

LET THE CLOUDS MAKE YOUR LIFE EASIER

Enterprise Encryption 101

SHARE 116 Session 8396

Phil Smith III Voltage Security, Inc. March 2011 WOLSEGENTTPOPYCO/E LJZ40/KDRXP340 GATUEKOBOETIW DE VL1 ISFJOWJJVYYORJKFTI JVFOTURNEETESTNNREF3UF

Agenda

- Why we're here
- Encryption basics: terminology and types
- What is "enterprise encryption"?
- Why encryption is difficult and scary
- The five Ws of encryption

- Encryption key management: the "other" gotcha
- A realistic approach to enterprise encryption
- Example: Voltage SecureData

Enterprise Encryption In Sixty Minutes

Why We're Here

- Encryption is on many folks' minds these days
 - CxOs, CISOs are saying "Gotta encrypt stuff <u>now!</u>"
- Breaches are in the news
 - Heartland, TJX, RBS WorldPay, et al.
- Many sites have implemented several point solutions
 - Different platforms, different problems...not interoperable!
- DLP (data leakage prevention) is not foolproof
 - If it's leaked but encrypted, you care a whole lot less!
- The h4xx0rs are out there...
 - ...and they're getting smarter and more creative
- Internal breaches are increasing
 - Gartner et al. agree: 70%++ breaches are internal

Encryption Basics

Encryption Basics

Encryption means

- using an algorithm (<u>cipher</u>)
- plus a secret value (<u>key</u>)
- to transform data (<u>plaintext</u>)
- into another format (<u>ciphertext</u>)
- so it is no longer readable without <u>decryption</u>
- In other words:
 - <u>Make important data useless to anyone who isn't</u> <u>authorized to read it!</u>
- Note: Encryption tends to talk in terms of "messages"
 - Stored data may not go anywhere, but same principles apply

THE MISSILE LAUNCH CODE IS XYZZY123plover

MV*U24AT2HaIKUewzqWPzvL XaT9UGM!\zj(`iwPO...

Encryption Types: Symmetric

- Symmetric encryption means same key is used to encrypt and decrypt
 - Means both parties need access to the same keys
- Many varieties (algorithms):
 - DES, TDES, AES, Twofish, RC4, CAST5, IDEA, Blowfish...
- Can be strong and also fairly high-performance
 - "Strength" determined by key length in bits as well as algorithmic integrity

Symmetric Encryption: Stream and Block

- Symmetric encryption comes in two flavors:
 - <u>Stream</u> ciphers transform the key as they progress, processing one chunk (bit, byte, whatever) at a time
 - <u>Block</u> ciphers use fixed keys every block (blocksize=keysize)
- Difference matters little in practice
 - Stream generally faster, but requires more key complexity
 - Many block ciphers have modes that effectively operate like stream ciphers
 - Most data protection products use block ciphers

Asymmetric aka Public Key Encryption

- Asymmetric encryption means what it sounds like:
 - Different keys needed to encrypt and decrypt
 - Each entity has two keys: <u>public</u> and <u>private</u>
 - Invented in 1970s (Diffie-Hellman, RSA, UK government)
- Makes key distribution much easier:
 - I can publish my public key safely
 - You encrypt using public key, I decrypt using my private key
- Downside is performance
 - Symmetric algorithms are typically *much* faster—public key often too expensive for application data protection
 - Requires significant data layout/application changes

Asymmetric Encryption Uses

- Some use cases are ideal for public key encryption
 - Hassle-free (public) key exchange makes some things easy
 - A key is a key, so either (private/public) usable for encryption
 or decryption, provided "other" used for opposite function
- Better yet, encrypt twice: my private, your public
 - You and I can email each other our public keys
 - I encrypt with my private, your public
 - You decrypt with your private, my public
- You now know the data was encrypted by me, I know only you could decrypt it
 - Provided neither of us has exposed our private keys!

