
 Now Showing: VM Performance - How To Turn
Massive Data Into Meaningful Information

SHARE Anaheim
Session 8533

Presented by:
David Kreuter

All Rights Reserved 2011 2

 Now Showing: VM Performance - How To Turn
Massive Data Into Meaningful Information

Abstract: Most of us have been challenged to produce a concise representation of the
health of our VM environments. We have vast amounts of data but, for that data to
be useful, we need to produce graphic charts showing resource utilization on a
regular basis. The Performance Toolkit produces detailed data in reports but has a
limited graphic capability. This presentation will show advanced usage of the CMS
PIPELINES SPEC stage to perform summing, averaging, and other calculations on
Performance Toolkit Data. This CSV data is then delivered to a workstation where it
is transformed into graphs using, gulp, MSExcel. All in all a Rube Goldbergesque
method nonetheless producing important data on a regular basis. Come see how
SPECS, the PERFKIT Hunsberger tool, and ACUM data fit together.

All Rights Reserved 2011 3

 Presentation Goals

● Produce charts showing meaningful performance data.
● MSExcel charting.

● The performance data is in PERFKIT SUMMARY and
ACUM files.

● Transform the data into Comma Separated Variable
(CSV) format.

● Ian Hunsberger tool available from the PERFKIT web page.
● Process performance data in CMS using PIPELINES

● The powerful SPECS stage
● Works with Velocity data too!

All Rights Reserved 2011 4

 SPECS: Elsewhere in CMS?

● COPYFILE:

CMS COPYFILE All Help Information line 148 of 951
SPecs
 indicates you are going to enter a specification list to define how
 records should be copied. For more information on how you can define
 output records in a specification list, see Usage Note 10.

● Limited and weak as compared to the PIPELINE SPECS
stage.

● But from a single acorn a mighty oak does grow!

All Rights Reserved 2011 5

 COPYFILE (SPECS example

type cities list a
Austin
Seattle
Boston
Kansas City
Toronto

type cities newlist a
Cities: Austin with SHARE conferences?
Cities: Seattle with SHARE conferences?
Cities: Boston with SHARE conferences?
Cities: Kansas City with SHARE conferences?
Cities: Toronto with SHARE conferences?

copy cities list a = newlist = (specs
DMSCPY601R Enter specification list:
/Cities:/ 1 1-15 9 /with SHARE conferences?/ 30

All Rights Reserved 2011 6

 SPECS: eye ko ooh ah (ICOA)
● Basic specs: Input Conversion Output Alignment
type cities list a
Austin
Seattle
Boston
Kansas City
Toronto
pipe < cities list a
| specs /Cities:/ 1 1-* strip nw /with SHARE conferences?/ nw
|console
Cities: Austin with SHARE conferences?
Cities: Seattle with SHARE conferences?
Cities: Boston with SHARE conferences?
Cities: Kansas City with SHARE conferences?
Cities: Toronto with SHARE conferences?

Eye ko ooh ah?

Input
Conversion
Output
Alignment

All Rights Reserved 2011 7

 pipe < cities list a|specs 1-* nw.15 center 1-* c2x nw.26|console
 Austin C1A4A2A3899540404040404040
 Seattle E28581A3A39385404040404040
 Boston C296A2A3969540404040404040
 Kansas City D28195A281A240C389A3A84040
 Toronto E396999695A396404040404040

Eye ko ooh ah?

