containing the program that was assembled and executed. The name of the disk
file is formed from the original file name by altering the file type to PRT. That is, if the program
file is named B:SUMUP, the disk file will be named B:SUMUP.PRT. If the program file is
named B:SUMUP.ASM, the disk file will be named B:SUMUP.PRT. Because of this specialized
use of the file type PRT, you should never use a file type of PRT for files you create.

Once a file has been created on disk (either by using the editor or by assembling and executing
a program), it can easily be printed by using the P (Print) option available in the main menu. This
option prompts you for the name of the file you want printed and causes the contents of that file
to be printed.

Other ASSIST/I options are described at “Altering ASSIST/I Options” on page 38.

A Brief Introduction to ASSIST/I 7

Interactive Debugging With ASSIST/I

Introduction
The previous chapter introduced the basic features of ASSIST/I. In this chapter, we discuss

the features of ASSIST/I that make it a truly convenient tool for learning IBM assembler lan-
guage. The basic topics to be covered are:

• How to use XREAD and XPRNT to perform input/output operations.
• How to debug a program interactively.

We assume you have covered the material in the previous chapter.

Much of the time spent writing and debugging a program would be better spent in first gaining
a clear understanding of the task and only then carefully writing the program. Use of an interac-
tive environment such as that provided by ASSIST/I cannot reduce the effort expended in the
creation of this original program. However, once you have written a program, the time and effort
required to verify that it works properly (or, more likely, to correct it and produce the desired
program) can be substantially reduced using ASSIST/I. Time spent mastering the techniques in
this chapter will be repaid many times as you address more complex programming problems.

A Sample Program
In the previous chapter, you learned how to edit and run a simple program in the interactive

environment. However, no attempt was made to read input data or to produce output. To verify
that the program worked properly, you simply observed changes to memory and to the registers
as the instructions were executed. Here, we will create a program that performs input and output:
it adds pairs of numbers (like the one in Figure 2 on page 3), but also reads and prints data.

This example uses two ASSIST/I pseudo-instructions, XPRNT and XREAD:

• The format of the XPRNT instruction is
label XPRNT addr,length

where

addr is the D(X,B) or implicit address of the print line in storage
length is the number of bytes in the record to be printed.

The first byte of the print record is a “carriage control character”, explained in section
“XPRNT Instruction” on page 27.

• The format of the XREAD instruction is
label XREAD addr,length

where

addr is the D(X,B) or implicit address of the area into which the input should be read
length is the number of characters to be read. The length should be 80 or less. If it is

less than 80, the remaining characters of the input record will be ignored.

When using XREAD, you must indicate where the input lines are to be found. The most
common method is to include the input lines immediately following the $ENTRY line, which
must immediately follow the last line of your program.

Detailed descriptions of the XPRNT and XREAD pseudo-instructions can be found in section
“ASSIST/I Pseudo-Instructions” on page 25.

To illustrate interactive debugging, suppose you have created the file shown in Figure 8 on
page 9, which we will assume is called B:SUMUP. (This program is in the \BootAsst\ directory
as file DEMOB.ASM.)

8 SHARE Assembler BootCamp Starter Kit

**
* THIS PROGRAM READS CARDS, EACH OF WHICH CONTAINS
* TWO NUMBERS. THE SUM OF THE TWO NUMBERS IS PRINTED.
**
*
SUMUP CSECT

USING SUMUP,15
*

XPRNT HEADING,28 PRINT A PAGE HEADING
*

XREAD CARD,80 READ THE FIRST CARD
*
CHECKEOF BC B'0100',EXIT BRANCH ON EOF

XDECI 2,CARD WE ASSUME THAT BOTH NUMBERS
XDECI 3,0(,1) ARE VALID

*
AR 2,3 CALCULATE THE SUM

*
XDECO 2,OUTPUT PUT PRINTABLE FORM INTO PRINT LINE

*
XPRNT CRG,13 PRINT THE SUM (SINGLE SPACED)
XREAD CARD,80 TRY TO READ THE NEXT CARD
BC B'1111',CHECKEOF GO CHECK FOR EOF

EXIT BCR B'1111',14 LEAVE THE PROGRAM
*
CARD DS CL80 CARD INPUT AREA
*
CRG DC C' ' SINGLE SPACE CARRIAGE CONTROL
OUTPUT DS CL12 OUTPUT THE SUM HERE
*
HEADING DC C'1THIS IS THE OUTPUT OF SUMUP'

END SUMUP
$ENTRY
1 2
2 3

Figure 8. Program to Read/Add Numbers

Then, to run the program, you simply use the R (Run) command, specifying B:SUMUP as the
file to be assembled and executed. As we pointed out in the last chapter, ASSIST/I pauses after
assembling the program. If you were to respond with G (Go), the output shown in Figure 9 on
page 10 would be produced. (The listing file is in the \BootAsst\ directory as file DEMOB.PRT.)

Interactive Debugging With ASSIST/I 9

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

1 **
2 * THIS PROGRAM READS CARDS, EACH OF WHICH CONTAINS
3 * TWO NUMBERS. THE SUM OF THE TWO NUMBERS IS PRINTED.
4 **
5 *

000000 6 SUMUP CSECT
000000 7 USING SUMUP,15

8 *
000000 E020 F08D 001C 0008D 9 XPRNT HEADING,28 PRINT A PAGE HEADING

10 *
000006 E000 F030 0050 00030 11 XREAD CARD,80 READ THE FIRST CARD

12 *
00000C 4740 F02E 0002E 13 CHECKEOF BC B'0100',EXIT BRANCH ON EOF
000010 5320 F030 00030 14 XDECI 2,CARD WE ASSUME THAT BOTH NUMBERS
000014 5330 1000 00000 15 XDECI 3,0(,1) ARE VALID

16 *
000018 1A23 17 AR 2,3 CALCULATE THE SUM

18 *
00001A 5220 F081 00081 19 XDECO 2,OUTPUT PUT PRINTABLE FORM INTO PRINT LINE

20 *
00001E E020 F080 000D 00080 XPRNT CRG,13 PRINT THE SUM (SINGLE SPACED)

21 *
000024 E000 F030 0050 00030 22 XREAD CARD,80 TRY TO READ THE NEXT CARD
00002A 47F0 F00C 0000C 23 BC B'1111',CHECKEOF GO CHECK FOR EOF
00002E 07FE 24 EXIT BCR B'1111',14 LEAVE THE PROGRAM

25 *
000030 26 CARD DS CL80 CARD INPUT AREA

27 *
000080 40 28 CRG DC C' ' SINGLE SPACE CARRIAGE CONTROL
000081 29 OUTPUT DS CL12 OUTPUT THE SUM HERE

30 *
00008D F1E3C8C9E240C9E2 31 HEADING DC C'1THIS IS THE OUTPUT OF SUMUP'

32 END SUMUP

*** 0 STATEMENTS FLAGGED - 0 WARNINGS, 0 ERRORS

*** PROGRAM EXECUTION BEGINNING
ANY OUTPUT BEFORE EXECUTION COMPLETE MESSAGE IS PRODUCED BY USER PROGRAM ***

THIS IS THE OUTPUT OF SUMUP
3
5

*** EXECUTION COMPLETED ***

Figure 9. Listing of Program to Read/Add Numbers

Interactive Debugging with ASSIST/I
“A Brief Introduction to ASSIST/I” on page 2 illustrated the most basic technique for interac-

tive debugging: single-stepping through instructions to verify that they produce the expected
results. Here, we discuss the use of:

• Breakpoints
• Interactive alteration of memory, registers, and the PSW
• Instruction traces

To illustrate these techniques, we utilize a slightly modified version of the program displayed in
Figure 8 on page 9 and Figure 9. Consider a version of the program in which line 17 of the
program listing has an error — rather than adding registers 2 and 3 together, it causes register 4 to
be added to register 2. Thus, in the example we are considering, line 17 appears as:
000018 1A24 17 AR 2,4 CALCULATE THE SUM (?)

This fairly trivial bug is sufficient to illustrate features of ASSIST/I that can isolate such errors
rapidly.

Before continuing, type in the program displayed in Figure 8 on page 9, introducing the minor
error discussed in the previous paragraph. Then make sure the ASSIST/I options are set to
produce a copy of the listing and output in a disk file. Finally, use the Final listing option to
produce a disk copy of the listing and its erroneous output, and use the Print command to get a
printed listing of the program. These steps will reinforce your knowledge of the editor, while veri-

10 SHARE Assembler BootCamp Starter Kit

fying that you completely understand the topics discussed earlier in this chapter. Our presentation
of interactive debugging depends heavily on your ability to actually invoke the debugger to
operate on this program, so these preliminary steps are indeed necessary if you are to follow the
material in the remainder of this section.

Once you have created the modified file containing the source program, use the Run command
to begin debugging it. When the program containing the error is run, ASSIST/I will not detect
any syntax errors (even though there is an intentional logic error). That is, the program will
assemble, and ASSIST/I will pause before initiating execution of the program. It will print the
contents of memory and wait for you to select an item from the following menu:
===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)

With this program (because it is so short) it makes sense to single-step through the execution
to verify that every instruction produces the expected results. However, in longer programs, it
would be too tedious to have to type S repeatedly for each instruction. Instead, it is a good idea
to locate critical spots in the program, points where execution could logically be halted to allow
you to verify that an entire sequence of instructions has produced an expected result. In this case,
the programmer can set breakpoints. A breakpoint designates a specific instruction and causes
execution to pause immediately before that instruction is executed. That is, whenever ASSIST/I
reaches the point where the designated instruction is the next to be executed, it pauses and allows
the programmer to examine the state of memory and the registers. In our short example, it would
make sense to set a breakpoint at the instruction on line 19 of the program listing (see Figure 9
on page 10). When execution has reached this instruction, one input record has been read, and
the desired result has been calculated. A breakpoint on this instruction allows you to verify that
the input had been read correctly and converted into registers correctly and that the computed
result was indeed the desired sum. In this program, it really does not make sense to set more than
one breakpoint. However, in longer programs, you will frequently set a number of breakpoints
before initiating execution.

To set a breakpoint, simply answer B for the above menu. This causes the following sub-
menu to be displayed:

BREAKPOINT: S(et), C(lear), D(isplay)
:Breakpoint: _

At this point, you can establish a breakpoint, remove an existing breakpoint, or display the
addresses of instructions for which breakpoints are currently established. A <cr> here simply
returns you to the previous menu. The first time this menu appears, there are no established
breakpoints. You can set one by typing S. This causes you to be prompted for the hexadecimal
address of the instruction on which you wish to set the breakpoint. In our example, you would
type in:

1A<cr>

to set the breakpoint on address 00001A. (Note: leading zeros need not be typed, and lowercase
letters are accepted.) If you then respond with G to cause the program to begin execution, it will
execute instructions until it either terminates or reaches the instruction at address 00001A. At this
point, you should Run the program, Set the breakpoint, and use Go to cause the program to
execute until the breakpoint is detected during execution.

When we run the program, it reaches address 00001A and then pauses. The exact contents on
your terminal screen should be as depicted in Figure 10 on page 12.

Interactive Debugging With ASSIST/I 11

PSW AT BREAK FFC50000 5F00001A

R0-7 : F4F4F4F4 00000033 F4F4F4F5 00000002 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 000000B0 000000F8 00000000

000000 E020F08D 001CE000 F0300050 4740F02E *\.0...\.0..&. 0.*
000010 5320F030 53301000 1A245220 F081E020 *..0.........0a\.*
000020 F080000D E000F030 005047F0 F00C07FE *0...\.0..&.00...*
000030 F140F240 40404040 40404040 40404040 *1 2 *
000040 40404040 40404040 40404040 40404040 * *
000050 40404040 40404040 40404040 40404040 * *
000060 40404040 40404040 40404040 40404040 * *
000070 40404040 40404040 40404040 40404040 * *
000080 40F5F5F5 F5F5F5F5 F5F5F5F5 F5F1E3C8 * 5555555555551TH*
000090 C9E240C9 E240E3C8 C540D6E4 E3D7E4E3 *IS IS THE OUTPUT*
0000A0 40D6C640 E2E4D4E4 D7F5F5F5 F5F5F5F5 * OF SUMUP5555555*
0000B0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000C0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000D0 F5F5F5F5 F5F5F5F5 F5F5F5PS F5F5F5F5 *5555555555555555*
0000E0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000F0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 10. Screen at First Breakpoint

You again have the same menu you had before execution was initiated.

By examining the contents of memory, starting at address 000030, you can determine that the
program successfully read the input line containing the numbers 1 and 2. You would expect reg-
ister 3 to contain the value 1 and register 2 to contain the sum of the two input values. Register
2, however, contains F4F4F4F5. By examining the short section of code, it should be easy to
detect that it was actually the instruction in line 17 that caused the erroneous results. (If it were
not clear, you could always rerun the program, single-stepping through the section of code to
check the effects of each instruction.) At this point, you could type Q to quit executing
instructions, use the editor to correct the program, and reinitiate execution. However, as you
become more proficient at interactive debugging, you will find it convenient to attempt to locate
multiple bugs during a single execution of the program. For the sake of exploring the facilities
offered by ASSIST/I, let us take this approach.

You can avoid actually going back to the editor to reassemble your program by “fixing” the
error in the actual memory and registers of the machine and then reinitiating execution. This prac-
tice should be performed very carefully, and you must certainly keep track of the changes that are
eventually to be made to the file containing the program. To fix this error before reinitiating exe-
cution, you can:

 1. Alter the contents of register 2 back to 00000001

 2. Alter the instruction encoded at address 000018 (i.e., alter the memory at address 000018 from
1A24 to 1A23)

 3. Alter the address of the next instruction to be executed (in the PSW) to 000018.

Then, when execution is reinitiated, the AR instruction is executed again (in this case, adding
the contents of register 3 to register 2).

To alter the contents of register 2, you simply respond to the prompt with R. When you are
prompted for the register to be altered, a response of 2 will cause the cursor to be positioned over
the contents of register 2. By typing in the desired contents (00000001) followed by <cr>, you alter
the actual contents of register 2. Make this alteration, which should return you to the menu:
===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)

The next step is to alter the encoded version of the instruction:
AR 2,4

12 SHARE Assembler BootCamp Starter Kit

to its correct form, representing:
AR 2,3

You should verify that the encoding of the erroneous instruction is 1A24, while the corrected
version should be 1A23. Note that the erroneous encoding is located at address 000018 on your
screen. To alter the contents of memory, the M option of the menu must be specified. This
causes the following sub-menu to be displayed:
MEMORY: <RET> for this screen, N(ext scr.), P(rev. scr.), (hex address)

By responding with <cr>, you request the option to alter the section of memory displayed on the
current screen. The other options allow you either to scroll forward and backward through
memory, which would be useful with large programs in which the entire relevant memory could
not be displayed on a single screen, or to move the cursor directly to a specified address in
memory, by typing the actual hexadecimal address. Suppose that you respond with a <cr>. Then,
you must move the cursor directly over the 4 at address 000019 (which contains the right hexa-
decimal digit of the byte). This can be achieved by using the same cursor-movement commands
that you would normally use while typing in a file with the editor. Once the cursor is over the 4,
make the correction by typing 3 followed by <cr>. With these actions, the erroneous encoded
version of:

AR 2,4

is changed to:
AR 2,3

Make this alteration before continuing.