Hybrids: Key "Wrapping"

- Because asymmetric encryption is expensive, hybrid solutions are attractive:
 - Sender generates random symmetric key
 - Encrypts actual data ("payload") using that symmetric key
 - Encrypts symmetric key using target's public key
 - Sends encrypted symmetric key with data
- To decrypt:
 - Key decrypted using (expensive) asymmetric (private key)
 - Payload decrypted using cheaper symmetric algorithm

Cryptographic Hashes and Digests

- Related to encryption: <u>cryptographic hashes</u> aka <u>digests</u>
 - Functions that convert variable-length input to fixed-length output
 - Any change to original data changes the hash
 - Used in digital signatures, as checksums, etc.
- Good hashes (SHA-1/2/3, MD4/5) have these properties:
 - Easy to compute for given data
 - Infeasible to reconstruct data from hash
 - Infeasible to modify data without changing hash
 - Collisions (same hash from different data) very rare
- A good way to represent data without leakage risk
 - Frequently used for things like verifying downloads

Digital Signatures

- <u>Digital signatures</u> are also related to cryptography
 - Generated from the data using public/private-like key pairs
 - Result is a hash-like blob
- Signatures prove data authenticity and integrity
 - Authenticity: Data is from who it says it's from
 - Integrity: Data has not been tampered with (since signing)
- Implements important concept: <u>non-repudiation</u>
 - Means sender cannot (reasonably) say "I didn't sign that"
- Frequently used for things like secure email
 - Avoids problems due to forged mail

Message Authentication Codes (MACs)

- A MAC (Message Authentication Code) is a keyed hash
 - Created using a hash function plus a secret key
 - Verify both data integrity and authenticity
- Different from digital signatures: same secret key used by creator/reader
 - Thus more like symmetric encryption, where digital signatures are more like public key encryption
- Generally faster to generate than digital signatures
 - MAC sent along with data
 - Receiver re-generates MAC against data, confirms match
 - Useful for verifying transactions

Secret Key Known Only to Sender and Receiver

A Few Words About "Encryption Strength"

- Encryption strength refers to the likelihood that an attacker can "break" encrypted data
 - Typically tied to bit length of encryption key
 - Exponential: 128-bit key is 2⁶⁴ times as strong as 64-bit
 - See "Understanding Cryptographic Key Strength" on youtube.com/user/VoltageOne for a good discussion/illustration
- The encryption community is collaborative
 - Research, algorithms are all published and peer-reviewed
 - Cryptographers look for weaknesses in their own and each others' work

More About "Encryption Strength"

- Cryptographers "cheat" in favor of attacker when analyzing
 - Make assumptions like "attacker has multiple known examples of encrypted data and matching plaintext"
 - Also assume they'll know plaintext when they find it, and that the encryption algorithm is known
- "Weaknesses" reported are often largely theoretical only NSA could really exploit
 - Huge amounts of time, brute-force computing power required

More About "Encryption Strength"

- This "cheating" ensures encryption strength is real*
 - This approach increases security for all
 - By the time an algorithm is accepted as a standard and implemented in products, confidence is high
 - Even if a weakness is later discovered, it's likely largely theoretical/impractical for most to exploit
- Makes it easy to spot the charlatans
 - Companies whose proprietary algorithms are *not* peer-reviewed
 - Also look for claims like "unbreakable encryption", or focus on key length rather than standards-based cryptography

* Well, as real as the smartest minds in the business can make it!