Input
Conversion
Output
Alignment

input

conversion

output

specs 1-* nw.15 center 1-* c2x nw.26

All Rights Reserved 2011 8

 specs /Cities:/ 1 1-* strip nw /with SHARE conferences?/ nw

input

output

input

output

conversion

input

output

PIPELINEs SPEC stage
has great data organizing
power

All Rights Reserved 2011 9

 PIPELINE Run Time Library

● Available from: http://vm.marist.edu/~pipeline/

Required for the niceties of SPEC

http://vm.marist.edu/~pipeline/

All Rights Reserved 2011 10

 The CSVGEN Tool: required for data
transformation

● Available from: www.vm.ibm.com/related/perfkit/csvgen.html

All Rights Reserved 2011 11

 HIST COPY SP_FCA2 COPY SP_FCA4 COPY
 SP_FCA6 COPY SP_FCA7 COPY SP_FCA8 COPY
 SP_FCA9 COPY SP_FC0A COPY SP_FC0B COPY
 SP_FC00 COPY SP_FC01 COPY SP_FC02 COPY
 SP_FC03 COPY SP_FC04 COPY SP_FC05 COPY
 SP_FC06 COPY SP_FC07 COPY SP_FC08 COPY
 SP_FC09 COPY SP_FC3A COPY SP_FC3C COPY
 SP_FC3E COPY SP_FC41 COPY SP_FC42 COPY
 SP_FC43 COPY SP_FC44 COPY SP_FC45 COPY
 SP_FC46 COPY SP_FC51 COPY SP_FC55 COPY
 SP_FC56 COPY SP_FC6D COPY SP_FC6F COPY
 SP_FC61 COPY SP_FC65 COPY SP_FC68 COPY
 SP_FC71 COPY SP_STRCT COPY SP_TCP08 COPY
 SUMMARY COPY TRNDHEAD COPY FINALIZE XEDIT
 TOD2 EXEC CSVGEN EXEC CSVGEN PDF

 pipe cms vmarc list csvgen vmarc b
 |specs w1.2 1.22 read w1.2 nw.22 read w1.2 nw .22
 |cons

CSVGEN package contents

All Rights Reserved 2011 12

 PERFKIT Data Sources and
Performance Modes

● PERFKIT processes data from the CP MONITOR
DATA and from CP control blocks.

● PERFKIT does real time displays.
● PERFKIT also can save data in history and trend files.
● History and trend data can be processed by PERFKIT

with the HISTDATA and TRNDSCAN commands
● But is hard to use to produce meaningful graphic data

for analysis and capacity planning purposes!

All Rights Reserved 2011 13

The PERFKIT HISTSUM files

● Summary file saved on disk in ACUM HISTSUM
containing one record per hour

● Controlled by:
 FCONTROL SETTINGS HISTFILE NEW

● Records may be tailored in the FCONX SUMREC

file, default contents:
 RECORDS CHANNEL NSS DSPACES USER DASD SEEKS SCSI VSWITCH VNIC QDIO
 RECORDS SFS MTUSER TCPIP RSK LINUX

● Format of records shown in Appendix D of
Performance Toolkit Reference SC24-6210-00

All Rights Reserved 2011 14

Data Flows
CP MONITOR DATA CP CONTROL BLOCKS

PERFORMANCE TOOLKIT

ACUM HISTSUM

VMR_HIST CSV

EXCEL SHEETS AND
CHARTS

All Rights Reserved 2011 15

csvgen h acum histsum z a vmr

 CPU 00: CTIME=90:56 VTIME=005:47 TTIME=005:49
 IO=081479

 csvgen h acum histsum z a vmr
 Ready; T=545.62/546.98 17:53:27

 CPU 00: CTIME=91:07 VTIME=014:52 TTIME=014:56
 IO=159383

Input file

H = history file
S = summary
T = trend

Output fm

Output fname preface

CSVGEN
burns a lot
of CPU and
does a
bunch of i/o
too!

All Rights Reserved 2011 16

CSVGEN burns a lot of CPU and
does a bunch of I/O too!

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS
ACUM HISTSUM Z1 V 1468 8513 3056

2010030410:12:03Eµõ§R y Ü Ã{ o
2010030411:00:18Eµ¹=mßÒ Ü Ã{ o
2010030412:00:18EµXXö ½-Ü Ã{ o

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS
VMR_HIST CSV A1 F 10240 8516 21290

Date,Time,TOD,RECNO,CPUID,SYSTEMID,CPLEVEL,El_Time
Date,Time,Time-of-day,Record #,CPU serial #,VM sys
20100304,10:12:03,2010/03/04 10:12:03.848698,FC01,
20100304,11:00:18,2010/03/04 11:00:18.685342,FC01,

Raw data

CSV
data

All Rights Reserved 2011 17

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS
ACUM HISTSUM Z1 V 1468 8513 3056

2010030410:12:03Eµõ§R y Ü Ã{ o
2010030411:00:18Eµ¹=mßÒ Ü Ã{ o
2010030412:00:18EµXXö ½-Ü Ã{ o