Finally, we are going to alter the address of the next instruction to be executed, to cause
AR 2,3

to be re-executed. The address of the next instruction to be executed is kept in the rightmost three
bytes of the PSW. To change this address in the PSW you simply use the P option to position the
cursor over the right three bytes of the PSW, where the address of the next instruction to be exe-
cuted is maintained. Move the cursor over the rightmost character, and change A to 8. Then use
<cr> to return to the menu. By altering the address from 00001A back to 000018, you have
“fixed” the error in the assembled machine-language code, and can reinitiate execution of the
program. At this point, your screen should look exactly as shown in Figure 11.

PSW AT BREAK FFC50000 5F000018

R0-7 : F4F4F4F4 00000033 00000001 00000002 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 000000B0 000000F8 00000000

000000 E020F08D 001CE000 F0300050 4740F02E *\.0...\.0..&. 0.*
000010 5320F030 53301000 1A245220 F081E020 *..0.........0a\.*
000020 F080000D E000F030 005047F0 F00C07FE *0...\.0..&.00...*
000030 F140F240 40404040 40404040 40404040 *1 2 *
000040 40404040 40404040 40404040 40404040 * *
000050 40404040 40404040 40404040 40404040 * *
000060 40404040 40404040 40404040 40404040 * *
000070 40404040 40404040 40404040 40404040 * *
000080 40F5F5F5 F5F5F5F5 F5F5F5F5 F5F1E3C8 * 5555555555551TH*
000090 C9E240C9 E240E3C8 C540D6E4 E3D7E4E3 *IS IS THE OUTPUT*
0000A0 40D6C640 E2E4D4E4 D7F5F5F5 F5F5F5F5 * OF SUMUP5555555*
0000B0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000C0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000D0 F5F5F5F5 F5F5F5F5 F5F5F5PS F5F5F5F5 *5555555555555555*
0000E0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000F0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 11. Screen After Instruction is Corrected

Interactive Debugging With ASSIST/I 13

Now reinitiate execution of your program by specifying G, which causes the single instruction at
000018 to be executed. The breakpoint at 00001A again causes execution to be suspended. If you
examine the display on your screen this time, it should match the screen depicted in Figure 12 on
page 14 with register 2 containing the desired sum.

PSW AT BREAK FFC50000 6F00001A

R0-7 : F4F4F4F4 00000033 00000003 00000002 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 000000B0 000000F8 00000000

000000 E020F08D 001CE000 F0300050 4740F02E *\.0...\.0..&. 0.*
000010 5320F030 53301000 1A245220 F081E020 *..0.........0a\.*
000020 F080000D E000F030 005047F0 F00C07FE *0...\.0..&.00...*
000030 F140F240 40404040 40404040 40404040 *1 2 *
000040 40404040 40404040 40404040 40404040 * *
000050 40404040 40404040 40404040 40404040 * *
000060 40404040 40404040 40404040 40404040 * *
000070 40404040 40404040 40404040 40404040 * *
000080 40F5F5F5 F5F5F5F5 F5F5F5F5 F5F1E3C8 * 5555555555551TH*
000090 C9E240C9 E240E3C8 C540D6E4 E3D7E4E3 *IS IS THE OUTPUT*
0000A0 40D6C640 E2E4D4E4 D7F5F5F5 F5F5F5F5 * OF SUMUP5555555*
0000B0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000C0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000D0 F5F5F5F5 F5F5F5F5 F5F5F5PS F5F5F5F5 *5555555555555555*
0000E0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000F0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 12. Screen After Corrected Instruction is Executed

By typing G again, you cause execution to proceed until the breakpoint is reached again. This
time your screen should look like the screen shown in Figure 13.

PSW AT BREAK FFC50000 6F00001A

R0-7 : F4F4F4F4 00000033 00000005 00000003 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 000000B0 000000F8 00000000

000000 E020F08D 001CE000 F0300050 4740F02E *\.0...\.0..&. 0.*
000010 5320F030 53301000 1A245220 F081E020 *..0.........0a\.*
000020 F080000D E000F030 005047F0 F00C07FE *0...\.0..&.00...*
000030 F240F340 40404040 40404040 40404040 *2 3 *
000040 40404040 40404040 40404040 40404040 * *
000050 40404040 40404040 40404040 40404040 * *
000060 40404040 40404040 40404040 40404040 * *
000070 40404040 40404040 40404040 40404040 * *
000080 40F5F5F5 F5F5F5F5 F5F5F5F5 F5F1E3C8 * 31TH*
000090 C9E240C9 E240E3C8 C540D6E4 E3D7E4E3 *IS IS THE OUTPUT*
0000A0 40D6C640 E2E4D4E4 D7F5F5F5 F5F5F5F5 * OF SUMUP5555555*
0000B0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000C0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000D0 F5F5F5F5 F5F5F5F5 F5F5F5PS F5F5F5F5 *5555555555555555*
0000E0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
0000F0 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 13. Breakpoint Display After Second Card is Processed

Note that a new record has been read. (Examine the memory, starting at address 000030, which
corresponds to CARD in the program listing.) The input values were 2 and 3, and register 2
actually contains the correct sum.

At this point, if you type G, your program will complete execution. Instead, set a breakpoint on
BCR B'1111',14

14 SHARE Assembler BootCamp Starter Kit

which is used to exit your program. Then reinitiate execution, which should cause the program to
pause just before exiting.

Now, before terminating this exercise, you should examine the information available to you
through the Trace command. This command can be used to display either the last 10 instructions
executed or just the last 10 branch instructions executed. Type T, followed by I, to produce the
trace of the last 10 instructions executed. Your screen should now be identical to the screen dis-
played in Figure 14.

PSW AT BREAK FFC50000 9F00002E

RO-7 : F4F4F4F4 00000033 00000005 00000003 F4F4F4F4 F4F4F4F4 F4F4F4FA F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 000000B0 000000F8 00000000

** TRACE OF INSTRUCTIONS JUST BEFORE TERMINATION **
IM = PSW bits 32-39 (ILC,CC,MASK) before instruction decoded

IM LOCATION INSTRUCTION
== ======== ===========
CF 00002A 47F0 F00C
8F 00000C 4740 F02E
8F 000010 5320 F030
AF 000014 5331 0000
AF 000018 1A23
6F 00001A 5220 F081
AF 00001E E020 F080 000D
EF 000024 EC00 F030 0050
DF 00002A 47F0 F00C
9F 00000C 4740 F02E <-- Last instruction executed.

 RETURN to continue:
 :Trace: Instruction Trace

Figure 14. Instruction Trace

Now type T, followed by B, to get a trace of just the last branch instructions. Your screen
should now match the screen displayed in Figure 15.

PSW AT BREAK FFC50000 9F00002E

RO-7 : F4F4F4F4 00000033 00000005 00000003 F4F4F4F4 F4F4F4F4 F4F4F4FA F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 000000B0 000000F8 00000000

** TRACE OF LAST 10 INSTRUCTIONS EXECUTED **
IM = PSW bits 32-39 (ILC,CC,MASK) before instruction decoded

IM LOCATION INSTRUCTION
== ======== ===========
CF 00000C 4740 F02E
CF 00002A 47F0 F00C
8F 00000C 4740 F02E
DF 00002A 47F0 F00C
9F 00000C 4740 F02E

 RETURN to continue:
 :Trace: Branch Trace

Figure 15. Branch Trace

Note that every branch instruction executed is displayed, even those branches that “failed.”
That is, the first two instances of the instruction:

CF 00000C 4740 F02E

correspond to instances of the source instruction
CHECKEOF BC B'0100',EXIT

which did not result in a branch to EXIT.

Interactive Debugging With ASSIST/I 15

Once you have studied the trace information, use the Go command to complete execution of
your program. Then make sure that you actually go back and correct the original program in the
source file. Always remember that changes made temporarily during interactive debugging are not
reflected in your actual program unless (and until) you use the editor to make them after the
debugging run has been completed. (The listing for the program we have just described is in the
\BootAsst\ directory as file DEMOB.PRT.)

16 SHARE Assembler BootCamp Starter Kit

ASSIST/I User's Guide
This chapter is a reference manual for ASSIST/I. Each section presents guidance for the use of

a facility that appears on the main menu when ASSIST/I is invoked.

Editing Programs
The ASSIST/I text editor is used to create new datasets and to change existing ones (programs,

program data, documentation, etc.). It is a full-screen text editor modeled after MicroPro Interna-
tional's WordStar word processor, as used in non-document mode. The WordStar format was
chosen because of its popularity and its adaptability to most terminals.

The editor comes with preset tab stops for easy writing of assembler programs. You are
encouraged to use tabbing, for storage savings as well as convenience. The editor will not allow
more than 79 characters (including the spaces taken up by expanded tabs) on a line.

 Note

The editor program provided with ASSIST/I is flexible and can do many useful things, but
it can be somewhat awkward to use. Programs and data for input to ASSIST/I can be pre-
pared on host systems; tab characters are OK. Save your host files as variable-length
(V-format) records, and then download them to your chosen workstation directory. Also, you
can use any PC-based line editor to create and modify files.

Starting the Editor

The following four steps should be followed in all normal editing sessions:

 1. Choose the Edit a program option in the ASSIST/I menu by typing E

 2. To the Enter name of file to edit: prompt, type in the name of the file to be edited. A file
name is a unique identifier assigned to a dataset. It can be any combination of characters that
conforms to the host operating system's naming conventions. After typing the file name, enter
<cr>. One of two possibilities will occur:

• If a file with that name exists, it is brought into memory for editing, and its first full
screen of lines is displayed.

• If no file by that name exists, a new file is created.

The validity of a file name depends on the operating system under which ASSIST/I is
running. Most systems accept file names following these conventions:

• You can use from 1 to 8 alphanumeric characters, with the first character being alpha-
betic.

• This 1-to-8-character name can be followed by an optional 1-to-3-character alphanumeric
suffix (extension), which is preceded by a period.

• Special characters (punctuation, $, %, @, etc.) differ from system to system and should
be avoided.

An example that follows the conventions is
ASSGT1.ASM

 3. Type in the program, data, text, or whatever. View and modify the file, using the editor com-
mands described in “Entering Editor Commands” on page 18.

 4. Finally, to save the file and exit the editor, type ^KX. (See “Entering Editor Commands” on
page 18 for an explanation of the characters “^KX”.) See also “More on the Editor: Block
and File Commands” on page 22 for other file operations.

ASSIST/I User's Guide 17

Entering Editor Commands

Editor commands are entered by holding down the Control key. The ^ symbol indicates that
the Control (or Ctrl) key is to be held down while the letter immediately following the symbol is
typed. ^K can be thought of as one keystroke that requires two keys to be depressed. The
Control key is used much the same as a Shift key, which works with a letter to create its upper-
case. In English, ^K is pronounced “Control K”, and ^QX is pronounced “Control QX.”

Assume that your file already exists (or has just been typed in) and that the file contains errors.
To make corrections, you must be able to move the cursor around the screen to any position,
insert and replace characters, delete characters, and save the corrected file. The edit commands
that provide these facilities may be viewed by typing:
^U

This causes the Main Edit Menu to be displayed. This menu is shown in Figure 16.

 NAME=TEST.ASM LINE=1 COL=1 ^U for HELP INSERT= ON

<<<<<< M A I N E D I T M E N U >>>>>>

--Cursor Movement-- | -Delete- | -Miscellaneous- | -Other Menus-
^S char left ^D char right | ^G char | ^V INSERT ON/OFF | ^KU Block & File
^A word left ^F word right | DEL chr lf | ^I (or TAB key) Tab| ^QU Quick
^E line up ^X line down | ^T word rt | RETURN to end line |

--Scrolling-- | ^Y line | ^N Insert a RETURN |
^Z line up ^W line down | | ^L Repeat Find/Repl|
^C screen up ^R screen down | | |

Enter any key to continue:

Figure 16. Editor Main Help Menu

Take a little time to study this menu. At first you will display it often as a reminder, when a
basic editor command does not readily come to mind.

The less frequently used commands (that require two keystrokes) are found in the “Block &
File” and “Quick” menus. They are described in “More on the Editor: Block and File
Commands” on page 22.

Cursor Movement

The four most basic commands move the cursor one character to the right, one character to
the left, up one line, or down one line. These four commands are:

^S Char Left Moves the cursor one character to the left. If the cursor is on the first
character of a line when ^S is issued, the cursor wraps to the last char-
acter of the previous line. ^S has no effect when the cursor is on the first
character of the file.

^D Char Right Moves the cursor one character to the right. If the cursor is on the last
character of a line, the cursor is moved to the first column of the next
line. ^D has no effect when the cursor is at the end of the file.

^E Line Up Moves the cursor up one line. When the cursor is on the top line of the
file, ^E has no effect.

^X Line Down Moves the cursor down one line. When the cursor is on the last line of
the file, ^X has no effect.

Note the location of these four letter keys on your keyboard. The four together form a
“diamond”, and their relative positions in this picture indicate the direction of the cursor move-
ment they effect. See Figure 17 on page 19.

18 SHARE Assembler BootCamp Starter Kit

Figure 17. Editor Cursor-Movement Keys

Remember this configuration; you will frequently need these keys when using the text editor.

Two other commands move the cursor one word to the left or right:

^A Word Left Moves the cursor one word to the left, unless the cursor is at the begin-
ning of the file.

^F Word Right Moves the cursor one word to the right, unless the cursor is at the end
of the file.

These commands may be used to move the cursor through a line more efficiently than can be
done with ^S and ^D. Check the relative positions of these two command keys on your keyboard,
and note that these keys and the four command keys above still form a “diamond”, as shown in
Figure 18.

Figure 18. Editor Cursor-Movement Keys

The key to the left of the key that moves the cursor one character to the left moves the cursor
one word to the left. A similar rule holds for moving the cursor to the right.

When text of any kind is entered, it should be checked on the screen to determine whether
errors have been made. Errors such as the omission of words or the incorrect entry of a single
character occur quite frequently and may easily be corrected using the facilities provided by the
text editor.

┌───────────────────────────────┐
│ │
│ ┌─────┐ │
│ │ E │ │
│ │ │ │
│ ┌───┴─┬───┴─┐ │
│ │ S │ D │ │
│ │ │ │ │
│ └──┬──┴──┬──┘ │
│ │ X │ │
│ │ │ │
│ └─────┘ │
│ │
└───────────────────────────────┘

┌───────────────────────────────┐
│ │
│ ┌─────┐ │
│ │ E │ │
│ │ │ │
│ ┌─────┬───┴─┬───┴─┬─────┐ │
│ │ A │ S │ D │ F │ │
│ │ │ │ │ │ │
│ └─────┴──┬──┴──┬──┴─────┘ │
│ │ X │ │
│ │ │ │
│ └─────┘ │
│ │
└───────────────────────────────┘

Insert Mode

The editor functions in one of two modes when it is active. These modes are Insert = On and
Insert = Off (or Replace). An editor command lets you toggle between these two modes:

^V Insert On/Off Toggles between Insert = On and Insert = Off modes.

When this command is issued, the current Insert mode status is displayed at the top right of
the screen. The toggle action of this command reverses the input mode. That is, if ^V is issued
when Insert is On, then Insert is turned Off, and vice versa.