Encryption Algorithm Examples

- DES: Data Encryption Standard
 - Selected as standard by US government in 1976
 - Block cipher, uses 56-bit keys
 - Considered insecure: as of 1999, "breakable" in < 24 hours
- TDES: Triple DES
 - What it sounds like: DES applied three times
 - Uses two or three different keys
 - Thus at least 2¹¹²-bit key strength (168-bit with three keys)
 - Considered secure, though relatively slow

More Encryption Algorithm Examples

- AES: Advanced Encryption Standard
 - Adopted as US standard in 2001
 - 128-, 192-, or 256-bit keys
 - Relatively fast
- Blowfish, Twofish, Serpent...
 - Similar to AES in strength
 - Mostly a bit slower (with exceptions)
 - Algorithms are public domain (as is AES)
- Dozens (hundreds!) more exist, of course
 - Given AES's ubiquity and proven strength, generally no reason to use anything else

System z Encryption Facilities

Integrated Cryptographic Services Facility

- Encryption can be done in software routines, in software using specialized instructions, or in hardware
 - The U.S. considers encryption a "munition", thus places restrictions on its export
 - Thus some hardware facilities not available in some countries
- Integrated Cryptographic Services Facility (ICSF)
 - z/OS Started Task providing crypto interfaces for applications
 - Invoked using well-documented API
 - Requires hardware facilities for some functions
- Active area for IBM development
 - New ICSF levels often appear between z/OS releases

Cryptography and Hardware

- Cryptographic algorithms tend to be CPU-intensive
 - Easy to peg CPU when encrypting via software
 - Optimized hardware is thus appealing

- Plaintext encryption keys in memory are worrisome
 - Auditors are paid to worry about this stuff
 - Even though we know z hardware protection is solid, Evil Sysprog could conceivably troll through storage
- These are different problems, with different solutions

Problem: CPU-Intensiveness

- Most crypto uses one of the common algorithms
 - DES, TDES, AES, RSA, SHA-1...
 - Means "90-10" rule applies to optimization
- System z offers CP Assist for Cryptographic Functions
 - CPACF is no-cost Feature Code (3863), enabled per CEC
 - Adds hardware instructions (KM/KMC, with subcodes)
 - Implements common crypto algorithms on the z chip
 - Not quite "free", but way faster than software implementations!
 - More capabilities on z10 than z9
 - zEnterprise adds even more

Problem: Plaintext Keys in Memory

- Plaintext key problem not unique to System z
 - Perhaps even more critical on less inherently secure systems
- Solution: Hardware Security Modules (HSMs)
 - Typically tamper-resistant, plug-in cards
 - Cryptographic operations sent off to HSM, results returned
 - Non-System z: nCipher (now Thales), Futurex, Atalla (HP) ...
 - System z: Crypto Express2 & 3 (CEX2 & CEX3)
- CEX2/3 include two processors per card
 - Each supports up to 16 cryptographic domains
 - A single CEC can have up to eight CEX installed
 - CEX2-1P and CEX3-1P also exist: one processor per card (BC)

Problem: Plaintext Keys in Memory

- CEX stores Master Key (Key Encryption Key, or KEK)
 - Entered via ICSF or using Trusted Key Entry (TKE) Workstation feature
 - Operational keys are encrypted in CEX using KEK
 - *Encrypted* keys are stored on System z (in CKDS/PKDS)
- Operation:
 - 1. Application reads encrypted key, passes to ICSF
 - 2. ICSF passes request to CEX
 - 3. Key decrypted inside CEX, operation performed
 - 4. Crypto result returned to ICSF, thence to application
 - 5. Plaintext keys never reside in System z memory
 - This is called **Secure Key** operation

CPACF vs. Crypto Express

- ICSF exploits both CPACF and Crypto Express
 - Uses CPACF or CEX as appropriate (and if available)
 - **Note**: Linux for System z crypto drivers also exploit both
- CPACF and Crypto Express are often confused
 - "We have a CEX, so encryption should be fast"
 - Not necessarily: CEX is for security, CPACF for performance
- **BUT...** CEX can be used in performance-related ways:
 - To offload processing from expensive System z MIPS when throughput less critical (requires large data chunks to be a "win")
 - When configured as "accelerator" for SSL operations