Raw data

0

50

100

150

200

250

300

201004 201005 201006 201007 201008 201009 201010 201011 201012 201101

CPU %

Real I/O Rate

Virtual I/O Rate

Meaningful data

All Rights Reserved 2011 18

201004, 47.64, 210.79, 252.02, 720
201005, 42.25, 187.48, 214.60, 744
201006, 45.72, 180.14, 208.49, 722
201007, 51.30, 217.95, 247.83, 744
201008, 52.10, 216.99, 250.95, 744
201009, 58.42, 215.89, 251.19, 720
201010, 69.60, 187.19, 228.61, 744
201011, 68.85, 178.33, 189.98, 720
201012, 56.35, 225.33, 251.92, 744
201101, 52.45, 216.54, 236.35, 744

yyyymm

Entries per
month

CPU %

I/O Rate

vio Rate

2. Excel Spreadsheet
Populated by
Copy/Paste or FTP

yyyymm cpu % io rate vio rate

201004 47.64 210.79 252.02

201005 42.25 187.48 214.6

201006 45.72 180.14 208.49

201007 51.3 217.95 247.83

201008 52.1 216.99 250.95

201009 58.42 215.89 251.19
201010 69.6 187.19 228.61

201011 68.85 178.33 189.98

201012 56.35 225.33 251.92

201101 52.45 216.54 236.35

1. CMS File: TRYIO1A MONTSUM
(created by the TRYIO1A EXEC)

All Rights Reserved 2011 19

0

50

100

150

200

250

300

201004 201005 201006 201007 201008 201009 201010 201011 201012 201101

CPU %

Real I/O Rate

Virtual I/O Rate

Create a chart using EXEC charting facilities. No calculation
performed in MSExcel (no formulas, macros, etc.)

All Rights Reserved 2011 20

The next four slides

● The code for the TRYIO1A EXEC shown.
● Do some plumbing:

● Read the VMR_HIST CSV
● Speculate
● Write out two files:

● Stream 0: TRYIO1A DAILY
● Stream 1: TRYIO1A MONTSUM

All Rights Reserved 2011 21

/**/
parse source . . xcnm xctyp . . how .

/*
field 1: date
field 2: time
field 11: CPU percentage
field 10: # of cpus
field 25: io rate
field 46: vio rate
*/

'PIPE (endchar ?) ',
' < VMR_HIST CSV A',
 '| DROP 2',
 '| DROP LAST',

Source code 1 of 4

All Rights Reserved 2011 22

' | s: specs',
 ' printonly a ', /* print only the break record a */
 ' fieldsep , ' ,
 ' select second ', /* use second buffer station */
 ' a: f1 1' , /* define field a */
 ' b: f11 .', /* define field b to be summed/averaged */
 ' c: 1.6 .', /* yyyymm */
 ' h: f25 .', /* io rate */
 ' i: f46 .', /* vio rate */
 ' q: f10 .', /* number of cpus */
 ' set #0+=b', /* compute CPU into counter 0 */
 ' set #1+=b', /* compute CPU into counter 1 */
 ' set #2+=1', /* how many items summed into counter 2 */
 ' set #3+=1', /* how many items summed into counter 3 */
 ' set #10+=i', /* io count */
 ' set #11+=i', /* io count */
 ' set #12+=h', /* io count */
 ' set #13+=h', /* io count */
 ' break a', /* break on changes to a */

Source code 2 of 4

All Rights Reserved 2011 23

' break a', /* break on changes to a */
' print ((#0/#2)/q; #0:=0) picture zzz9.99 strip nw',
 ' /,/ N ',
 ' print (#2; #2:=0) picture zzzz9 nw ',
 ' /,/ N ',
 ' print (#10; #10:=0) picture zzzz9 nw ',
 ' /,/ N ',
 ' print (#12; #12:=0) picture zzzz9 nw ',
 ' /,/ N ',
 ' write ' ,
 ' break c',
 'if #3>=(28*24)',
 ' then ',
 ' print c 1.6 left',
 ' /,/ N ',
 ' print ((#1/#3)/q; #1:=0) picture zzz9.99 strip nw',
 ' /,/ N ',
 ' print ((#11/#3)/q; #11:=0) picture zzz9.99 strip nw',
 ' /,/ N ',
 ' print ((#13/#3)/q; #13:=0) picture zz9.99 strip nw',
 ' /,/ N ',
 ' print (#3; #3:=0) nw.3 right',
 ' outstream 1',
 'else ',
 'set (#3:=0;#1:=0;#11:=0;#13:=0)',
 'endif',