ASSIST/I User's Guide 19

When Insert is on, each character typed is inserted at the cursor position, and the characters to
the right of the cursor move one position to the right to make room for what is inserted. If the
cursor line fills during an insertion, the terminal “bell” sounds, indicating that the line is full.
When Insert is Off, a text character typed replaces the character at the cursor.

Deleting Data

You can delete an unwanted character from the text with the following text editor command:

^G Character at Cursor Deletes the character at the current cursor position. If the character is
past the last text character on a line, the next line is wrapped up to the
cursor position. However, if there is not enough room on the current
line to fit the characters of the next line (since the ASSIST/I editor
limits lines to 79 characters), the terminal “bell” beeps, and ^G does
nothing.

Del Character before Cursor
The Del (Delete) key deletes the character to the left of the cursor.
When the cursor is in column 1 and the Del key is pressed, the current
line is wrapped up to the end of the previous line if the length of both
lines is not greater than 79 characters. If the lines cannot fit together, the
terminal “bell” sounds, and Del does nothing.

^T Del Word Deletes all characters over to the next word boundary. If ^T is issued
when the cursor is past the last text character of a line, the effect is the
same as that of ^G under the same circumstances.

^Y Del Line Deletes the entire cursor line.

Scrolling

The set of editor commands introduced above is sufficient for correcting any errors that occur
on a single screen of text. However, most nontrivial files contain more lines than can be displayed
on a single screen. To deal with longer files, it is necessary to scroll the screen through the text so
that any portion of the file may be viewed. This facility is provided by the following two com-
mands:

^C Screen Down Scrolls the screen down (forward in the file) approximately one full
screen. (Not quite a full screen is scrolled, so you have a point of refer-
ence between ^C's.) ^C has no effect when the cursor is at the end of
the file. Successive ^Cs can be issued without waiting for the screen to
be rewritten.

^R Screen Up Scrolls the screen up (backward in the file) approximately one full
screen, in the same manner that ^C scrolls forward. ^R has no effect
when the cursor is at the beginning of the file. Successive ^Rs can be
issued without waiting for the screen to be rewritten.

The only way to become proficient with any text editor is through practice. You are urged to
enter some files and use the editor commands. The ASSIST/I editor is not restricted to the entry
of programs or program data; it may be used to create any type of data file. Call the editor, create
a file, and experiment with correcting errors and changing the contents of the file. You will prob-
ably be surprised how little practice is required to master the basic editor commands in this
section. Remember that the help menu may be displayed at any time when using the editor by
simply typing ^U.

20 SHARE Assembler BootCamp Starter Kit

Saving Files and Exiting the Editor

Files that have been created or edited usually should be saved. When an existing file has been
edited, the Save command causes the edited version of the file to replace the existing, unedited
file. There are occasions, however, when you may decide not to replace an existing file with an
edited version. The following two commands accommodate these contingencies:

^KX Save & Exit Saves the file being edited and returns control to the ASSIST/I super-
visor.

^KQ Quit No Save Ends the editing session and returns control to the ASSIST/I supervisor.
Any changes made to the edited file are lost.

Only the basic editor commands have been discussed. Consult the help menu or the Users'
Guide in “ASSIST/I User's Guide” on page 17 when questions arise.

Other Useful Editor Commands

^I (or Tab Key) Tab moves the cursor to the next tab stop, according to the following
rules:

 1. If Insert is on, all characters at the cursor and to its right are moved
to the next tab stop. A Tab causes the terminal to “beep” if there is
no room for the insertion.

 2. If Insert is off, the cursor is moved to the next tab stop without
moving or disrupting any text characters.

Tab stops are preset to the following column positions:
10, 16, 35, 40, 45, 50, 55, 60, 65, 70, and 75.

Most terminals have a Tab key, which can be used interchangeably
with ^I.

Return The Return key moves the cursor to column 1 of the next line,
according to the following rules:

 1. When Insert is on, any characters at the cursor and to the right of it
are forced down to create a new line.

 2. When Insert is off, the cursor line is kept intact, and the cursor is
moved to column 1 of the next line.

^N Insert Return Inserts a Carriage Return (or, more accurately, a new-line or line-feed)
at the cursor. The cursor remains in the same position as it was when
^N was typed, and the cursor character and all characters to its right (if
any) are forced down to create a new line. ^N has the same effect as
typing Return except that the cursor does not move.

^L Next Find & Replace
Performs the next Find or Find & Replace, according to the same cri-
teria supplied in the last Find (^QF) or Find & Replace (^QA)
command. This single-keystroke command saves having to retype the
^QF or ^QA commands (two-keystroke commands) and respond to the
prompts when the criteria are the same. See the ^QA and ^QF
descriptions in the “Quick Menu” shown in Figure 20 on page 23.

Other Menus

^KU Block/File Menu Displays the Block & File Operations menu, described shortly. The
^K-prefixed commands in this menu allow copying, deleting, and
moving text blocks, and exiting the editor.

ASSIST/I User's Guide 21

^QU Quick Menu Displays the menu of the ^Q-prefixed Quick commands. These com-
mands allow fast cursor movement within the file and fast deleting
within a line. They also provide global Find and Find & Replace of text
strings.

More on the Editor: Block and File Commands
Another useful set of editor commands allows you to manipulate entire blocks of text. That is,

you can move, copy, or delete entire sequences of lines in a single operation. To see the menu of
available block and file commands, simply type ^KU, which causes the menu shown in Figure 19
to appear. The desired menu option may be entered when this menu is displayed, or the space bar
may be used to exit the menu without performing any operation.

Block & File Operations commands do not have to go through this menu. The desired option
may be selected after ^K has been entered.

<<<<<< B L O C K & F I L E O P E R A T I O N S >>>>>>

BLOCK OPERATIONS
==
Set BEGIN block marker ==> B Move block to cursor ==> V
Set END block marker ==> K Copy block to cursor ==> C
Hide/Display marker(s) ==> H Delete marked block ==> Y

FILE OPERATIONS
==
Write a block to a file ==> W Read a file to cursor ==> R
Save & Exit ==> X Quit NOSAVE ==> Q

Figure 19. Block and File Operations Help Menu

Block Operations

To manipulate a block of text, you must first mark the first (Begin) and last (End) characters
in the block of text. (It is logical that the End-block marker comes after the Begin-block marker,
and that both markers must be set correctly before the editor can perform any block commands.)
The following commands are provided for this purpose:

^KB Set Begin Block Marker
Sets a Begin block marker to mark the beginning of a text block. To
mark a block, place the cursor at the first character of that block, and
type ^KB. The display of the text character is replaced by > to indicate
the position of the beginning marker; the actual text character is not
changed. There can be only one Begin marker in a file. If a Begin
marker was active somewhere else in the file, it is moved when ^KB is
issued.

^KK Set End Block Marker
Sets an End block marker to mark the end of a text block, replacing the
displayed character with <. The actual text character is not changed. If
the last character of a line (the line-feed) is to be marked, the cursor
must be positioned at that character. (^QD is helpful for positioning the
cursor at the end of a line.) There can be only one End marker in a file.
If an End marker was active somewhere else in the file, it is moved
when ^KK is issued. If for some reason the same character is marked for
Begin and End, the replacement display character is *.

^KH Hide/Display Markers
This is a toggle used to hide and to re-display markers. Any attempt to
perform a copy-, move-, or delete-block operation when markers are
hidden results in an error message.

22 SHARE Assembler BootCamp Starter Kit

Markers can be repositioned to any point without being hidden first. The normal procedure is
to mark the block, perform the block operation, and then hide the markers. The following rules
apply to all the block operations:

 1. Both markers must have been set and must not be hidden.

 2. The End marker must occur after the Begin marker.

 3. The cursor cannot be positioned on or between the markers.

Once a block of text has been marked, it can be moved, copied, deleted, or written to a disk
file by using the following commands:

^KV Move Block to Cursor
Moves a marked block to the position of the cursor.

^KC Copy Block to Cursor
Copies a marked block to the cursor position.

^KY Delete Marked Block
Deletes all characters in the marked block.

File Operations

^KW Write Block to File
Writes the marked block of text to a disk file. You will be prompted for
the name of the file to be created. This command creates a new file or,
if the name of an existing file is given, overwrites the contents of the
existing file. It does not append the block to the end of an existing file.

To retrieve the text from a disk file and insert it into the current text, you can use the following
command:

^KR Read a File Reads the contents of a disk file, inserting the lines into the current text
at the position of the cursor. The file being read is truncated if there is
not enough available space in memory.

This last command can be quite useful when you wish to include the same sequence of lines in
several files.

Note that when a file is saved, markers are not saved with it.

Advanced Features of the Editor: the QUICK Commands
You should become completely familiar with the basic commands before attempting to use

these more advanced commands.

The Quick commands involve typing two characters: ^Q followed by a second character desig-
nating a specific operation. To see the menu displaying the available Quick commands, simply
type ^QU, and the menu in Figure 20 will appear.

<<<<<< Q U I C K M E N U >>>>>>

----- CURSOR MOVEMENT -----
Line LEFT (col 1) ==> S Line RIGHT (end of line) ==> D
TOP of screen ==> E BOTTOM of screen ==> X
TOP of file ==> R BOTTOM of file ==> C

-------- DELETES ----------

RIGHT (to end line) ==> V LEFT (to begin of line) ==> DEL

------ MISCELLANEOUS ------
FIND text in file ==> F FIND & REPLACE text ==> A

Figure 20. QUICK Commands Help Menu

ASSIST/I User's Guide 23

The desired menu option can be entered when this menu is displayed, or the space bar can be
used to exit the menu without performing any operation.

Quick commands do not have to go through this menu. The desired option may be selected
after the ^Q has been entered.

Cursor Movement

The most commonly used Quick commands are those for cursor movement. You have already
used the basic cursor-control commands: ^S, ^D, ^E, ^X, ^R, and ^C. The Quick versions of
these commands can be used to replace sequences of these basic commands. Their effects may be
summarized as follows:

^QS Line Left Moves the cursor to the first character (column 1) in the current line.

^QD Line Right Moves the cursor to the last character of the current line (end of line).

^QE Top of Screen Positions the cursor to the first character (column 1) in the first line on
the screen.

^QX Bottom of Screen Moves the cursor to the first character (column 1) of the last line on the
screen.

^QR Top of File Moves the cursor to the first character in the file.

^QC Bottom of File Moves the cursor past the last character in the file.

As you edit increasingly larger files, you will find these commands for rapid movement of the
cursor quite convenient.

Delete Operations

Two Quick commands are provided for deleting portions of the current line:

^QY Delete Right Deletes the cursor character and all characters from there to the end of
the line, except the “new-line” or “line-feed” character.

^QDel Delete Left Deletes all characters in the current line to the left of the cursor. (Here
^QDel means holding down the control key and typing ^Q then
depressing the Delete key on your terminal.)

These two commands can save time in deleting portions of sentences, removing the necessity of
manually deleting a sequence of individual characters or words.

Search Operations

Occasionally, you will wish to scan a file for a particular string of characters. For example, you
might wish to locate the string ' *' to find a comment that began in column 2, rather than in
column 1. In this case, you can use the following command:

^QF Find Text Finds the first occurrence of a string, starting from the current position
of the cursor. You are prompted for the string to be located and for
whether to search forward or backward from the position of the cursor.
(By specifying the option B, you can cause the scan to proceed backward
from the position of the cursor; the default is to move forward.)

A message is displayed if no occurrence of the string is found in the
direction of the search. The cursor is positioned at the file's end or at its
beginning, depending on the search direction.

To search the entire text for the string, it is frequently a good idea to use ^QR first, to position
the cursor at the start of the text. Once you have located one occurrence, you may wish to con-
tinue the search by scanning for the next occurrence of the string. Do this by typing ^L.

24 SHARE Assembler BootCamp Starter Kit

The next Quick command can be used to replace one or more occurrences of a string by a
replacement string. This command requires you to indicate whether you wish to be prompted to
verify the replacement.

^QA Find/Replace Text Finds the next occurrence of a string and optionally replaces it with a
specified replacement string. You are prompted for the search string, for
the replacement string, and for options. The replacement options are

<cr> Replace the next occurrence (a prompt asks whether or not
you really wish the replacement to occur)

N Make the replacement without prompting for permission

G Replace all remaining occurrences of the string

GN,NG Replace all remaining occurrences, without prompting for per-
mission. In addition, you can specify the option B to cause
the search to proceed backward from the current cursor posi-
tion.

Just as with ^QF, ^L can be issued to repeat the last find-and-replace command.

ASSIST/I Pseudo-Instructions
ASSIST/I supports four pseudo-instructions for performing basic I/O and for processing simple

numeric data: XREAD, XPRNT, XDECI, and XDECO. All pseudo-instructions can have a statement label,
as noted in the instruction formats.

XREAD and XDECI Instructions
In the following discussion, we assume that the maximum length of an input record to be

entered by the XREAD instruction is 80 characters. (This is due to the historical fact that, during
the period in which IBM assembler became widely used, punched cards were the medium in
which programs were encoded. Indeed, a majority of the example programs discussed here were
first tested using versions of the programs punched into 80-column cards.)

The practice of using punched cards made terms like “source deck” (to refer to the cards that
contained the symbolic version of a program) both natural and common. Therefore, you will find
occasional references to punched cards throughout this book, and we trust it will be obvious that,
in today's context, each of these references is to “an 80-character input record.”

Input records are normally of some fixed size. Here, most input records contain up to 80 char-
acters of data. When these characters are read into storage, each will occupy one byte. There are
256 legitimate values that can be stored in one character of an input record. Each of these possible
values is converted into a unique image when the record is read into storage. When punched cards
were used as input, there were 256 unique patterns of punches for each column, each of which
corresponded to hexadecimal values from 00 through FF. Most input records contain only “read-
able” characters which translate into a subset of the possible 256 values. The correspondence
between the “readable” characters' hexadecimal values produced in storage, and how these were
encoded in punched cards is illustrated in Figure 21.

ASSIST/I User's Guide 25

Figure 21. Sample Character Representations

Example: If an input record containing 1234 in the first four character positions is read into an
area called CARD, the first byte at CARD will contain the value that corresponds to a 1. Since
that is F1, the first byte at CARD is F1. The second will be F2; the third, F3; and the fourth, F4
Thus, the first four bytes at CARD would contain F1F2F3F4.

The DC (Define Constant) instruction is used to create constant data. Some examples for cre-
ating character data are described in “DC Instruction for Character Data” on page 39.

Punches Repres-
enting

Image in
Storage

none blank 40
12-1 A C1
12-2 B C2
11-1 J D1
11-2 K D2
0-2 S E2
0-3 T E3
0 0 F0
1 1 F1
2 2 F2
3 3 F3
4 4 F4
5 5 F5
6 6 F6
7 7 F7
8 8 F8
9 9 F9

XREAD Instruction

The XREAD pseudo-instruction reads an input record into an area of storage from the source
defined on the $ENTRY line. Data can be read from:

 1. The console

 2. Lines immediately following $ENTRY

 3. A disk file.

Its format is:
label XREAD addr,length

where

addr is the address, in D(X,B) or implicit form, of the area into which the input should be
read

length is the number of characters to be read.

• length should be 80 or less. If it is greater than 80, at most 80 characters will be
read.

• If the number of characters in the record is fewer than length, the extra characters
will be filled with blanks.

• If length is less than the number of characters in the record, the remaining charac-
ters of the input record will be ignored.

• If length is omitted, the length of the addr operand is used if easily determined;
otherwise 80 is used.