Protected Key Operations

- Secure Key operations using CEX are "very" slow*
 - Throughput requirements often preclude use of Secure Key
- Latest ICSF and microcode add Protected Key
 - Hybrid solution, providing (most of) "Best of both worlds"
 - Exploits combination of CPACF and CEX (via ICSF)
- Stored keys in z/OS are still encrypted
 - CEX decrypts secure key, re-encrypts with "wrapping key"
 - Copies wrapping key to protected HSA memory
 - Wrapped key returned and used on CPACF calls
 - "Most of the performance with most of the security"
 - But some auditors may not "buy" it, even though protected memory cannot be dumped, even with HSM diagnostics

* FSVO "very" – certainly much slower than Clear Key operations via CPACF

Implementing Encryption

What is "Enterprise Encryption"?

- A scalable, manageable data protection plan
 - Standards-based, provably secure
- Applies across multiple data sources (databases etc.)
 - Not just point solutions for specific data sources
- Cross-platform
 - Everyone has multiple platforms nowadays
- Includes key management

Encryption Is Difficult

- Lots of different technologies
 - Hardware-based, software-based, hardware-assisted --
 - DES, TDES, AES, Blowfish, Twofish, CAST, PGP, GPG ... !
- Companies have *lots* of data in *lots* of places
 - Much of it probably of unknown value/use
 - The sheer volume is daunting
- Difficult to imagine how to get started
 - Easier to stick your head in the sand and hope it goes away
- For mainframe folks, it's even easier to (try to) ignore
 - System z OSes are traditionally more secure than distributed

Encryption Is Scary

- Most of us don't understand the technologies
 - Math classes were a looong time ago
- It changes constantly
 - We hear "DES has been broken, use AES"
 - What does that mean? Is DES useless? Is AES next to fall?
- Lots of snake-oil salesmen in encryption
 - www.meganet.com touts "unbreakable encryption"
- Easy to decide encryption is unapproachably complex
 - Like buying your first house, or doing your own taxes...
- Yes, if you get it wrong, you *will* lose data!
 - Another reason prompting avoidance behavior...

Department of the Treasury Internal Revenue Service

The Five Ws of Encryption

- Why encrypt data?
- What should be encrypted?
- Where should it be encrypted?
- When should it be encrypted?
- Who should be able to encrypt/decrypt?
- *How* will you encrypt it?

- Every company has data to protect
 - NPPI, PII, or just PI
 - Customer information
 - Internal account information
 - Intellectual property
 - Financial data
- Every company moves data around
 - Backup tapes
 - Networks
 - Laptops
 - Flash drives
 - Data for test systems

- Different media have different issues
 - Very few backup tapes get lost...but it does happen
 - Networks get compromised fairly regularly
 - Laptops are lost or stolen every day
 - Flash drives are disposable nowadays
- Different media types mean different levels of risk
 - Deliberate, targeted network breaches are obvious concern
 - Missing backups probably won't be read
 - Missing laptops *probably* won't be analyzed for PII
 - Found flash drives are probably given to the kids

Breaches happen!

- 2009: 498; 2010: 662 (per Identity Theft Resource Center)
- A healthy increase...and what about undetected/small ones?
- Can you afford to bet your job/business?
- Data encryption is **not** a luxury
 - Claimed cost per compromised card is \$154-\$215!!! *
 - Heartland breach: 130M cards; TJX: 94M cards
 - Do the math...

* Source: Ponemon Institute

215 = malicious/criminal act

154 = negligent inside

Voltage

- Data breach sources:
 - 73%: external
 - 18%: insiders
 - 39%: business partners
 - 30%: multiple parties

Source: Verizon Business, 2009 Data Breach Investigations Report

But insider breaches far more expensive:

- External attack costs averages \$57,000
- Insider attacks average \$2,700,000!

- Commonalities:
 - 66%: victim unaware data was on system
 - 75%: not discovered by victim
 - 83%: not "highly difficult"
 - 85%: opportunistic
 - 87%: avoidable through "reasonable" controls

Causes:

- 62%: attributed to a "significant error"
- 59%: from hacking or intrusions
- 31%: used malicious code
- 22%: exploited vulnerability
- 15%: physical attacks

The real card reader slot.

