Introduction to the new Linux on System z Terminal Server using IUCV

Session 8463
3:00 PM on Monday, February 28, 2011
Room 203B, Anaheim Convention Center
Introduction to the new Linux on System z Terminal Server using IUCV

Agenda

• Introduction
 – How can IUCV terminals help you?

• Working with IUCV terminals
 – What does an IUCV terminal environment look like?
 – Establishing terminal sessions

• Setting up your IUCV terminal environment
 – Setting up target systems
 – Setting up a terminal server

• Summary and Conclusion
Introduction
Why do you need IUCV terminals?

- **Ask yourself**
 - How often did you reconfigure your network setup using a line-mode terminal?
 - Can you use “ed” to change and correct your configuration files?
 - *Why not using vi or emacs?*
How can IUCV terminals help you?

- Full-screen terminal access to Linux instances on the same z/VM
- Access Linux instances that are not connected to an Internet Protocol (IP) network

- Use cases
 - Provide an alternative terminal access to 3270 and 3215 line-mode terminals
 - Increase availability by providing emergency access if the network for a target system fails
 - Centralize access to systems by providing a terminal server environment
 - Heighten security by separating user networks from administrator networks or by isolating sensitive Linux instances from public IP networks
Working with IUCV terminals
What are Linux terminals and consoles?

- **Linux terminals**
 - Input/output devices through which users interact with Linux and Linux applications
 - Terminals differ in their modes and capabilities

- **Linux consoles**
 - Consoles are output devices which display Linux kernel messages
 - The preferred console
 - The preferred console is the device which displays messages during the boot process when the 'init'-program is called

- **Linux terminal device drivers typically provide combined terminal/console devices**
What is z/VM IUCV and how does Linux use it?

- **Inter-user communication vehicle (IUCV)**
 - A z/VM CP interface for passing data between virtual machines or between CP and a virtual machine

- **The Linux kernel includes IUCV**
 - Base IUCV layer (intra-kernel API)
 - Collaborative Memory Management (CMM), monreader, and vmlogrdr
 - AF_IUCV – *Addressing family for network sockets*
 - IUCV hypervisor console (HVC) terminal device driver
Introducing the IUCV terminal programs

• **IUCV terminal programs (s390-tools)**
 - *iucvconn* – Start terminal connection over IUCV
 - *iucvtty* – Allow remote logins over IUCV
 - *ts-shell* – Login shell for setting up a terminal server using IUCV
 - *chiucvallow* – Restrict access to IUCV HVC terminals

• **Terminal access over IUCV is provided by**
 - iucvtty
 - IUCV hypervisor console (HVC) device driver (Linux kernel)
What does an IUCV terminal environment look like?

Introduction to the new Linux on System z Terminal Server using IUCV
Establishing terminal sessions (iucvttty)

- **iucvconn establishes terminal sessions**
 - Socket communication is based on the AF_IUCV address family
 - Addressing is based on z/VM user ID and an terminal identifier ("term1")

- **iucvttty waits for incoming connections and starts /bin/login to log on users**

```
Linux
   IUCV device driver
   AF_IUCV
   iucvconn

"term1"

Linux
   IUCV device driver
   AF_IUCV
   iucvttty

"term1"

Target system

```

```bash
iucvttty

login program

term1

h2

h3
```
Establishing terminal sessions (z/VM IUCV HVC DD)

- IUCV HVC device driver provides up to 8 terminal devices (/dev/hvc)
 - Using the terminal identifiers “lnxhvc0” .. “lnxhvc7”

- hvc0 can be activated as (preferred) Linux console
What is the difference between iucvtty and IUCV HVC?

<table>
<thead>
<tr>
<th>Criteria</th>
<th>iucvtty</th>
<th>IUCV HVC device driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>s390-tools</td>
<td>Linux kernel</td>
</tr>
<tr>
<td>Number of terminal instances</td>
<td>> 8</td>
<td>max. 8</td>
</tr>
<tr>
<td>Terminal identifiers</td>
<td>variable</td>
<td>fixed</td>
</tr>
<tr>
<td>Direct root login</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Receiving kernel messages</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Acting as preferred console</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Restricting access to terminals</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Typical use case</td>
<td>administrative access</td>
<td>emergency access</td>
</tr>
</tbody>
</table>
What else can you do with iucvconn?