Each XREAD statement reads exactly one line of input data. The data obtained by XREAD is stored
in character format at the D(X,B) location.

Execution of an XREAD statement after the end-of-file condition has occurred results in a Read
Past End of File program exception.

26 SHARE Assembler BootCamp Starter Kit

The encoded form of XREAD resides in 3 halfwords.

Section “The $ENTRY Record” on page 33 describes how to specify the input data source.

An example:
XREAD CARD,40

will read 40 characters from the next input record and place the first character at CARD+0, the
second at CARD+1, and so on.

The settings of the CC after the execution of an XREAD instruction convey the following infor-
mation:

CC Meaning

0 The record was read successfully.

1 No record could be read. This is called an end-of-file or EOF condi-
tion.

2 — (The CC is never set to this value.)

3 —

Note: A dash is used to indicate condition code settings that cannot occur.

XPRNT Instruction

Just as data that is read in from a record is stored in character format, so too is data that is to
be printed. The XPRNT statement provides an easy way to print program output lines. XPRNT lines
appear in the program listing (file type .PRT) just after the assembly listing.

There are two steps involved in printing a line:

 1. The line to be printed must be constructed in an area of storage. The actual characters that
will appear in the printed line begin in the second byte of the area. The initial byte is reserved
for a carriage control character, a byte that controls the positioning of the printed line on a
page.

The codes that can be used in the first byte and their meanings are
blank Single-space before printing

0 Double-space before printing
- Triple space before printing
+ Suppress spacing (overprint)
1 Skip to the head of the next page before printing.

Carriage-control bytes containing non-printable values are treated as if they were blanks.

The entire print line (including the carriage control byte) must contain 133 or fewer charac-
ters, because there are only 132 print positions on most printers.

 2. After the print line has been constructed, an XPRNT instruction can be used to print the line.
The format of the XPRNT instruction is
label XPRNT addr,length

where

addr is the D(X,B) or implicit address of the print line in storage

length is the number of bytes to be taken from storage in constructing the record to be
sent to the printer. The length should be 133 or fewer characters, including the
carriage-control character. (Bad things happen if it's longer!) If no length operand
is specified, it is taken from the length attribute of the addr operand.

XPRNT does not alter the condition code. The encoded form of XPRNT resides in 3 halfwords.

Examples:

ASSIST/I User's Guide 27

XPRNT =C'1THIS IS A PAGE HEADER',22

will print the line THIS IS A PAGE HEADER at the top of the next page.
XPRNT CARD-1,80

will print a line beginning with the byte before CARD for a length of 80 bytes. The carriage control
byte would be at CARD-1.

XREAD/XPRNT Sample Program

The sample program in Figure 22 illustrates uses of the XPRNT instruction. The program
reads any number of records, printing one line per record. The first line will be printed at the top
of a page, and all successive lines will be double-spaced.

* THIS PROGRAM READS AND PRINTS CARDS UNTIL EOF OCCURS.

PRINT CSECT

USING PRINT,15
*

XREAD CARD1,80 READ THE FIRST CARD
BC B'0100',EXIT EXIT ON EMPTY FILE

*
XPRNT CC1,81 PRINT THE FIRST CARD
XREAD CARD2,80 NOW READ THE SECOND CARD

LOOP BC B'0100',EXIT BRANCH ON EOF
*

XPRNT CC2,81 PRINT THE CARD
XREAD CARD2,80 TRY TO READ THE NEXT CARD
BC B'1111',LOOP GO BACK TO TEST FOR EOF

*
EXIT BCR B'1111',14 LEAVE THE PROGRAM
*
CC1 DC CL1'1' CAUSE SKIP TO TOP OF PAGE
CARD1 DS CL80 INPUT AREA FOR FIRST CARD
CC2 DC C'0' DOUBLE SPACE THE REST
CARD2 DS CL80 ALL BUT FIRST CARD GET READ HERE

END PRINT
$ENTRY
 Record 1
Record 2
Last record.

Figure 22. XREAD/XPRNT Sample Program to Read and Print Cards

This program is in the \BootAsst\ directory as file DEMOC.ASM, and the following listing shown
in Figure 23 on page 29 is in the \BootAsst\ directory as file DEMOC.PRT.

28 SHARE Assembler BootCamp Starter Kit

ASSIST/I Version 2.03, Copyright 1984, BDM Software.

 LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

1 ***
2 * THIS PROGRAM READS AND PRINTS CARDS UNTIL EOF OCCURS.
3 ***

000000 4 PRINT CSECT
000000 5 USING PRINT,15

6 *
000000 E000 F02D 0050 0002D 7 XREAD CARD1,80 READ THE FIRST CARD
000006 4740 F02A 0002A 8 BC B'0100',EXIT EXIT ON EMPTY FILE

9 *
00000A E020 F02C 0051 0002C 10 XPRNT CC1,81 PRINT THE FIRST CARD
000010 E000 F07E 0050 0007E 11 XREAD CARD2,80 NOW READ THE SECOND CARD
000016 4740 F02A 0002A 12 LOOP BC B'0100',EXIT BRANCH ON EOF

13 *
00001A E020 F07D 0051 0007D 14 XPRNT CC2,81 PRINT THE CARD
000020 E000 F07E 0050 0007E 15 XREAD CARD2,80 TRY TO READ THE NEXT CARD
000026 47F0 F016 00016 16 BC B'1111',LOOP GO BACK TO TEST FOR EOF

17 *
00002A 07FE 18 EXIT BCR B'1111',14 LEAVE THE PROGRAM

19 *
00002C F1 20 CC1 DC CL1'1' CAUSE SKIP TO TOP OF PAGE
00002D 21 CARD1 DS CL80 INPUT AREA FOR FIRST CARD
00007D F0 22 CC2 DC C'0' DOUBLE SPACE THE REST
00007E 23 CARD2 DS CL80 ALL BUT FIRST CARD GET READ HERE

24 END PRINT

*** 0 STATEMENTS FLAGGED - 0 WARNINGS, 0 ERRORS

*** PROGRAM EXECUTION BEGINNING -
ANY OUTPUT BEFORE EXECUTION COMPLETE MESSAGE IS PRODUCED BY USER PROGRAM ***

Record 1

Record 2

Last record.

*** EXECUTION COMPLETED ***

Figure 23. Listing of Program to Read/Add Numbers

XDECI Instruction

The XDECI pseudo-instruction converts numbers in their character representation in storage to
their corresponding binary representation in a register. Its format is:
label XDECI reg,addr

where

reg is the number of the general register into which the binary form of the number will be
inserted.

addr is the D(X,B) or implicit address of the number in its character format.

Execution of an XDECI instruction has the following effects:

 1. Beginning at the location given by addr, memory is scanned for the first character that is not
a blank.

 2. If the first character found is anything other than a decimal digit or a plus or minus sign, R1
is set to the address of that character and the condition code is set to 3 to show that no
decimal number could be converted. The contents of register reg are not changed, and
nothing more is done.

 3. If the first character is a plus or minus sign or a decimal digit, from one to nine decimal digits
are scanned, and the number is converted to binary and placed in reg.

 4. If ten or more decimal digits are found before a blank separator, R1 is set to the address of
the first character that is not a decimal digit, the CC is set to 3, and reg is left unchanged. A
plus or minus sign alone causes a similar action, with R1 set to the address of the character
following the sign character.

The encoded form of XDECI resides in 2 halfwords.

ASSIST/I User's Guide 29

R1 is set to the address of the first non-digit after the string of decimal digits. Thus, reg should
not usually be 1. This lets you scan for any number of decimal values. The values should be
separated by blanks.

Remember that execution of XDECI alters R1. Therefore, don't expect to save a value in R1 if
you issue XDECI.

The CC is set by XDECI as follows:

The scan performed by the execution of an XDECI instruction will continue, perhaps beyond the
field to be scanned, until a non-blank character is encountered. Thus, if the image of an input
record is to be scanned, it is advisable to mark the end of the image with a non-blank character
other than a decimal digit, so that the condition code may be checked to determine when the end
of the image has been reached. For example, this could be done as follows:
CARD DS CL80

DC C'*'

Assuming that the input cards contained one or more numbers and that the above marker
technique was used, the following code segment can serve as an example:

SR R3,R3
XDECI R5,CARD GET 1st NUMBER

LOOP BC B'0001',EXITLUP EXIT NONE LEFT
ST R5,TABLE(R3) SAVE THE NUMBER
LA R3,4(,R3) INCREMENT INDEX
XDECI R5,0(R1) GET NEXT NUMBER
BC B'1111',LOOP

CC Meaning

0 The number converted was 0

1 The number converted was < 0

2 The number converted was > 0

3 An attempt was made to convert an invalid number

XREAD/XDECI Sample Program

The little program in Figure 24 on page 31 reads input records with two numbers on each
record. Each number and the difference between the numbers is XPRNTed. (This program is in the
\BootAsst\ directory as file DEMOD.ASM.)

30 SHARE Assembler BootCamp Starter Kit

* THIS PROGRAM READS NUMBERS (TWO PER CARD) AND XPRNTS THEM AND
* THEIR DIFFERENCE.

DIFF CSECT

BALR 9,0
USING *,9

*
XREAD CARD,80 READ THE FIRST CARD

LOOP BC B'0100',EXIT BRANCH IF EOF HAS OCCURRED
XDECI 2,CARD GET THE FIRST NUMBER ON THE CARD
BC B'0001',GETNXT SKIP THIS CARD ON A BAD VALUE
XDECO 2,NUMBER1 PUT INTO PRINT LINE
XDECI 3,0(1) NOW GET THE SECOND NUMBER
BC B'0001',GETNXT SKIP THIS CARD ON A BAD VALUE
XDECO 3,NUMBER2 PUT INTO PRINT LINE
SR 2,3 GET THE DIFFERENCE
XDECO 2,DIFFRNCE FORMAT THE DIFFERENCE
XPRNT LINE,LINEL PRINT THE RESULTS

GETNXT XREAD CARD,80 TRY TO READ THE NEXT CARD
BC B'1111',LOOP GO BACK UP TO TEST FOR EOF

*
EXIT BCR B'1111',14 EXIT FROM THE PROGRAM
*
CARD DS CL80 CARD INPUT AREA
LINE DC C'0NUM1=' BEGINNING OF PRINT LINE
NUMBER1 DC CL12' ' SPACE FOR FIRST NUMBER

DC C', NUM2=' CONTINUATION OF LINE
NUMBER2 DC CL12' ' SPACE FOR SECOND NUMBER

DC C', DIFF=' CONTINUATION OF LINE
DIFFRNCE DC CL12' ' SPACE FOR DIFFERENCE
LINEL EQU *-LINE LINE LENGTH

END DIFF
$ENTRY
 2 6
 9 35

Figure 24. XREAD/XDECI Sample Program

(The listing shown below in Figure 25 for this program is in the \BootAsst\ directory as file
DEMOD.PRT.)

ASSIST/I User's Guide 31

ASSIST/I Version 2.03, Copyright 1984, BDM Software.

 LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

1 ***
2 * THIS PROGRAM READS NUMBERS (TWO PER CARD) AND PRINTS THE
3 * DIFFERENCE OF THE TWO NUMBERS.
4 ***

000000 5 DIFF CSECT
000000 0590 6 BALR 9,0
000002 7 USING *,9

8 *
000002 E000 903A 0050 0003C 9 XREAD CARD,80 READ THE FIRST CARD
000008 4740 9038 0003A 10 LOOP BC B'0100',EXIT BRANCH IF EOF HAS OCCURRED
00000C 5320 903A 0003C 11 XDECI 2,CARD GET THE FIRST NUMBER ON THE CARD
000010 4710 902E 00030 12 BC B'0001',GETNXT SKIP THIS CARD ON A BAD VALUE
000014 5220 9090 00092 13 XDECO 2,NUMBER1 PUT INTO PRINT LINE
000018 5331 0000 00000 14 XDECI 3,0(1) NOW GET THE SECOND NUMBER
00001C 4710 902E 00030 15 BC B'0001',GETNXT SKIP THIS CARD ON A BAD VALUE
000020 5230 90A3 000A5 16 XDECO 3,NUMBER2 PUT INTO PRINT LINE
000024 1B23 17 SR 2,3 GET THE DIFFERENCE
000026 5220 90B6 000B8 18 XDECO 2,DIFFRNCE FORMAT THE DIFFERENCE
00002A E020 908A 0038 0008C 19 XPRNT LINE,LINEL PRINT THE RESULTS
000030 E000 903A 0050 0003C 20 GETNXT XREAD CARD,80 TRY TO READ THE NEXT CARD
000036 47F0 9006 00008 21 BC B'1111',LOOP GO BACK UP TO TEST FOR EOF

22 *
00003A 07FE 23 EXIT BCR B'1111',14 EXIT FROM THE PROGRAM

24 *
00003C 25 CARD DS CL80 CARD INPUT AREA
00008C F0D5E4D4F17E 26 LINE DC C'0NUM1=' BEGINNING OF PRINT LINE
000092 4040404040404040 27 NUMBER1 DC CL12' ' SPACE FOR FIRST NUMBER
00009E 6B40D5E4D4F27E 28 DC C', NUM2=' CONTINUATION OF LINE
0000A5 4040404040404040 29 NUMBER2 DC CL12' ' SPACE FOR SECOND NUMBER
0000B1 6B40C4C9C6C67E 30 DC C', DIFF=' CONTINUATION OF LINE
0000B8 4040404040404040 31 DIFFRNCE DC CL12' ' SPACE FOR DIFFERENCE
000038 32 LINEL EQU *-LINE LINE LENGTH

33 END DIFF

*** 0 STATEMENTS FLAGGED - 0 WARNINGS, 0 ERRORS

*** PROGRAM EXECUTION BEGINNING -
ANY OUTPUT BEFORE EXECUTION COMPLETE MESSAGE IS PRODUCED BY USER PROGRAM ***

NUM1= 2, NUM2= 6, DIFF= -4

NUM1= 9, NUM2= 35, DIFF= -26

*** EXECUTION COMPLETED ***

Figure 25. Listing of Program to Read/Add Numbers

XDECO Instruction

XDECO is used to convert a binary number in a register to its printable decimal equivalent. Once
converted, the number can be printed with XPRNT. The format of the XDECO statement is
label XDECO reg,addr

where

reg is the number of the general register that contains the binary number to be converted.
This register number is not altered by XDECO.

addr is the D(X,B) or implicit address in which to place the 12-byte character represen-
tation of the number.

XDECO does not alter the condition code. The encoded form of XDECO resides in 2 halfwords.

Execution of this pseudo-instruction causes the number in the register given as the first
operand (reg) to be converted to a 12-byte character representation and stored at the D(X,B) or
implicit address given by the second operand (addr). The contents of the register are unaltered.

For example, execution of the instruction
XDECO 10,ANSWER

32 SHARE Assembler BootCamp Starter Kit

causes the binary number in R10 to be converted to its character format and the result to be
stored in 12 bytes of storage, starting at ANSWER. The contents of R10 are unaltered.

The number will be right-justified in the 12-byte field, with leading blanks. A minus sign will
be printed to the left of the first significant digit if the number is negative.

XDUMP Instruction

The XDUMP pseudo-instruction was intentionally left out of ASSIST/I because of the interactive
debugger. With the capability of single-stepping and setting breakpoints, you should have no need
to take memory snapshots.