Source code 3 of 4

All Rights Reserved 2011 24

 'if #3>=(28*24)',
 ' then ',
 ' print c 1.6 left',
 ' /,/ N ',
 ' print ((#1/#3)/q; #1:=0) picture zzz9.99 strip nw',
 ' /,/ N ',
 ' print ((#11/#3)/q; #11:=0) picture zzz9.99 strip nw',
 ' /,/ N ',
 ' print ((#13/#3)/q; #13:=0) picture zz9.99 strip nw',
 ' /,/ N ',
 ' print (#3; #3:=0) nw.3 right',
 ' outstream 1',
 'else ',
 'set (#3:=0;#1:=0;#11:=0;#13:=0)',
 'endif',
' | > ' xcnm 'DAILY A',
'?',
's:',
' | > ' xcnm 'MONTSUM A'

Source code 4 of 4

All Rights Reserved 2011 25

SPECing concepts used:
● Field separator
● Multistream output
● Alignment
● Stripping
● Counters
● Read stations
● Break records
● Printing
● Logic

All Rights Reserved 2011 26

s: specs',
< other specing >
break a',
'print ((#0/#2)/q; #0:=0) picture zzz9.99 strip

nw',
 < other print statements>
' write ,
'break c',
< other specing >
 ' print c 1.6 left',
 ' < other print statements>
 'outstream 1',
 '| > ' xcnm 'DAILY A',
'?',
's:',
' | > ' xcnm 'MONTSUM A'

Declare multistream specs
(s: specs), when changes to
field a (break a) print some
records,
Write them to primary output
stream – TRYIO1A DAILY --
(write), when changes for field
c (break c) print some records,
direct to output stream 1
(outstream 1), second pipe (s:)
write to TRYIO1A MONTSUM.

Not all spec items
shown

All Rights Reserved 2011 27

' printonly a ', /* print only the break record a */
 ' fieldsep , ' ,
 ' select second ', /* use second buffer station */
 ' a: f1 1' , /* define field a yyyymmhh */
 ' b: f11 .', /* define field b to be summed/averaged */
 ' c: 1.6 .', /* yyyymm */
 ' h: f25 .', /* io rate */
 ' i: f46 .', /* vio rate */
 ' q: f10 .', /* number of cpus */

Print only on the break record (printonly a). The
break record is a daily summary. Declare fields (a:
f1 1 … q: f10 .).
Use the second buffer station (select second).
Use the comma as the field separator (fieldsep ,)

Verbatim spec coding

All Rights Reserved 2011 28

Second reading station and record
breaks

select second
a: f1 1
< setup the record, calculations, etc >
break a
●After each cycle, spec loads the record on the primary input
stream into a buffer that is called the second reading station,
or “second reading” for short.
● Field a is the yyyymmdd.
●The control break is active while the last record having a
particular key (same yyyymmdd) is being processed.
● The record that causes (not equal) the break is in the first
reading station and moved to the second reading station after
the break.

All Rights Reserved 2011 29

Second reading station and record
breaks

 select second
 c: 1.6 . /* yyyymm */
 < other specifications >
 break c

● Record break in field c (yyyymm) will form output record with
monthly summary records for secondary output stream
(outstream 1).

● Field c is not in the output record.
● So a break hierarchy is created, break a for changes on

yyyymmdd (daily), break c on changes on yyyymm (monthly)

All Rights Reserved 2011 30

Field identifiers

 a: f1 1 , /* define field a */
 b: f11 . , /* define field b to be sum/avg'd*/
 c: 1.6 . , /* yyyymm */
 h: f25 . , /* io rate */
 i: f46 . , /* vio rate */
 q: f10 . , /* number of cpus */

● Fields are identified by a lower or upper case letter
followed by a colon. There are fifty-two possible fields
available to the speculative plumber.

Verbatim spec coding

All Rights Reserved 2011 31

Counter expressions: Calculations
and reset

set #0+=b /* compute CPU into counter 0 */
set #1+=b /* compute CPU into counter 1 */
set #2+=1 /* how many items summed into counter 2 */
set #3+=1 /* how many items summed into counter 3 */
set #10+=i /* vio count */
set #11+=i /* vio count */
set #12+=h /* io count */
set #13+=h /* io count */

● Counter is identified as zero or positive with no limit on
the number of counters. A counter commences with the
sign.

● Specs has an alu (arithmetic logic unit). The alu has many
operations – showing adding field values to a counter
(accumulators) using the set specification.