- **Accessing special functions through escape characters**
 - Use Ctrl+_ followed by “d” to disconnect terminal sessions

- **Creating terminal session transcripts**
 - Writing the terminal data stream to a log file (transcript)
 - Replaying transcripts with realistic output delays
What you can do with ts-shell?

• **ts-shell helps you to:**
 – Set up a terminal server to simplify system administration by providing a central access point
 – Authorize users to establish IUCV terminal connections to specific target systems
 – Improve auditing through creating transcripts of terminal sessions with target systems
 – Restrict users from getting access to the terminal server system

• **In a ts-shell session, you can:**
 – List your authorizations
 – Establish terminal connections
How can you secure an IUCV terminal environment?

- ts-shell user authorizations
- ts-shell authorizations
- iucvtty permissions
- Login prompt

Diagram:

- z/VM
 - ts-shell
 - user a
 - user b
 - iucvconn
 - Terminal server
 - z/VM IUCV authorizations

- iucvtty 1
- iucvtty 2
 - hvcO
 - Target system
 - z/VM user ID filter
 - Login prompt
Setting up your IUCV terminal environment
Setting up target systems with IUCV HVC devices

1. **Specifying the number of IUCV HVC devices**
 - Set kernel parameter: `hvc_iucv=2`

2. **Enabling user logins**
 - Start a getty program on the terminal through `/etc/inittab`

     ```
     h0:2345:respawn:/sbin/agetty -L 9600 hvc0 xterm
     h1:2345:respawn:/sbin/agetty -L 9600 hvc1 xterm
     ```

3. **Permitting root logins**
 - List hvc device nodes in `/etc/securetty`

4. **Activating hvc0 to receive Linux kernel messages**
 - Set kernel parameter: `console=hvc0 console=ttyS0`
Setting up target systems with iucvtty

1. Choose a terminal identifier
 - For example: lxterm1

2. Enabling user logins
 - Start the iucvtty program through /etc/inittab

```
i1:2345:respawn:/usr/bin/iucvtty lxterm1
```
Setting up a terminal server for iucvconn

- **Authorize the z/VM guest virtual machine for IUCV**
 - Add an IUCV user directory statement, for example, `IUCV ANY`
 - The z/VM user directory for a terminal server might look like:

```plaintext
USER T6313004 XSECRETX 768M 1G G
* General statements
  IPL 0150
  MACH ESA 8
* IUCV authorization
  IUCV ANY
  OPTION MAXCONN 128
* Generic device statements
  CONSOLE 0009 3215 T
  SPOOL 000C 2540 READER *
* ...
Establishing terminal connections with iucvconn

```
hans@larsson:~$ ssh hans@t6313004
Password:

hans@t6313004:~$ iucvconn T6313005 lxterm1
login: hans
Password:

[hans@t6313005 ~]$ ls
[hans@t6313005 ~]$ ps
 PID TTY TIME CMD
 1731 pts/0 00:00:00 bash
 1762 pts/0 00:00:00 ps
[hans@t6313005 ~]$
```
Setting up a terminal server for ts-shell

- Creating a group and a user for ts-shell

```bash
groupadd testgrp
useradd -m -s /usr/bin/ts-shell -g ts-shell -G testgrp bob
```

- Granting authorizations to ts-shell users

  - Edit `/etc/iucvterm/ts-authorization.conf`

    ```bash
 @testgrp = list:t6313006,t6313007,t6313008
 bob = list:t6313005
    ```
Establishing terminal connections with ts-shell

```
hans@larsson:~$ ssh bob@t6313004
Password:
Last login: Fri Mar 5 12:01:32 2010 from dyn-9-152-212-21
Welcome to the Terminal Server shell.
Type 'help' to get a list of available commands.

bob@ts-shell> list
 t6313006
 t6313007
 t6313008
 t6313005
 bob@ts-shell>

bob@ts-shell> connect t6313005
 ts-shell: Connecting to t6313005 (terminal identifier: lnxhvc0)...