XSAVE Instruction

The XSAVE pseudo-instruction can be used to generate the instructions to set up a base register
and establish a register save area. The only form of the XSAVE instruction supported by ASSIST/I
is
label XSAVE BR=reg[,SA=NO]
where the label is required, and reg must be a number in the range 3-12. The SA=NO option, which
should be specified only for lowest-level subroutines, suppresses the generation of a save area for
the routine. Thus,

XSAVE BR=12

can be used to establish register 12 as a base register and to establish a save area, while
XSAVE BR=12,SA=NO

establishes register 12 as a base register but does not generate a save area for the routine.

If no BR operand is specified, register 12 will be set as a base register.

XRETURN Instruction

The XRETURN instruction can be used to generate the code to exit from a routine. It supports a
single optional operand, to indicate whether or not a save area was established for the routine.
Thus,

XRETURN

could be used to exit from a routine for which a register save area was established, while
XRETURN SA=NO

would be used for a lowest-level routine in which no save area was needed.

The $ENTRY Record
When using XREAD, you must indicate where the input lines are to be found. $ENTRY tells

ASSIST/I where to look for a program's input (XREAD) data. Depending on the $ENTRY parameter,
input data can be read from one of three sources:

 1. Include the input lines immediately following the $ENTRY line, which must immediately follow
the last line of your program.

 2. A second method is to enter the input lines interactively. To request this option, use the
following form of the $ENTRY line:
$ENTRY CONSOLE

As the program is executing, it prompts you to enter input lines whenever an XREAD instruc-
tion is executed.

 3. You can request that your input lines be read from a separate disk file. This makes it conven-
ient to create a common file of test data that can be shared by multiple users by simply
copying the data file. To invoke this option, you simply specify the file name on the $ENTRY
statement.

ASSIST/I User's Guide 33

The first option is the most commonly used.

$ENTRY is coded immediately following the program's END statement. It must conform to one
of the following formats:

 1. $ENTRY with no parameters is used for programs that will read in-stream data (data coded on
the lines following $ENTRY) or for programs not requiring data. This allows you to edit your
program and input data in a single file. However, you must re-edit the file every time you
wish to change the input data.

 2. $ENTRY CONSOLE causes XREAD data to be obtained from the console. ASSIST/I issues the
prompt:

ENTER XREAD DATA NOW (ENTER CONTROL Z FOR EOF)

When this prompt is displayed, you can type in any desired input line, terminated by a
<cr>. ^Z is used to indicate end-of-file from the console.

This method allows you to rapidly retest your program using a variety of different sets of
input data.

 3. $ENTRY CONSOLE NOPROMPT works the same as the $ENTRY CONSOLE, except that the prompt to
enter data from ASSIST/I is not issued.

Care should be taken when using the NOPROMPT option. You should XPRNT a prompt from
the program before executing XREAD, so the program user knows what is expected by the
program.

 4. $ENTRY file name causes XREAD to take data from the named file. For example,
$ENTRY B:PROG1.DAT

specifies that the input data is to be read from the file PROG1.DAT (located on disk drive
B).

If the file does not exist, a message is issued, and any XREAD data are obtained as if
$ENTRY CONSOLE had been coded.

Note: A program that does not have a $ENTRY record will assemble but not execute. An attempt
to read data past the end of file results in abnormal program termination.

Running Programs
There are two options in the ASSIST/I main menu that can be used to run programs: the R

(Run) option and the F (Final Run) option. The F option is discussed shortly.

Providing the Save Output Listing option is on (see section “Altering ASSIST/I Options” on
page 38), both the R and F options create a print file with the same name as the program being
run, but with a .PRT file type. If a file with the same name exists, it will be overwritten. For this
reason, source programs should never be given a name with the format filename.PRT.

The R option is used for program debugging. It invokes the ASSIST/I two-pass assembler to
assemble the source code and generate the object code. If a program does not assemble correctly,
control is returned to the ASSIST/I main menu. When a program does assemble correctly and a
valid $ENTRY was included, execution control is passed to the program.

With the R option, an automatic breakpoint is set on the program's first instruction, to invoke
the ASSIST/I debugger before any instructions have executed. The user can then decide whether
to execute multiple statements via the debugger's Go option or to execute one instruction at a
time with the debugger's Step option.

34 SHARE Assembler BootCamp Starter Kit

Making Final Runs
ASSIST/I provides a facility for making final program runs through the selection of the F

option of the ASSIST/I main menu. The option assembles and executes programs but does not
provide access to the debugger. For user convenience, the F option prompts for the user's name.
The name is printed with the ASSIST/I output-page header.

Printing Programs and Listings

The Print a Program (P) option in the ASSIST/I main menu can be used to print programs
created by the editor and assembly/program output listings (listings with .PRT file types). Tab
characters are expanded to the same positions as the editor expands them. (See ^I in section
“Other Useful Editor Commands” on page 21.)

The Print option writes to the operating system's assigned list device.

Using the ASSIST/I Debugger
The ASSIST/I debugger allows you to view a program's status during the execution phase. The

debugger is invoked at execution time only under one of the following four conditions:

 1. When control is initially passed to the program

 2. Upon encountering a user-defined breakpoint (set by the B(rkpt.) facility described below)

 3. On most implementations, when a key is struck during program execution

 4. When a program exception (abnormal termination) is encountered.

Figure 26 is an example of a screen display by the debugger when it is first invoked (i.e., the
automatic break before control is passed to the program for execution).

PSW AT BREAK FFC50000 0F000000

R0-7 : F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4
R8-15: F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 F4F4F4F4 00000020 00000068 00000000

000000 5810F010 5820F014 1A125010 F01807FE *..0...0...&.0...*
000010 00000004 00000006 F5F5F5F5 F5F5F5F5 *........55555555*
000020 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*
000030 F5F5F5F5 F5F5F5F5 F5F5F5F5 F5F5F5F5 *5555555555555555*

... etc. ...

===> B(rkpt.), D(ump), G(o), M(emory), P(SW), Q(uit), R(eg.), S(tep), T(race)
:

Figure 26. Screen Prior to Execution, Showing Debug Options

At the bottom of the screen, the line with the arrow at the left lists the primary debugger
options available to the user. These options are explained as follows:

• B(reakpoint)

The B(rkpt.) option provides a way to dynamically set, clear, and display program break-
points (addresses where the debugger will automatically be called). The following prompt will
be issued:
 BREAKPOINT: S(et), C(lear), D(isplay)
:Breakpoint: _

where

S(et) Prompts for the hex address at which to set a breakpoint. Leading zeroes of an
address need not be entered. A breakpoint is executed only when it is set at an
instruction's beginning address (the opcode byte).

ASSIST/I User's Guide 35

C(lear) Clears an individual breakpoint or all breakpoints, depending on the response to
the following prompt:
 Breakpoint CLEAR: I(ndividual), A(ll)
:Breakpoint: Clear: _

where

I prompts for the address of the breakpoint to clear.
A clears all the program breakpoints currently set.

D(isplay) Displays the first 140 program breakpoint addresses.

Return exits the breakpoint display.

• D(ump)

The D option is selected to write an ASSIST/I dump to the user's output-listing file. The
dump is representative of the PSW, registers, and memory at the time the D option was
selected. The following confirmation prompt is issued:

DUMP user Memory to disk and QUIT Debugger? (Y/N):

Note: Responding with Y stops program execution, exits the debugger, writes the dump to
disk, and returns control to the ASSIST/I menu.

• G(o)

The G option simply causes the debugger to exit and return control to program execution.
Execution is resumed at the instruction address located in the PSW.

• M(emory)

The M option allows the user to display and alter the contents of any memory location
within the user area. This allows the user to make most program changes without having to
reassemble the program. After the program area is modified, the PSW can optionally be reset
with the P(SW) option, and execution can be resumed via the G or S option.

The following prompt is issued for the M option:
 MODIFY MEMORY: <RET> for this screen, N(ext scr.), P(rev. scr.), (hex address)
: Modify: _

where

<Ret> (depressing the Return key) moves the cursor to the first byte of the
current screen. The cursor may then be positioned via the “Modify
Memory” commands (described below), and the valid hex digits
may be entered at any location.

N(ext screen) Displays the next full screen of memory-dump lines, beginning with
the line that follows the bottom line displayed on the current screen,
and positions the cursor on the first byte.

P(revious screen) Displays the screen-full of memory-dump lines located before the
current screen's top memory-dump line, and positions the cursor at
its first byte.

(Hex address) Allows an address to be entered by simply entering a valid hex
address. It is assumed that a hex address is being entered when a
valid hex digit (0-F) is typed at this prompt level. The screen dump
is then updated if necessary, and the cursor is positioned at the spec-
ified address.

Modify Memory Commands

In memory modification, any valid hexadecimal digit may be typed to replace the hex digit
at the cursor location. As new hex digits are typed, the EBCDIC display at the right of the
screen is updated to reflect the correct translated character.

The cursor can be positioned within the hexadecimal memory-display portion via the fol-
lowing sequences:

^S or Backspace Moves the cursor left to the previous hex digit.

36 SHARE Assembler BootCamp Starter Kit

^D or Space Bar Moves the cursor right to the next hex digit.

^A Moves the cursor left to the previous fullword boundary.

^F Moves the cursor right to the next fullword boundary.

^E Positions the cursor up one line.

^X Positions the cursor down one line.

Return is used to exit memory modification.

Note: The M option can be used to display memory by requesting the location to modify
and then immediately exiting via Return.

• P(SW)

The P(SW) option allows the PSW to be modified. It positions the cursor at the second
byte of the address portion of the PSW's instruction address. The cursor may then be posi-
tioned anywhere within the last four bytes of the PSW. ^S is used to position left, and ^D is
used to position right.

Only hex digits are accepted as replacement data. Return is used to exit the P(SW) modifi-
cation.

• Q(uit)

The Q(uit) option causes the following prompt to be issued:
Quit ASSIST Debugger & return to main menu? (Y/N):

Answering Y causes the debugger to exit to the ASSIST/I main menu. Program execution
is terminated.

• R(eg)

The R option provides the capability of altering the contents of any of the general registers.
A prompt asks you to enter the register number. Register numbers 0 through 15 are accepted,
and the cursor is positioned at the register's leftmost byte.

Only hex digits are accepted as replacement data. Return is used to exit the R modifica-
tion.

• S(tep)

The S option causes the next instruction to be executed, without leaving the debugger.
Single-step has the same effect as setting a temporary breakpoint at the next instruction.

• T(race)

The T option is selected to display the ASSIST/I branch trace or instruction trace. The
following second-level prompt is issued:
 TRACE: B(ranch Trace), I(nstruction trace)
:Trace: _

where

B(ranch trace) This selection displays a trace of the last branch instructions that
were executed before the interrupt that invoked the debugger.

As many as 10 branches can be displayed with the PSW bits
32-39 (the Instruction Length Code, Condition Code, and Program
Mask), the location of the branch instruction, and the encoded form
of the instruction. Return exits the branch trace and refreshes the
screen dump.

I(nstruction trace) This selection displays a trace of the last 10 instructions that were
executed before the interrupt that caused the editor to be invoked.

The instructions are displayed with the PSW bits 32-39 (the
Instruction-Length Code, Condition Code, and Program Mask), the
instruction location, and the encoded form of the instruction.

Return exits the instruction trace and refreshes the screen dump.

ASSIST/I User's Guide 37

Figure 27 on page 38 is an example of the instruction trace display.

** TRACE OF LAST 10 INSTRUCTIONS EXECUTED **
IM = PSW bits 32-39 (ILC,CC,MASK) before instruction executed at LOCATION.

IM LOCATION INSTRUCTION
== ======== ===========
20 0000D4 4570 F10A
A0 0001BA F3F7 F1E1 F1F1
E0 0001C0 96F0 F1F0
90 0001C4 E020 F1CC 0025
D0 0001CA 07F7
50 0000D8 F3F7 F1C0 F201
D0 0000DE 96F0 F1DC
90 0000E2 47F0 F11E
90 00011E 47F0 F12E
90 00012E FCB7 F122 F201 <-- Last instruction executed.

Figure 27. Example of Instruction Trace Display

The last instruction in the list was executed just before the debugger was called. The cause of
termination is probably either this instruction or the fact that a breakpoint had been set on the
instruction following it.

Altering ASSIST/I Options
ASSIST/I provides the facility to alter program execution options by selecting the “A” option

in the ASSIST/I main menu. The example screen displayed in Figure 28 lists the items that are
alterable.

A S S I S T / I Options

1) Save output listing - y
2) Maximum # lines - 500
3) Maximum # instructions - 5000
4) Maximum # pages - 100
5) Maximum size (in bytes) - 2700

Enter option number to alter (RETURN to quit): _

Figure 28. ASSIST/I Execution Options

The meaning of each option selection is:

Option Description

1 Is a toggle to determine whether or not the output listing (source code listing and
program-generated output) are to be written to an output disk file. If the option is n, no
listing is generated; y insures that an output listing is generated, with a file name the
same as the source code file, but with file type .PRT.

2 Indicates the maximum number of lines a program output listing is allowed to contain.
The output listing includes source-code lines and program-generated lines (lines gener-
ated by the XPRNT statement).

3 Indicates the maximum number of instructions ASSIST/I can execute. A program that
tries to execute more instructions is terminated. (This is handy for dealing with endless
loops.)

4 Indicates the maximum number of pages an output listing may contain. Since this
number includes the source listing and XPRNT-generated pages, it must be set high enough
to accommodate both.

5 Reserves storage for the program's object code. This value may need adjustment,
depending on the system ASSIST/I is running under.

38 SHARE Assembler BootCamp Starter Kit

Other Helpful Information
This chapter contains additional notes that may help with preparing and understanding pro-

grams.

DC Instruction for Character Data
The DC statement can be used to generate character constants. The format of the appropriate

DC statement is
label DC mCLn'character string'

where

m is a duplication factor (a non-negative integer)

Ln gives the length n of the constant to be generated

character string
is a string of characters

For example, the instruction
F1 DC 2CL3'A B'

causes two consecutive three-byte fields to be generated, each containing C140C2 (the hexadecimal
representation). The following additional rules apply to this use of the DC statement:

 1. If the duplication factor is omitted, it is assumed to be 1. Hence,
DC CL3'*A*'

and
DC 1CL3'*A*'

generate the same thing.

 2. If the length that is specified is greater than that required to hold the character string, blanks
will be padded on the right. Thus,

DC CL6'*A*'

would generate 5CC15C404040.

 3. If the specified length does not allow enough bytes to represent all of the characters in the
character string, the rightmost characters will be truncated. For example,

DC CL2'*A*'

would generate the two-byte field 5CC1.

 4. If the length is unspecified, a field exactly large enough to represent the character string will be
generated. Therefore,

DC 2C'ABC'

and
DC 2CL3'ABC'

each generate two three-byte fields.

 5. There are two special characters, ' (apostrophe or single quote) and & (ampersand), that are
unique in the following respect: to generate a string containing either an ' or an &, two adja-
cent occurrences of the character must occur in the character string, rather than a single occur-
rence. Thus,

DC C'A''B'

generates the three-byte field Cl7DC2, and
DC C'&&'

generates just one byte containing 50.