The capture device

The side cut out is not visible when on the ATM.

- The law is catching up with the reality
 - PCI DSS (Payment Card Industry Data Security Standard)
 - Red Flag Identity Theft Rules (FACTA)
 - GLBA (Gramm-Leach-Bliley Act)
 - SB1386 (California)
 - Directive 95/46/EC (EU)
 - HIPAA
 - etc.
- PCI DSS not only requires data encryption, but also:
 - Restrict cardholder data access by business need-to-know
 - This is called separation of duties

What To Encrypt?

- Everything! (Well, maybe not...)
 - Performance, usability, cost are barriers
 - Partners likely use different encryption technology
 - Changing every application that uses the data is prohibitive
- No single answer
 - Laptops, flash drives: at least PII, probably all data
 - Backup tapes: all data
 - Whole-database encryption possible but not a good answer

What To Encrypt?

- Whole database encryption fails on several counts
 - Can impose unacceptable performance penalty
 - Prevents data compression, using more disk space etc.
 - Violates separation of duties requirements
 - Better to just encrypt the PII (whatever that is)!
- What about referential integrity and other data relationships?

- Database 1 & database 2 both use SSN as key
- If you encrypt them, encrypted SSNs better match!
- Else must decrypt every access, and indexes useless

Application & Database Encryption Today:

Four Approaches

- Whole Database Encryption
 - Encrypt all data in DB—slows all applications
 - No granular access control, no separation of duties
 - No security of data within applications
- Column Encryption Solutions
 - Encrypt data via DB API or stored procedure
 - Major DB type/version dependencies
 - No data masking support and poor separation of duties
- Traditional Application-level Encryption
 - Encrypt data itself via complex API
 - Requires DB schema/application format changes
 - High implementation cost plus key management complexity
- Lookaside Database (aka "Tokenization")
 - CC# indexed, actual CC# in protected DB
 - Requires online lookup for *every* access
 - Requires major rearchitecting; scope issues⁶

Where To Encrypt?

- Different question than "what":
 - Data at rest and in motion
- Data at rest
 - "Brown, round, and spinning" (DASD of all types)
 - On tape (backup or otherwise)
- Data in motion
 - Traversing the network

Where To Encrypt?

- Data in motion particularly troublesome
 - How do you know if it's been sniffed as it went by?
 - Data at rest **somewhat** easier
 - Intrusion detection systems fairly effective (if installed and configured, and if someone actually checks the logs)
 - ESMs very effective on z/OS (if administered correctly)
- Different issues, thus different criteria!