Red Hat Enterprise Linux Server release 5.4 (Tikanga)
Kernel 2.6.18-164.el5 on an s390x

t6313005 login: root
Password:
Last login: Fri Mar 5 12:02:45 on hvc0
[root@t6313005 ~]# ps
 PID TTY TIME CMD
 1678 hvc0 00:00:00 bash
 1708 hvc0 00:00:00 ps
[root@t6313005 ~]# logout

```
Summary & Conclusion
Summary and Conclusion

• **IUCV terminals are flexible and easy to use**

• **IUCV terminals help you to**
  – Access your Linux instances in emergency situations
  – Simplify system administration by providing a central access point
Questions?

Hans-Joachim Picht  
Linux on System z Initiatives

IBM Deutschland Research & Development GmbH  
Schönaicher Strasse 220  
71032 Böblingen, Germany

Mobile +49 (0)175 - 1629201  
hans@de.ibm.com
Where do you get more information?

- **developerWorks**
  - How to Set up a Terminal Server Environment (SC34-2596)
  - Device Drivers, Features, and Commands (SC33-8411)

- **s390-tools package**
  - Man-pages for iucvconn(1), iucvtty(1), ts-shell(1), af_iucv(7), and hvc_iucv(9)
  - ts-shell Readme
Which Linux distributions include IUCV terminals?

• Red Hat Enterprise Linux (RHEL)
  – RHEL 5 Update 4 or higher

• Novell SUSE Enterprise Linux Server (SLES)
  – SLES 10 Service Pack 3 or higher

• “Upstream” packages
  – Linux kernel 2.6.30
  – s390-tools 1.8.1
Backup
What is `iucvconn_on_login`?

- **`iucvconn_on_login` is an alternative login shell for setting up a terminal server**
  1. Log in to Linux with a user ID that matches the z/VM user ID of the target system
  2. After a successful login, a terminal session is established and the user is prompted to log in to the target system

- **Creating a user for `iucvconn_on_login`**
  - `useradd -m -s /usr/bin/iucvconn_on_login lxguest1`

```
ssh -t lxguest1@termsrv1.example.net lxtterm1
```

![Diagram](image-url)
Using the IUCV terminal programs

- **Using the iucvconn program:**
  - To access the first z/VM IUCV HVC terminal on the Linux instance in z/VM guest LNXSYS02
    $ iucvconn LNXSYS02 lnxhvc0
  - To create a transcript of the terminal session to the Linux instance in z/VM guest LNXSYS99
    $ iucvconn -s ~/transcripts/lnxsys99 LNXSYS99 lnxhvc0

- **Using the iucvtty program:**
  - To allow remote logins using the terminal identifier „lnxterm“
    # iucvtty lnxterm
  - To access the „lnxterm“ terminal on the Linux instance in z/VM guest LNXSYS01
    $ iucvconn LNXSYS01 lnxterm
  - To use /sbin/sulogin instead of /bin/login for terminal identifier “suterm”
    # iucvtty suterm -- /sbin/sulogin

- **Configuring the Linux system for providing terminals over IUCV (using /etc/inittab)**
  - z/VM IUCV HVC terminal devices
    h0:2345:respawn:/sbin/agetty -L 9600 hvc0 linux
  - iucvtty
    t1:2345:respawn:/usr/bin/iucvtty lnxterm
Which Linux kernel components are used?

- Hypervisor Console (HVC)
  - TTY device driver
- TTY core layer
- Other back-ends
- IUCV back-end
- AF_IUCV
- IUCV base device driver

Kernel space:
- /dev/hvc0
- /dev/hvc1

User space:
- socket()
Introduction to the new Linux on System z Terminal Server using IUCV

Trademarks & Disclaimer

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml: AS/400, DB2, e-business logo, ESCON, eServer, FICON, IBM, IBM Logo, iSeries, MVS, OS/390, pSeries, RS/6000, S/390, System Storage, System z9, VM/ESA, VSE/ESA, WebSphere, xSeries, z/OS, zSeries, z/VM.

The following are trademarks or registered trademarks of other companies

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries. LINUX is a registered trademark of Linux Torvalds in the United States and other countries. UNIX is a registered trademark of The Open Group in the United States and other countries. Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation. SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC. Intel is a registered trademark of Intel Corporation. * All other products may be trademarks or registered trademarks of their respective companies.

NOTES: Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply. All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions. This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography. References in this document to IBM products or services do not imply that IBM intends to make them available in every country. Any proposed use of claims in this presentation outside of the United States must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice. Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.