Other Helpful Information 39

The following examples should help to clarify the above comments:
* Coded Generated

DC CL1'0' F0
DC CL2'0' F040
DC 2CL2'89' F8F9F8F9
DC C'WORD' E6D6D9C4
DC C'&&AB''C' 50C1C27DC3
DC CL3'ABCD' C1C2C3

Continued Statements
Sometimes a statement will be too long to fit conveniently on one line. (Remember that it may

occupy only columns 1-71.) If you must create a longer statement, do the following:

 1. Enter the initial part of the statement that fits in columns 1-71.

 2. Put a non-blank (and easily recognizable) character in column 72. This is called the continua-
tion character.

 3. Continue your statement in column 16 of the next line; columns 1-15 must be blank. This is a
continuation statement.

 4. If the rest of the statement still won't fit, go back to step 2.

Normally, the character in column 16 of a continuation statement will be non-blank. However,
if you are continuing a quoted string, a blank that is part of that string may validly appear in
column 16.

For example: suppose you define a long character constant (the 1....:....|10.. is there just
to help you see the column positions; it isn't part of your constant!):
1...:....|10..:....|20..:....|30..:....|40..:....|50..:....|60..:....|70

LongC DC C'1This is an extremely long character string that we wi*
sh to appear at the top of a page when it is printed.'

The '*' character in column 72 is the continuation character.

If we modify the text slightly so that a blank appears where the continuation character is
required, the statement might look like this:
1...:....|10..:....|20..:....|30..:....|40..:....|50..:....|60..:....|70

LongC DC C'1This is an extremely long character string that is to*
appear at the top of a page when it is printed.'

In this case, the blank after the words “is to” is part of the character string, so its presence in
column 16 of the continuation statement is correct.

40 SHARE Assembler BootCamp Starter Kit

Host-System Macros
Several sets of macros can help you with simple tasks like data conversions, dumping, and I/O.

These macros should be extracted from the diskette or CD-ROM files, uploaded to your host
system as fixed-length 80-byte records, and added to your macro library. That library must then
be available to the High Level Assembler when your programs are assembled.

 1. A set of eight macros is in the diskette or CD-ROM

\BootMacs\ directory:

• READCARD, PRINTOUT, PRINTLIN, DUMPOUT, $$GENIO, XDECI, XDECO,
and XHEXO.

These macros are “self-contained” and do not require linking with any run-time support
routines. The program containing them must be run with AMODE(24) and RMODE(24).
The first five are discussed at “Useful I/O Macros” on page 50.

It is recommended that a PRINT NOGEN statement be included at the start of any
program using them; otherwise, the generated code will show all the extra code needed to
provide the requested functions. (Once you're comfortable with Assembler Language, remove
the PRINT NOGEN statement if you want to take a look at the extra code.)

 2. A set of 31 “X” macros is in the diskette \PSUMacs\ directory; they are listed in file
PSUMACS.TXT in that directory. These macros require link-time availability of the run-time
support routines in the PSUPROGS directory. The macros are discussed at “ASSIST
Input/Output and Debugging Instructions/Macros” on page 42.

 3. A set of 13 runtime support routines is in the \PSUPROGS\ directory; they are listed in file
PSUMODS.TXT in that directory. These macros must be assembled separately and linked into a
library that will be available at the time any program using the “X” macros is to be linked
and executed. Assembling these programs requires that the macros from the \PSUMacs\ direc-
tory be previously installed in a library available to the assembler.

Note: The names of these support routines contain the character '#', which may have
special meanings to your file-transfer software. Be sure to test your transfer procedures with
one of the files first. (For example, on CMS you may need to SET LINEDIT OFF.)

Origins

These macros originated in two student-oriented systems:

• The first five macros in the \BootMacs\ directory (with names not starting with the letter X)
were part of the “SPASM” (“Single Pass Assembler”) written at Stanford University. As with
ASSIST/I, they were “built in” to the SPASM assembler-interpreter; these host macros were
provided for applications that ran in a normal operating system environment.

The “SPASM” macros were at one time distributed by the SHARE Program Library
Agency as program number 360D-04.0.011. They are intended to run under MVS, CMS, and
VSE.

The simple XDECI, XDECO, XHEXO macros perform the same functions as the equiv-
alent ASSIST/I pseudo-instructions, and are included here because they require no link-time
library providing run-time support routines.

• The ASSIST “X” macros and runtime support modules were written at Penn State University
as part of the ASSIST/360 system.

Host-System Macros 41

ASSIST Input/Output and Debugging Instructions/Macros
This is an excerpt from the ASSIST INTRODUCTORY ASSEMBLER USER'S MANUAL

originally written by John R. Mashey of the Computer Science Department, Pennsylvania State
University, in March 1974. The full and original form of this chapter can be found in the
\BootAsst\ directory, as file ASUSERGD.HTML.

Input/Output Instructions - XREAD, XPRNT, XPNCH
Basic input/output facilities are provided by XREAD (card READer), XPRNT (line

PRiNTer), and XPNCH (card PuNCH). They are written using the following format:
label XMACRO area,length

where

label is an optional statement label

XMACRO is XREAD, XPRNT, XPNCH

area is the address in memory to be read or written. This area may be specified by an
RX-type address, i.e., anything legal as the second operand of a LA instruction,
such as:
 0(1,2), AREA2+10, CARD+1(3), or =CL30'0 MESSAGE'

length specifies the number of bytes to be read or written.

This length can range from 1 to the maximum length for the appropriate device
(80 for XREAD and XPNCH, 133 for XPRNT). The length field may be omitted,
in which case the maximum length is used by default. It may also be specified as a
register enclosed in parentheses, indicating that the length will be supplied at exe-
cution time from the designated register.

Condition Code

XPRNT and XPNCH do not change the condition code. XREAD sets the condition code to
indicate normal processing or end-of-file as follows:

C C = 0 a card was read, and length characters placed in user's area

C C = 1 end-of-file encountered, no more cards can be read (/* found).

Carriage Control

XPRNT requires that the first character of the area be a valid carriage control character, such
as blank (single space), '0' (double space, and '1' (new page), or any others which are available.

Examples of XREAD, XPRNT, XPNCH Usage

The following section of a program reads in a deck of cards until an end-of-file (/* card) is
found, punches the last 70 characters of each card into the first 70 columns of each card punched,
and prints some number of characters from each card, where the number +1 had been previously
loaded into register 5 (the +1 is for the carriage control character). The cards are double-spaced
on the printer.

42 SHARE Assembler BootCamp Starter Kit

 READLOOP XREAD CARD read card, using omitted length
BNZ NOMORE if CC=1, branch out. BC 4,NOMORE

or BM NOMORE would also work
XPNCH CARD+10,70 punch 70 bytes, explicit length
XPRNT CARD-1,(5) print number of bytes, using

 * carriage control
B READLOOP go back for next card to be read

 NOMORE EQU * branch here when no more cards
more program statements..................

DC C'0' carriage control for printing
 * card, right before CARD
 CARD DS CL80 space for card to be read in

The following statements show how the programmer may easily produce messages and
headings for his output, using XPRNT with literal character constants or related methods:

XPRNT =CL30'1 A HEADING FOR NEW PAGE',30
XPRNT =CL50' SECOND HEADING IMMEDIATELY UNDER FIRST',50
XPRNT MSG,L'MSG LET ASSEMBLER COMPUTE LENGTH
XPRNT MSGX,MSGXL ASSEMBLER COMPUTES LENGTH WITH EQU

 MSG DC C'0 THIRD MESSAGE, SINGLE CONSTANT WITH LENGTH'
 MSGX DC C' FOURTH MESSAGE, WHICH INCLUDES A SECTION FILLED IN'

DC C' DURING EXECUTION '
MSGNMBR DS CL12 SPACE FOR DECIMAL NUMBER-XDECO

DC C' END OF IT'
 MSGXL EQU *-MSGX MSGXL IS SET TO LENGTH OF MESSAGE

Debugging Instruction - XDUMP
One basic debugging command is provided, called XDUMP. It can be used in two different

ways, to print either registers or storage areas:

General Purpose Register Dump

XDUMP

Coding XDUMP with no operands prints the contents of the user's general purpose registers, in
hexadecimal notation. The registers are preceded by a header line like the following:
 BEGIN XSNAP - CALL # AT CCAAAAAA USER REGISTERS

where

is the number of calls made to XDUMP so far, for identification.

CCAAAAAA shows the last 32 bits of the user's PSW, in hexadecimal.

CC gives the ILC, CC, and Program Mask at the time of the XDUMP.

AAAAAA gives the address of the instruction following the XDUMP, and thus can be used to
distinguish between the output of different XDUMP statements.

Note: XDUMP1 is the same as XDUMP with no operand.

Storage Dump

XDUMP area,length

Coding XDUMP with an address and length produces a dump of a user storage area, begin-
ning at the address given by area, and ending at the address area+length. The operands are speci-
fied like those of XREAD, XPRNT, XPNCH, except the length may not specify a register, but
must be an explicit length.

The resulting output includes a header line like the above, followed by a hexadecimal and
alphanumeric dump of the selected storage area. The storage is printed in lines showing two
groups of four fullwords, preceded by the memory address of the first word in each line, and fol-
lowed by the alphanumeric representation of the 32 bytes on the line, with letters, numbers, and

ASSIST Input/Output and Debugging Instructions/Macros 43

blanks printed directly, and all other characters translated to periods. The storage printed is also
preceded by a line giving the address limits specified in the XDUMP.

If the length is omitted, the value 4 is used as a default.

Examples of XDUMP Usage

XDUMP AREA+10,80
XDUMP 8(1,4),100
XDUMP FULLWORD use default value of 4
XDUMP TABL(3),12

Decimal Conversion Instructions - XDECI, XDECO
To facilitate numeric input/output, ASSIST accepts the commands XDECI (eXtended

DECimal Input), and XDECO (eXtended DECimal Output). XDECI can be used to scan input
cards for signed or unsigned decimal numbers and convert them to binary form in a general
purpose register, also providing a scan pointer in register 1 to the end of the decimal number.
XDECO converts the contents of a given register to an edited, printable, decimal character string.

Both instructions follow the RX instruction format, as shown:
XDEC# REG,ADDRESS

where REG is any general purpose register, and ADDRESS is an RX-type address, such as
LABEL 0(R4,R5) LABEL+3(2).

XDECI

XDECI is generally used to scan a data card read by XREAD. The sequence of actions per-
formed by XDECI is as follows:

 1. Beginning at the location given by ADDRESS, memory is scanned for the first character
which is not a blank.

 2. If the first character found is anything but a decimal digit or plus or minus sign, register 1 is
set to the address of that character, and the condition code is set to 3 (overflow) to show that
no decimal number could be converted. The contents of REG are not changed, and nothing
more is done.

 3. From one to nine decimal digits are scanned, and the number converted to binary and placed
in REG, with the appropriate sign. The condition code is set to 0 (0), 1 (−), or 2 (+),
depending on the value just placed in REG.

 4. Register 1 is set to the address of the first non-digit after the string of decimal digits. Thus
REG should not usually be 1. This permits the user to scan across a card image for any
number of decimal values. The values should be separated by blanks, since otherwise the
scanner could hang up on a string like -123*, unless the user checks for this himself. I.e.
XDECI will skip leading blanks but will not itself skip over any other characters.

 5. During step 3, if ten or more decimal digits are found, register 1 is set to the address of the
first character found which is not a decimal digit, the condition code is set to 3, and REG is
left unchanged. A plus or minus sign alone causes a similiar action, with R1 set to the address
of the character following the sign character.

XDECO

XDECO converts the value from REG to printable decimal, with leading zeroes removed, and
a minus sign prefixed if needed. The resulting character string is placed right-justified in a 12-byte
field beginning at ADDRESS. It can then easily be printed using an XPRNT instruction. The
XDECO instruction modifies NO registers.

44 SHARE Assembler BootCamp Starter Kit

Sample Usage of XDECI

The following program segment reads a card, and converts one decimal value of 1-9 digits
punched anywhere on the card, placing this value in general register R0.

XREAD CARD read card into a workarea
XDECI R0,CARD scan and convert the number

XDECI can be used to convert an unknown number of decimal values from a card. This can
be done by punching the values anywhere on the card, separated by one or more blanks. The last
number on the card is then followed by a '$', which indicates the end of the data values to the
program. The following program reads a card and converts numbers, storing their values in an
array for later use, and stopping when the '$' is found.

SR 2,2 zero for index to first word of NUMBERS
XREAD CARD read cardimage into input area
LA 1,CARD intialize R1 as scan pointer register

 LOOP XDECI 0,0(,1) scan and convert next number
BO OVER skip if bad number or $ (BC 1,OVER)
ST 0,NUMBERS(2) store legal value into array
LA 2,4(2) increment index value 1 fullword
B LOOP go back for next number

 OVER CLI 0(1),C'$' was this delimiter $
BE DONE yes, so branch out
XPRNT =CL30'0*** BAD INPUT ***STOP',30

 DONE more instructions
 NUMBERS DS 20F space for 20 values to be stored
 CARD DS CL80 input workarea

Sample Usage of XDECO

The following converts the contents of register 4 to decimal and prints it. It assumes a reason-
able value in R4, so that the first character of OUT is a blank for carriage control.

XDECO 4,OUT convert the number
XPRNT OUT,12 print value
..... other assembler statments

 OUT DS CL12 typical output area

Hexadecimal Conversion Instructions - XHEXI, XHEXO
Note: Some versions of ASSIST may not provide these instructions.

XHEXI and XHEXO provide easy conversion of hexadecimal numbers for input and output.
The value of a hexadecimal number can be read from a card using XREAD, converted from char-
acter mode to a hexadecimal number, and the converted number is placed in the specified general
purpose register with XHEXI. XHEXO provides an easy way to convert internal hexadecimal to
an output form that can be printed using XPRNT.

XHEXI also places the address of the first non-hexadecimal number in register one, but if
more than eight digits are scanned, the address of the ninth is placed in register 1.

XHEXI

XHEXI REGISTER,ADDRESS

XHEXI, in the general form shown above where REGISTER is any general purpose register
and ADDRESS is anything legal in an RX instruction, is used to do the following:

 1. Beginning at the location ADDRESS, memory is scanned until the first non-blank character
is found.

 2. If the first character found is anything but a legal hexadecimal character (0-9,A-F), the condi-
tion code is set to overflow and this address is placed in register 1. If the REGISTER is any-
thing but register 1, its contents remain unchanged.

ASSIST Input/Output and Debugging Instructions/Macros 45

 3. One to eight hexadecimal characters are scanned, the number converted to hexadecimal, and
the result is placed in REGISTER. The value placed in the register is internal hexadecimal
with leading zeros included and the number is right justified.

 4. Register one is set to the address of the first non-hexadecimal character. With this in mind,
the user should not code register one as REGISTER. This allows you to scan across the card
for any number of character strings. The strings should be separated by blanks. The end of
the string could be flagged with any non-hexadecimal character and a test could be made after
a Branch Overflow (see sample program).

 5. If more than eight hex digits are found, register one is set to the address of the ninth. This
allows the user to scan across long strings of numbers.

XHEXO

XHEXO REGISTER,ADDRESS

XHEXO in the general form shown above converts the value in REGISTER and places it in a
right-justified 8-byte field beginning at ADDRESS. It can be easily printed using an XPRNT
instruction. The XHEXO instruction modifies NO registers.