Almost Verbatim spec coding

All Rights Reserved 2011 32

Logic

break c
if #3>=(28*24)
 then
 print c 1.6 left /,/ N
 < more print statements >
 print (#3; #3:=0) nw.3 right
 outstream 1
 else
 set (#3:=0;#1:=0;#11:=0;#13:=0)
 Endif

● Specs has a wide range of logic and conditional capabilities. This example shows
an if/then/else/endif construct testing if there are 28 or more daily records at
break c. If there are equal to or greater than 28 days of records then print to
outstream 1 and reset counters, else it is a short month (from the input) in which
case reset the counters to 0

Pruned the spec coding

All Rights Reserved 2011 33

Print and pictures

 break a /* break on changes to a */
 print ((#0/#2)/q; #0:=0) picture zzz9.99 strip nw /,/ N
 print (#2; #2:=0) picture zzzz9 nw /,/ N
 print (#10; #10:=0) picture zzzz9 nw /,/ N
 print (#12; #12:=0) picture zzzz9 nw /,/ N
 Write

● On the break record (a) Print to the output record by using the alu
counter 0 divided by counter 2 (CPU percentage divided by number
of processors), reset counter to 0, print counters 2, 10, and 12 in the
next words and reset counters 2, 10 and 12 to zeroes. The picture
specification controls the way a counter is formatted. The z is used
to select significant digits, the 9 is used to select a digit in that
position. Write to the selected output stream, default is stream 0.

● The contents of the print records in this slide are formatted to include
the /,/ n on each line.

All Rights Reserved 2011 34

Print and pictures: on break c (yyyymm)

print c 1.6 left /,/ N
print ((#1/#3)/q; #1:=0) picture zzz9.99 strip nw, /,/ N
print ((#11/#3)/q; #11:=0) picture zzz9.99 strip nw, /,/ N
print ((#13/#3)/q; #13:=0) picture zz9.99 strip nw, /,/ N
print (#3; #3:=0) nw.3 right
Outstream 1

● On the break record (c) Print to the output record using the alu the results of
counter 1 divided by counter 3 divided by field q, (accumulated monthly
cpu % divided by the amount of records divided by the amount of CPU's),
reset counter 1 to zeroes. Then counters 11/3/field q (vio rate summary) ,
counters 13/3/field q (real I/O rate), number of records, reset counters to 0
appropriately. Pictures abound.

● The contents of the print records in this slide is formatted to include
the /,/ n on each line.

All Rights Reserved 2011 35

Not presented 'cause not coded
● Almost the full set of REXX functions may be

spec'ed
● Boolean operations
● String processing
● Named fields – very cool especially with

PERFKIT data.

All Rights Reserved 2011 36

Jury rigging refers to makeshift repairs or temporary contrivances, made with only the tools
and materials that happen to be on hand. Originally a nautical term, on sailing ships a jury rig
is a replacement mast and yards improvised in case of damage or loss of the original mast.

Let's see some
jury riggging with
SPECS and CSV
data!

All Rights Reserved 2011 37

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CPU Percentage

DASD Paging Rate

XSTORE Paging Rate

Use fields 11,
10, 65 and 84
(CPU busy, #
of IFLs,
DASD page
rates,
XSTORE
page rates
rates) and
jury rigged for
charting.

All Rights Reserved 2011 38

0

1000

2000

3000

4000

5000

6000

7000

8000

vm44 vm33 vm22qa vm11dev

Disk Paging Maximums, Average and Minimums 15 Minute Interval

Page Peak

Page Average

Page Minimum

Use field
65 (dasd
page
rates) and
jury
rigged for
minimum
average
and
maximum

All Rights Reserved 2011 39

0

1000

2000

3000

4000

5000

6000

vm44 vm33 vm22qa vm11dev

XSTORE Paging Maximums, Average and Minimums 15 Minute Intervals

XSTORE Maximum

XSTORE Average

XSTORE Minimum

Use field
84 (xstore
rates) and
jury
rigged for
minimum
average
and
maximum

All Rights Reserved 2011 40

Velocity Data
● Velocity data produces CSV data as part of the
product.
● Plugs in beautifully to the super spec'ing
methods.
● No intermediate data transformation required.
● Used recently to process Linux data that was
already in CSV format.
● Produced reports showing highest CPU
consuming process ids, (PIDs), and program
name.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