	(Untitled) + Wireshude					
Eile Edi	t ⊻iew <u>G</u> o	⊆apture <u>A</u> nalyze ≦t	atistics Help			
	(@(@	🎯 🔛 🔛 🖾	۵ 🔒 🖻 د		F 👱 🗐 🖬 🍳	
Biter)		-	+ Express	ion 🏷 Clear 🛹 Apply	
No.2	Time	Source	Destination	Protoco	l info	
	TOTALOPT	CUUIUTIERETERE	104/100/1/101	LTNJ .	organging draity traches	
12	15.647269	192.168.1.101	208.67.222.222	DNS	Standard query A www	
13	15.937059	208.67.222.222	192.168.1.101	DNS	Standard query respo	
14	15.937457	192,168,1.101	75,126,43,232	TCP	45061 > www [SYN] Se	
15	16.314591	75.126.43.232	192.168.1.101	TCP	www > 45861 [SYN, AC	
16	16.314665	192.168.1.101	75, 126, 43, 232	TCP	45861 > www [ACK] 5e	
17	16.314984	192.168,1.101	75,126,43,232	TCP	[TCP segment of a re	
18	16.315020	192.168.1.101	75.126.43.232	TCP	[TCP segnent of a re	
19	16.724366	75,126,43,232	192,168,1,101	TCP	www > 45861 [ACK] 5e	
20	16.732070	75.126.43.232	192,168.1,101	TCP	www > 45861 [ACK] Se	
21	18.072290	192.168.1.101	208.67.222.222	DNS	Standard query A www	
22	18,360176	208.67,222.222	192.168.1.101	DNS	Standard query respo	
23	18,445066	192.168.1.101	208.67.222.222	DNS	Standard query AAAA	
74	18 448504	100 148 1 141	208.67.202.202	DAR	Standard nuary A way	
D Frame	1 (42 byte	es on wire, 47 hyte	s cantured)			
h Ether	THAT IT ST	ar Dutick partness	(00:17:00:00:16:00) (ett ciero.	Li estestab frontation	
6	0.0000000000000000000000000000000000000			A REAL PROPERTY AND A REAL		
0000	1 19 29 54	-6 ph 00 17 9a 0a	16 44 09 05 00 01	91	0	
010	00 05 04	00 01 00 17 94 04	t6 44 c0 48 01 65		D	
0020	0 00 00 00	00 00 c0 =8 01 01	10 40 10 01 00			
	00 00 00	00 00 00 00 01 01				
rame (fr	amel 42 hute	14	2:592 D:592	M: 6 Drons:	0	
Contral (11)	arries. 44 byte		P. 362 D. 362	contra miliopar		

When To Encrypt?

- Ideally, data is encrypted as it's captured
 - By the data entry application, or the card swipe machine
- In reality, it's often done far downstream

- The handheld the flight attendant just used—is it encrypting?
- Did last night's restaurant encrypt your credit card number?
- If the data goes over a wireless network, is it WEP? WPA?
- "Doing it right" is harder: more touchpoints
 - Easier (if less effective) to say "Just encrypt at the database"
 - Avoids interoperability issues (ASCII/EBCDIC, partners)

Who Can Encrypt/Decrypt?

- Usual question is: who decrypts?
 - Who should have the ability to decrypt PII?
- Should your staff have full access to all data?
 - Many unreported (or undetected) internal breaches occur
- What if someone leaves the company?
 - How do you ensure their access is ended?
- What if an encryption key is compromised?
 - Can you revoke it, so it's no longer useful?
- PCI DSS et al. require these kinds of controls
 - This is a big deal—*not* trivial to implement

hacker

hacker

How Will You Encrypt Data?

- Hardware? Software?
 - Many options exist for both

- Is a given solution cross-platform?
 - If not, you must decrypt/re-encrypt when data moves
- AES? TDES? Symmetric? Public/private key?
 - Many, *many* choices exist—too many!

How Will You Encrypt Data?

- Different issue: How do you get from here to there?
 - 100M++ data records—how to encrypt without outage?
 - "Customer database down next week while we encrypt"?!
 - What about data format changes?
 - Encrypted data usually larger than original
 - Does not compress well (typically "not at all")
 - Database schema, application fields expect current format
 - Can you change everything that touches the data?
 - (Should you need to?)

Key Management

- "Encryption is easy, key management is hard"
 - Ultimately, encryption is just some function applied to data
 - To recover the original data, you need key management
 - Three main key management functions:
 - 1. Give encryption keys to applications that must protect data
 - 2. Give decryption keys to users/applications that correctly authenticate according to some policy
 - 3. Allow administrators to specify that policy: who can get what keys, and how they authenticate

Key Management

- Key servers generate keys for each new request
 - Key server must back those up—an ongoing nightmare
 - What about keys generated between backups?
 - Maybe punch a card every time a key is generated...
- What about distributed applications?
 - How do you distribute keys among isolated networks?
- What about partners?
 - If you distribute encrypted data, how do they get the keys?
- "Allow open key server access" not a good answer
 - Suggest it, watch network security folks' heads explode