Sample Program Using XHEXI and XHEXO

This program reads a data card with an unknown number of hexadecimal numbers on it. The
end of the data is denoted by a '%' punched after the last number. The numbers are stored after
being converted using XHEXI, and then converted for output using XHEXO.

LA 3,STORAGE WHERE NUMBERS STORED
XREAD CARD,80 READ IN CARD
XPRNT CARD,80 ECHO PRINT
LA 1,CARD ADDRESS OF CARD FOR SCANNING

 LOOP XHEXI 2,0(1) CONVERT NUMBER PUT IN 2
BO ILLEGAL CHECK FOR END
XHEXO 2,AREA PUT NUMBER IN OUTPUT AREA
XPRNT REP,28 PRINT CARD AND MESSAGE
ST 2,0(3) STORE NUMBER
LA 3,4(3) INCREASE INDEX
B LOOP GET NEXT NUMBER

 ILLEGAL CLI 0(1),C'%' SEE IF END OF STRING
BE DONE YES DONE
XPRNT =CL50' ILLEGAL CHARACTER STOP',50

 DONEMORE INSTRUCTIONS.....
 CARD DC 81C' ' STORAGE FOR CARD
 STORAGE DS 20F STORAGE FOR NUMBERS
 REP DC C' THE NUMBER IN R2 IS'
 AREA DC CL8' ' STORAGE FOR OUTPUT NUMBER

Limit Dump Instruction - XLIMD
In order to conserve output records when necessary (for instance, when ASSIST is being used

from a remote terminal of any sort), the XLIMD instruction is provided to enable the user to
limit the size of his completion dump and choose the area to be printed. In general, it is used to
eliminate the user's program code, leaving only his data areas in the completion dump.

The instruction is coded as follows:
XLIMD area,length

where

area is the beginning address where the completion dump should start. The area address
is specified by an RX-type address, and must be within the user program area.

length is the length in bytes of the area the user wishes to be printed if a completion
dump occurs.

46 SHARE Assembler BootCamp Starter Kit

Note that the XLIMD instruction format is exactly the same as that for the instructions
XREAD, XPRNT, XPNCH. Thus the length may be given as a register number, enclosed in
parentheses, or may be omitted, in which case a length of 1 is assumed. If the combined area
address plus the length yields an address greater than the highest user address, or if the length is 1,
the highest user address is used as an upper limit instead. Thus, storage will be printed to the end
of the user program.

The suggested method of using XLIMD is to place all variables at the end of the program,
then execute an XLIMD with an area address specifying the first variable desired, and omitting
the length. This will cause the storage to be printed starting at the specfied address and going to
the end of the program.

Sample Usage of XLIMD

The following program gives a typical way of using XLIMD.
DUMPTEST CSECT

USING *,15
XLIMD VARIABL1 set dump limit right away
..........
large number of machine instructions
..........

 VARIABL1 DS D first variable area
..........
variable areas likely to be required for debugging
..........
END

XLIMD may be executed any number of times during a program, but it is suggested that it be
called early in any large program, if there is any possiblity that record limits could be exceeded.

Optional Input/Output Instructions - XGET AND XPUT
These instructions are similar to XREAD/XPRNT/XPNCH, but are more general, allowing

the user to specify any filename to be read or written. WARNING: not all versions of ASSIST
support these instructions. Also, a particular version may only support a specific set of file names,
which can differ from installation to installation. It is advisable to check on local procedures. The
instructions are coded as follows:

label xmacro area,length

where

label is an optional statement label

xmacro is either XGET or XPUT

area is the address in memory to be read or written.

This area may be specified by an RX-type address, i.e., anything
 legal as the second operand of a LA instruction, such as:
0(1,2) AREA2+10 CARD+1(3) or =CL30'0***MESSAGE***'

length specifies the number of bytes to be read or written.

This length can range from 1 to the maximum length for the appropriate device
(80 for cards, 133 for printer, etc.). The length field must not be omitted. it may
also be specified as a register enclosed in parentheses, indicating that the length will
be supplied at execution time from the designated register.

If during execution, the length has a value of zero, the file will be closed.

Note: During execution, register 1 must point to an eight byte character string
which is the name of the file to be manipulated.

ASSIST Input/Output and Debugging Instructions/Macros 47

Condition Code

XGET and XPUT both change the condition code as follows:

CC=0 normal input/output occurred

CC=1 GET only: end of file occurred

CC=2 shows an error (like invalid data address) which causes the individual operation to
be ignored.

CC=3 shows that the file could not be opened (because it is wrong direction, or DD card
missing, or not enough room in tables, etc.).

Carriage Control

XPUT only requires the first character of the area to be a valid carriage control character, if the
output device is the printer.

Closing of File

Performing an XGET or XPUT with a length of zero supplied in any GP register causes the
designated file to be closed, so that it may then be reread; i.e.

LA 1,=CL8'ddname'
SR 0,0
XGET area,(0)

does a close.

Example of XGET and XPUT Usage

The following program will read and write a few files in parallel.
TEST1 CSECT

BALR 12,0
USING *,12
SR 0,0

*
 * THIS PROGRAM WILL PROCESS A FEW FILES IN PARALLEL:
 *
 LOOP LA 1,=CL8'CARD' point to an input file

XGET AREA,80 do the input
BNE DONE branch on endfile,

 * file automatically closed
XREAD AREA2,80 do normal input
LA 1,=CL8'PAPER' point to a printer file
XPUT AREA-1,81 do output, note carriage control
LA 1,=CL8'PAPER2' point to other printer file
XPUT AREA2-1,81 do output on other file
B LOOP try again

 DONE BR 14 RETURN, IMPLICITLY CLOSE OTHER FILES
DC CL1' '

 AREA DS CL80
DC CL1' '

 AREA2 DS CL80
END

The extra JCL for the above is as follows:

48 SHARE Assembler BootCamp Starter Kit

//DATA.PAPER DD SYSOUT=A,DCB=(RECFM=FA,LRECL=133,BLKSIZE=133)
//DATA.PAPER2 DD SYSOUT=A,DCB=(RECFM=FA,LRECL=133,BLKSIZE=133)
//DATA.CARD DD *
THIS STUFF IS READ
AT THE SAME TIME AS ANOTHER
FILE IS READ

 ****** THE LAST CARD *******
//DATA.INPUT DD *
THIS IS THE NORMAL INPUT FILE
AND IS READ AT THE SAME TIME AS ANOTHER FILE
IS READ
********* THE LAST CARD *********

Note: A common usage for XGET might be to access files of test data.

ASSIST Input/Output and Debugging Instructions/Macros 49

Useful I/O Macros

IIIIIIIIII // OOOOOOOOOOOO
IIIIIIIIII // OOOOOOOOOOOO

II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO

IIIIIIIIII // OOOOOOOOOOOO
IIIIIIIIII // OOOOOOOOOOOO

So that you won't need to understand the I/O rules associated with a particular Operating
System, the simple needs of small programs can be satisfied by the following facilities:

 1. An instruction (READCARD) to read 80-character records into a named area in your program,
with provision for optionally transferring control to some out-of-line location if no further
records are available.

 2. An instruction (PRINTLIN) to print line images on a printer file, with carriage control charac-
ters and optional specification of the length of the character string to be printed.

 3. An instruction (PRINTOUT) to:

• print the value of the contents of an area of memory, giving its name as well as the value
of the contents in an easily-readable format.

• print the contents of the General Purpose and Floating-Point registers.

• return control to the Supervisor when program execution has been successfully com-
pleted.

 4. An instruction (CONVERTO) to convert the contents of a General Purpose register to a string of
decimal characters in memory.

 5. An instruction (CONVERTI) to convert decimal characters in memory to a signed binary value
in a General Purpose register.

 6. An instruction (DUMPOUT) to generate a formatted hexadecimal dump of specified areas of
memory.

These macro instructions do not change the Condition Code.

50 SHARE Assembler BootCamp Starter Kit

Macro Facilities
These facilities are provided by the READCARD, PRINTLIN, CONVERTO, CONVERTI, DUMPOUT, and

PRINTOUT macro-instructions.

First, here is a summary of the abbreviations used in the descriptions.

<name> any valid symbol naming an area of memory which is addressable from the point
where it is used in a macro instruction.

<number> any valid self-defining term; limits on the size of the term are described for each
macro. In most cases, a predefined absolute symbol may be used.

<d(b)> any valid operand providing an addressable displacement and base.

<nfs> a valid (and optional) name-field symbol (label) naming the macro in whose
name field it appears.

[optional] square brackets around a term means that it is optional.

... an ellipsis means that the preceding item may be repeated any number of times.

Examples of these macro-instructions are given below.

You may want to precede the first call to any of these macros with a
PRINT NOGEN

statement; otherwise your listing will include many generated statements that won't have much
meaning to you until you've had more experience with z/Architecture processors.

The READCARD Macro-Instruction

READCARD reads records into an 80-byte buffer in the program. This macro is written
<nfs> READCARD <name>[,<name>]
where either <name> operand may also be written as <d(b)>.

It reads a record from the input file into the 80-byte area beginning at the first operand address.
If no record is available, then (1) control is returned to the instruction specified by the second
operand if it is present, or (2) if no second operand is present, execution is terminated with the
message
 *** Execution terminated by Reader EOF

For example,
READCARD MyRecord

will read the next record and place it as an 80-byte EBCDIC character string at the location
named MyRecord; if no record is present, execution will be terminated. The instruction
GetARec READCARD MyRecord,EndFile

does the same as the previous example, except that if no record is available, control will be trans-
ferred to the instruction named EndFile.

The PRINTLIN Macro-Instruction

The PRINTLIN macro-instruction is written in the form
<nfs> PRINTLIN <name>[,<number>]
where the <name> and optional <number> operands may also be written as <d(b).

PRINTLIN causes the character string beginning at the location defined by the first operand to
be printed; the number of characters is specified by the second operand (which may be a prede-
fined absolute symbol). The print-line length is limited to 121 characters.

Useful I/O Macros 51

The first character of the string will be detached and used for spacing control. The ANSI
Standard carriage control characters are:

• an EBCDIC ' ' (blank) means single space,
• an EBCDIC '0' (zero) means double space,
• an EBCDIC '-' (minus) means triple space,
• an EBCDIC '1' (one) means start at the top of a new page, and
• an EBCDIC '+' (plus) means no spacing (the new line will be printed over the previous one).

If the second operand is omitted, the length of the character string is assumed to be 121 bytes,
which means that 120 characters will be printed after the first is detached.1 If the second operand
is present, it is taken to be the length of the string; the number of characters specified will be
placed at the left end of an internal buffer, extended to 121 bytes with blanks if necessary, and
then sent to the printer file. For example, we could write
PrTtl PRINTLIN Title

- - -
Title DC CL121'1Title for top line of the page'

to print the indicated title at the top of a new page. If we wrote
PRINTLIN Title,1

then the printer would skip to the top of a new page and print a blank line there, because only
the spacing control character (the “1”) is transmitted from the program to the print file.

The CONVERTO Macro-Instruction

The CONVERTO macro-instruction is written in the form
<nfs> CONVERTO <number>,<address>

where the <number> is the number of a general or floating-point register, and <address> points to a
string of bytes in storage where the converted result is stored. The <address> operand may also be
written as <d(b)>.

CONVERTO converts the contents of the designated register from binary to decimal characters (for
general registers) or to hexadecimal characters (for floating-point registers). The first character of
the converted result is always blank, so it may be printed immediately using the PRINTLIN macro.

Note that the length of the generated character string is always as specified below; be careful to
allocate enough space for the result so that you won't overwrite other data or instructions.

If the value of the <number> operand does not lie in the range 0 ≤ <number> ≤ 47, the macro
call is ignored.

32-bit General Register
A <number> between 0 and 15 specifies the corresponding 32-bit General Register. For
example, if the operand is 9, the contents of GR9 will be converted to a string of 12 charac-
ters. For example, if c(GR9)=X'80000000', the formatted string will be the 12 characters
(where • is our representation for a blank character):
•-2147483648

64-bit General Register
A <number> between 16 and 31 (less 16) specifies the corresponding 64-bit General Register.
For example, if the operand is 16, the contents of GGR0 will be converted to a string of 21
characters. For example, if c(GG9)=X'80000000 00000000', the formatted string will be the
21 characters (where • is our representation for a blank character):
•-9223372036854775808
Execution on z/Architecture is required.

1 See the discussion at “Operating System Environment and Installation Considerations” on page 57 for information on setting the
default print-line length.

52 SHARE Assembler BootCamp Starter Kit

Floating-Point Register
A <number> between 32 and 47 (less 32) specifies the corresponding Floating-Point Register.
For example, if the operand is 36, the contents of FPR4 will be printed as a string of 20
characters (where • is our representation for a blank character):
•X'FEDCBA9876543210'

Because there are three floating-point representations, and because accurate conversion
from hexadecimal and binary floating-point formats is quite difficult, only hexadecimal values
are displayed.

Be Careful!

If your system does not support z/Architecture instructions or the full set of 16 Floating-Point
registers, trying to display their contents may cause a program interruption for an invalid oper-
ation code or a specification exception.

The CONVERTI Macro-Instruction

CONVERTI is generally used to scan a data record received by the READCARD macro instruction. It
converts a string of optionally signed decimal characters to binary into a specified 32-bit or 64-bit
general register, and sets GR1 to the address of the non-digit character at which scanning was
stopped. This means that you can convert multiple values from the same character string.

The CONVERTI macro-instruction is written in the form
<nfs> CONVERTI <number>,<address>[,ERR=<address>] [,STOP=<address>]
where <number> specifies a general register, and <address> is the starting address of a string of
bytes in storage of characters to be converted to binary. The <address> operand may also be
written as <d(b)>.

The first non-blank character must be a plus sign, a minus sign, or a decimal digit; otherwise,
GR1 is set to the address of that character and the register specified by <number> is unchanged. (If
you expect unusual characters to be scanned, you should specify the STOP= operand on the
CONVERTI statement.)

Be Careful!

Don't specify either 1 or 17 for the <number> operand, because any converted value in GR1 or
GG1 will be replaced by the address of the “stop” character.

The optional keyword operands ERR= and STOP= specify locations in your program where the
CONVERTI will transfer control if certain conditions occur:

ERR= If the value of the <number> operand is greater than 31, or if the value of the significant
decimal digits at the <address> operand is too large to be converted correctly to the
general register specified by the <number> operand, control will be transferred to the
<address> given by the ERR= operand.

STOP= If an invalid character is found in the string of characters starting at the <address>
operand, GR1 is set to the address of that character and control will be transferred to the
<address> given by the STOP= operand. (See example 3 below.)

If either of these conditions occurs and the needed ERR= or STOP= <address> is not specified,
CONVERTI will print a message and terminate the program.

32-bit General Register
A <number> between 0 and 15 specifies the corresponding 32-bit General Register. The
number to be converted must have no more than 10 significant digits. Insignificant leading
zero digits are ignored.

Useful I/O Macros 53

64-bit General Register
A <number> between 16 and 31 (less 16) specifies the corresponding 64-bit General Register.
The number to be converted must have no more than 19 significant digits. Insignificant
leading zero digits are ignored.

Execution on z/Architecture is required.

For example:

 1. Convert the digits at D1 to binary in 32-bit GR3:
CONVERTI 3,D1
- - -

D1 DC C' +019 '

The contents of GR3 will be X'00000013' and GR1 will contain the address of the blank
character following the digit 9.

 2. Convert the digits at D2 to binary in 64-bit GG5:
CONVERTI 21,D2
- - -

D2 DC C'-9223372036854775808 '

The contents of GG5 will be X'8000000 00000000' and GR1 will contain the address of the
blank character following the final digit 8.

 3. The character string at D3 contains several values to be stored at Table. The scan is termi-
nated by the character *.

LA 3,Table
LA 2,D3 Start of string

CvtLoop CONVERTI 0,0(2),STOP=Check Invalid character? Test at Check
ST 0,0(,3) Store an entry at Table
LA 3,4(,3) Point to next Table entry
B CvtLoop Resume converting
- - -

Check CLI 0(1),C'*' Is the invalid character ours?
JNE BadChar No, a bad character appeared
- - -

D3 DC C' +1 -2+3 -0000000000000004 *'

and the four words starting at Table will contain the values 1, −2, 3, and −4.

Providing a known “stop” character lets you scan an input string for all the values pro-
vided. For example, a record stored at InRec by the READCARD macro could be followed by a
stop character:
InRec DS CL80 Buffer area
StopChar DC C'*' Stop character

The PRINTOUT Macro-Instruction

The PRINTOUT macro-instruction lets you print the value of the contents of named areas of
memory, the contents of registers, and to terminate execution.

The operand field of the PRINTOUT macro-instruction may contain any number of <name>s or
<number>s separated by commas, with no intervening blanks. An operand consisting of a single
asterisk will terminate execution. The basic forms of the PRINTOUT macro-instruction are written
<nfs> PRINTOUT <name>[,<number>...]

<nfs> PRINTOUT *

where any combination of the <name> and <number> operands may be used in an operand list;
either may be written in the form <d(b)>. If the asterisk operand is used, it is treated as the last
operand in the list. For example,
AllDone PRINTOUT 0,*

will display the contents of GR0 and then terminate execution.

54 SHARE Assembler BootCamp Starter Kit

A <number> operand with value between 0 and 47 causes the contents of a register to be printed
in hex and decimal; larger values are treated as addresses. The <number> may in most cases be a
predefined absolute symbol.

32-bit General Register
a <number> between 0 and 15 specifies the corresponding 32-bit General Register. For
example, if the operand is 12, the contents of GR12 will be printed:
GPR 12 = X'FFFFFFF3' = -13

64-bit General Register
a <number> between 16 and 31 (less 16) specifies the corresponding 64-bit General Register.
For example, if the operand is 16, the contents of GGR0 will be printed:
 GGR 0 = X'1234567890ABCDEF' = 1311768467294899695

Execution on z/Architecture is required.

Floating-Point Register
a <number> between 32 and 47 (less 32) specifies the corresponding Floating-Point Register.
For example, if the operand is 36, the contents of FPR4 will be printed:
FPR 4 = X'FEDCBA9876543210'

Because there are three floating-point representations, and because accurate conversion
from hexadecimal and binary floating-point formats is quite difficult, only hexadecimal values
are displayed.

Be Careful!

If your system does not support z/Architecture instructions or the full set of 16 Floating-
Point registers, trying to display their contents may cause a program interruption for an
invalid operation code or a specification exception.

To print the contents of the “original” four floating-point registers F0, F2, F4, and F6, we
could write
FourFPRs PRINTOUT 32,34,36,38

Printing the contents of any other Floating-Point Register requires those registers to be
installed and available on your machine.

To print the contents of R14 and then terminate execution, we could write
PRINTOUT X'E',*

To print the contents of memory areas named A, B, and C, we could write
PRINTOUT A,B,C

The format of the output depends on the type attribute of the symbol naming the memory
area:

• Type attribute C (character) data is shown as strings of at most 100 characters.
• Type attribute F or H data are shown as signed decimal numbers.
• If you use forms like PRINTOUT d(b) and d has attributes C, F, or H, the result will be for-

matted as above; otherwise, the data is displayed as 16 hexadecimal digits.
• Other type attributes cause data to be displayed as 2 to 100 hexadecimal digits, depending on

the length attribute of the operand.

Specifying PRINTOUT with no operand is useful for flow tracing; only a header line is printed. An
example is shown below.

PRINTOUT

If you want a comment field on the statement, put a single comma as the operand:
PRINTOUT , Your comments here

Finally, if you want to terminate execution with no message:
PRINTOUT *,Header=NO Terminate quietly

Useful I/O Macros 55

Any value other than “No” (in any mixture of upper and lower case) will be treated as “yes”.

The DUMPOUT Macro-Instruction

The DUMPOUT macro-instruction is written in the form
<nfs> DUMPOUT <name>[,<name>]
where either <name> operand can be written as <d(b)>.

DUMPOUT prints a formatted hexadecimal dump of the area of memory starting with the
fullword containing the first operand, 32 bytes to a line. If the second operand is omitted, one line
will be printed. If the second operand is given, all of memory between the two addresses will be
dumped. The dump starts from the lower of the two addresses and proceeds toward the higher.
The lower address is “rounded down” to a fullword boundary, and 32 bytes are displayed on each
line even if some bytes are at addresses greater than the higher address.2

No checks are made to avoid possible storage access violations. For example,
ADUMP DUMPOUT A

will cause the 32-byte area of memory starting at (or very near) A to be dumped. Similarly,
ABDMP DUMPOUT A,B

would print a dump of the area of memory starting with a line containing the byte at A and
ending with a line which includes the byte named B.

PRINTOUT and DUMPOUT Header

Normally, the output produced by the PRINTOUT and DUMPOUT macros will be preceded by a
“header” line:

*** PRINTOUT requested at Address xxxxxx, Statement sssss, CC=n
or

*** DUMPOUT requested at Address xxxxxx, Statement sssss, CC=n

where sssss is the statement number of the macro, and CC=n shows the current Condition Code
setting.

To suppress this header line, you can specify an additional operand HEADER=NO on the PRINTOUT
or DUMPOUT macro. For example:

PRINTOUT A,B,C,Header=No
ABDMP DUMPOUT A,B,header=no

The default is HEADER=YES.

Usage Notes

 1. All five macros require residence in RMODE(24) storage below the 16MB “line”, and execute
in AMODE(24). The generated code is frequently self-modifying, and is not re-enterable.

 2. Most operands of the form <name>, <d(b)>, and <number> are resolved in S-type address con-
stants, so addressability is required when all macros except $$IOGEN are invoked.

 3. When you execute a macro, be sure that the base register used at assembly time to resolve the
S-type constants has the correct address at execution time.

 4. Be careful not to reference areas outside your program, as you may risk interruptions for
memory protection violations.

 5. If you use PRINTOUT to display named areas of memory, it uses the name's attributes for
formatting the result.

2 That is, the dump is from (LowAddr/4)×4 to (LowAddr/4)×4 + ((HighAddr+31)/32)×32.

56 SHARE Assembler BootCamp Starter Kit

 6. At most eight characters of the <name> and <d(b)> operands are displayed. If you write
PRINTOUT 00000000(3),00000000(7)

the eight bytes addressed by registers GR3 and GR7 will be displayed in hexadecimal, but
both with have the “name” 00000000.

Operating System Environment and Installation Considerations

First, place the macro definitions in a macro library accessible to the Assembler. The default
print-line length (121) can be changed in the PRINTLIN macro, and in the $$GENIO macro by modi-
fying the variable &$$PLL. The default DDnames are
Print MVS/CMS=SYSPRINT, VSE=SYSLST
Read MVS/CMS=SYSIN, VSE=SYSIPT

and can be changed by modifying the &$$ONAM and &$$INAM variable symbols in macro $$GENIO.

The $$GENIO macro is complex. It generates the $$IOSECT CSECT with six entry points. It can
be used in two ways:

 1. The instructions in the $$IOSECT can be generated as part of the user's program, if the variable
symbol &$$LIBIO is set to 0 in the first few lines of the $$GENIO macro. This is simpler, but
causes an “invisible gap” in the statement numbers of the listing. The hidden statements can
be displayed by specifying the Assembler option PCONTROL(GEN,ON) but the generated code will
be confusing to all but advanced students.

 2. Alternatively, you can generate the $$IOSECT instructions into a separate module. (This has
the advantage of hiding the complexities of the $$GENIO macro, but requires a little bit more
initial setup.) First, set the &$$LIBIO variable symbol to 0, and create and assemble this short
program:

$$GENIO
End

Link the generated object module into a library accessible at program linking and loading
time. Then, change the $$LIBIO variable symbol to 1 to suppress subsequent inline generation,
and store the macro back in the macro library.

All symbols generated in the expansions of these macros begin with the two characters $$. If
this conflicts with your conventions (or desires), change each occurrence of '$$' to whatever two
other characters you like. (The symbol cross-reference for any assembly using these macros will
include many symbols starting with those two characters.)

The macros have been extensively tested under MVS, CMS, and VSE, and are set up to run
under MVS or CMS as the default. To run them under VSE, change the &$$DOS SETB statement
(near the front of the $$GENIO macro definition) according to the instructions there. Similarly, to
change the default file names or print line length, modify the following SETC statements as indi-
cated there.

Useful I/O Macros 57

The following figure shows how the DEMOA program can be modified for host execution with the macro-
instructions described here. Modifications to the original program are shown in lower case letters.

Loc Object Code Addr1 Addr2 Stmt Source Statement

1 print nogen
2 ***********************************
3 * *
4 * THIS PROGRAM IS THE FIRST EXAM- *
5 * PLE IN THE OVERBEEK/SINGLETARY *
6 * BOOK. (Modified a little) *
7 * *
8 ***********************************

 000000 00000 000FC 9 ADD2 CSECT
R:F 00000 10 using *,15

 000000 11 dumpout add2,end
 000028 5810 F0F0 000F0 510 L 1,a
 00002C 511 printout 1
 00005C 5820 F0F4 000F4 523 L 2,b
 000060 524 printout 2
 000090 1A12 536 AR 1,2
 000092 0009C 537 printout 1
 0000C0 5010 F0F8 000F8 549 ST 1,c
 0000C4 0700 550 dumpout add2,end
 0000EC 07FE 560 BCR B'1111',14
 0000EE 0000
 0000F0 00000004 561 a DC F'4'
 0000F4 00000006 562 b DC F'6'
 0000F8 563 c DS F

000FC 564 end equ *
 000000 565 END ADD2

 *** DUMPOUT requested at Address 021000, Statement 11, CC=1
 021000 070090EF F00C58F0 F01405EF 00F126CA 00021000 00021100 00021000 0000000B *....0..00....1..................*
 021020 F000F0FC 98EFE000 5810F0F0 070090EF F03858F0 F04005EF 00000000 00000000 *0.0.q.....00....0..00*
 021040 0002111C 0002102C 000001FF A0070001 F1404040 40404040 98EFE000 5820F0F4 *................1 q.....04*
 021060 070090EF F06C58F0 F07405EF 00000000 00000000 0002111C 00021060 0000020C *....0%.00..................-....*
 021080 A0070002 F2404040 40404040 98EFE000 1A1290EF F09C58F0 F0A405EF 00000000 *....2 q.......0..00u......*
 0210A0 00000000 0002111C 00021092 00000219 A0070001 F1404040 40404040 98EFE000 *...........k........1 q...*
 0210C0 5010F0F8 070090EF F0D058F0 F0D805EF 00000000 00000000 00021100 000210C4 *&.08....0..00Q.................D*
 0210E0 00000226 F000F0FC 98EFE000 07FE0000 00000004 00000006 00000000 00000000 *....0.0.q.......................*
 *** PRINTOUT requested at Address 02102C, Statement 511, CC=1
 GPR 1 = X'00000004' = 4
 *** PRINTOUT requested at Address 021060, Statement 524, CC=1
 GPR 2 = X'00000006' = 6
 *** PRINTOUT requested at Address 021092, Statement 537, CC=2
 GPR 1 = X'0000000A' = 10
 *** DUMPOUT requested at Address 0210C4, Statement 550, CC=2
 021000 070090EF F00C58F0 F01405EF 00F126CA 00021000 00021100 00021000 0000000B *....0..00....1..................*
 021020 F000F0FC 98EFE000 5810F0F0 070090EF F03858F0 F04005EF 00F126CA 00021000 *0.0.q.....00....0..00 ...1......*
 021040 0002111C 0002102C 000001FF A0070001 F1404040 40404040 98EFE000 5820F0F4 *................1 q.....04*
 021060 070090EF F06C58F0 F07405EF 00F126CA 00021000 0002111C 00021060 0000020C *....0%.00....1.............-....*
 021080 A0070002 F2404040 40404040 98EFE000 1A1290EF F09C58F0 F0A405EF 00F126CA *....2 q.......0..00u...1..*
 0210A0 00021000 0002111C 00021092 00000219 A0070001 F1404040 40404040 98EFE000 *...........k........1 q...*
 0210C0 5010F0F8 070090EF F0D058F0 F0D805EF 00F126CA 00021000 00021100 000210C4 *&.08....0..00Q...1.............D*
 0210E0 00000226 F000F0FC 98EFE000 07FE0000 00000004 00000006 0000000A 00000000 *....0.0.q.......................*

58 SHARE Assembler BootCamp Starter Kit

Assembler Boot Camp: PC and Lab Usage Notes
 1. To use ASSIST/I from a CD-ROM or flash drive, install the files on a hard drive. (You may wish to

copy the entire CD or flash drive contents to a ABC directory on your hard drive.)

• Click Start, then Programs, then Accessories, then Command Prompt. (It may already be an icon on
your desktop.)

• If the prompt shows anything other than C>ABC, enter whatever cd .. and cd ABC commands are
needed to get to the ABC directory, and then type cd BOOTASST. Then, enter CAS, and you're ready to
go.

 2. The ASSIST/I software is also installed on the workstations in the SHARE “Lab”.

• From the Windows desktop, click the BootAsst folder; then click CAS.EXE, and you're ready to go.
(You may need to click on “'My Computer'” first.)

Running a Program

To run a program: enter R (Don't press Enter!), then the name of the program (something like, XXX.ASM).
For example, to run the first demo program, enter DEMOA.ASM; then press Enter.

Program Entry and Editing

• Click Start, then Programs, then Accessories, then Notepad, and enter your program. Click File, then
Save As, and enter the program name (say, XXX.ASM). Then, in the BootAsst folder, right-click the file
name, then Rename, and remove the .txt extension, if any.3

− Or, in CAS, enter E, then the name of the file (as described in “Editing Programs” on page 17). Be
careful: the Assist/I editor is quite difficult to use, and it's easy to get lost.

• The first line of your program should be a comment (* in column 1) with your name. (This is so your
printed output — in case we have access to a printer! — can find its way back to you. The printer may be in
a different or restricted-access area, so someone may have to pick up the outputs for you.)

• The rest of the program, except for comments, should be in upper case letters.

• Put a $ENTRY line after the END statement.

Program Printing

To print a program: enter P, then the name of the program output (say, XXX.PRT). Or, in the BootAsst
folder, right-click the file and then click Print.

Alternatively, at the command prompt, enter notepad XXX.PRT, and then click the File drop-down list, and
then click Print.

3 Under Windows (TM) you can change the Folder Options to no longer “Hide extensions for known file types”, so that Windows
won't automatically append a file type without your knowing it.

Assembler Boot Camp: PC and Lab Usage Notes 59