Getting There From Here: A Realistic Approach

A Realistic Approach: Take A Deep Breath

- Investigate encryption, now or soon
 - Better now than *after* breach
 - That light at the end of the tunnel is a train!
- Understand that choices have far-reaching effects
 - Data tends to live on for a very long time
- Expect to use multiple solutions
 - Backups, laptops, databases all have different requirements
 - "Right" answer differs
 - E.g., for backups, hardware-based solution; for customer database, column-based encryption

A Realistic Approach: High-Level Roadmap

- . Classify data by degree of sensitivity
 - This is harder than it sounds!
- 2. Analyze risks: Security costs
 - How secure can you afford to be?
- Implement solution (remediation)
 - *Must* be a gradual process
- Use compensating controls sparingly
 - By definition, they're suboptimal
 - Goal: persistent encryption everywhere
 - Best achieves regulatory compliance

3a. Compensating Controls

A Realistic Approach: Key Steps

- **Key:** Involve stakeholders across the enterprise
 - "No database is an island": multiple groups use the data
 - Partners, widespread applications need access too...
- **Key:** Find a "starter" application
 - Generating test data from production is a good beachhead
 - If you "get it wrong", you haven't lost anything "real"
- **Key:** Designate data by sensitivity:
 - Red: Regulated (legally required to be protected)Yellow: Intellectual property or other internal (unregulated)Green: Public
 - Each requires a different level of isolation/encryption

A Realistic Approach: Proof of Concept

- Encrypt a representative database
 - "Database" could be DB2, IMS, VSAM, flat file...
- Update application(s) that access it
 - You know what all your applications do, right?
- Validate performance, usability, integrity
 - Encryption is *not* free: may see significant performance hit
- Demonstrate to other groups
 - Invite discussion, counter-suggestions
- Once (if!) project approved, request executive mandate
 - Otherwise, some groups may simply not participate

A Realistic Approach: Finishing the Job

- Doing all databases/applications takes time
 - Expect glitches
 - Perhaps most difficult: understanding data relationships
 - Table A and Table B seem unrelated, but aren't
- Lather, rinse, repeat...
 - Each database will have its own issues/surprises

Alternatives to Traditional Encryption

Tokenization

- Tokenization is another approach to data protection
 - Replaces values with randomly generated values
 - Index to real values stored in database
 - Detokenization thus requires database lookup
- Confusion abounds re tokenization vs. encryption
 - Some QSAs think tokenization is better because "there is no encryption key to be cracked"
 - Cryptographers see the database index itself as the key
 - Standards currently don't help much here; hopefully will clarify

Format-Preserving Encryption

Format-Preserving Encryption is another choice

- Data encrypted with FPE has same format as input
- Encrypted SSN still 9 digits; name has same number of characters; credit card number has same number of digits...

Name	SS#	Credit Card #	Street Address	Zip
James Potter	385-12-1199	5421 9852 8235 6981	1279 Farland Avenue	77901
Ryan Johnson	857-64-4190	5587 0806 2212 0139	111 Grant Street	75090
Carrie Young	761-58-6733	5348 9261 0695 2829	4513 Cambridge Court	72801
Brent Warner	604-41-6687	4929 4358 7398 4379	1984 Middleville Road	91706
Anna Berman	416-03-4226	4556 2525 128 <u>5</u> 1830	2893 Hamilton Drive	21842

Name	SS#	Credit Card #	Street Address	Zip
James Cqvzgk	161-82-1292	5 184 2292 5001 6981	289 Ykzbpoi Clpppn	77901
Ryan lounrfo	200-79-7127	5 662 9566 7734 0139	406 Cmxto Osfalu	75090
Carrie Wntob	095-52-8683	5 774 6343 6896 2829	1498 Zejojtbbx Pqkag	72801
Brent Gzhqlv	178-17-8353	4 974 7815 8270 4379	8261 Saicbmeayqw Yotv	91706
Anna Tbluhm	525-25-2125	4 288 0276 0003 1830	8412 Wbbhalhs Ueyzg	21842

Format-Preserving Encryption

- Format-Preserving Encryption benefits:
 - Avoids database schema changes
 - Minimizes application changes
 - In fact, most applications can operate on the encrypted data: Fewer than 10% of applications need actual data
- FPE is a proposed mode of AES
 - Google "ffx mode" or look for "FFX" on http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
 - Invented by Voltage Security, based on work at Stanford
 - Peer-reviewed, proven technology—not snake oil!

Cross-Platform Capable

- ASCII/EBCDIC issues go away
 - Data converted to UTF-8 before encryption/decryption
 - Stored in native format on host (ASCII or EBCDIC)
 - Possible because character sets are deterministic (FPE!)
 - Result: z/OS is a full partner in protected data management
- Encrypt/decrypt where the data is created/used
 - Avoids plaintext data ever traversing the network

Data Masking

- Application testing needs realistic datasets
 - Fake sample datasets typically too small, not varied enough
- Best bet: Use production data...but:
 - Test systems may not be as secure
 - Testing staff should not have full access to PII!
- Answer: Use FPE to mask (anonymize) test data
 - With FPE, encrypted production data is perfectly usable for test
 - No extra steps required!

Voltage SecureData

Voltage SecureData

- Voltage SecureData: Yet Another Encryption Product
 - With some key differences, of course!
- Available on z/OS, Windows, Linux, z/Linux, HP/UX, AIX
 - Built on platform-agnostic codebase (easy to port)
 - Can add platforms quickly as customers require them
- Complete suite of options:
 - Toolkit (APIs) for application integration
 - Bulk data encryption tools for scripting/data masking (z/FPE, CL)
 - SOA server for legacy/lightweight platforms
 - Tokenization supported via SOA for sites that require it

Key Management

- Simplified key management eases most headaches
 - Keys are generated dynamically based on identity
 - Enables multiple key servers, serving same keys
 - Allows geographic/network isolation
 - Requires backup only when key server configuration changes
- Key request authentication allows separation of duties
 - Users/applications without access cannot get keys
 - Voltage SecureData makes full compliance much easier

Voltage SecureData Benefits

- FPE minimizes implementation difficulty
 - Most databases require no schema changes
 - Most applications require minimal or no code changes
- Persistent encryption prevents accidental leakage
 - Compensating controls only cover holes you know about
 - Integrate with existing monitoring and scanning tools
- True separation of duties
 - DBAs can still do their jobs, no access to "Red" data without authorization
- Role-based access model allows granular data policies
 - CSR only sees last 4 of credit card; fraud investigator sees all 16
 - Full re-use of identity/access management systems

Summary

Conclusion

- Encryption is not a luxury, not optional today
- A complex topic, but one that can be tamed
- Many solutions exist
- Different data/media require different solutions
- Voltage SecureData solves many of the problems for data at rest and data in motion
 - Not a solution for whole-disk, whole-tape encryption
 - The best solution for existing data, existing applications

Encryption Resources

- InfoSecNews.org: email/RSS feed of security issues http://www.infosecnews.org/mailman/listinfo/isn
- Voltage security, cryptography, and usability blog <u>http://superconductor.voltage.com</u>
- Bruce Schneier's CRYPTO-GRAM monthly newsletter <u>http://www.schneier.com/crypto-gram.html</u>
- RISKS Digest: moderated forum on technology risks <u>http://catless.ncl.ac.uk/risks</u>
- US Computer Emergency Response Team advisories <u>http://www.us-cert.gov/cas/signup.html</u>
- Track breaches: <u>www.privacyrights.org</u> and <u>datalossdb.org</u> and <u>www.idtheftcenter.org</u>

Phil Smith III 703.476.4511 (direct) phil@voltage.com www.voltage.com

