LAST YEAR WE
RECOGNIZED THAT OUR
PROCESSES WERE FAR
TOO COMPLEX

geek & poke

SO WE PUT THEM
INTO THE CLOUD

LET THE cL.oUuDs MAKE YOUR LIFE EASIER

Enterprise Encryption 101

SHARE 116
Session 8396

Phil Smith 1l
Voltage Security, Inc.
March 2011

Why we're here

Encryption basics: terminology and types

What is “enterprise encryption”? &
“\2\\&:’

Why encryption is difficult and scary = Koo
.\>.

The five Ws of encryption -
Encryption key management: the “other” gotcha

A realistic approach to enterprise encryption

Example: Voltage SecureData

Enterprise Encryption
In Sixty Minutes

Why We're Here

» Encryption is on many folks’ minds these days DA.....
= CxOs, CISOs are saying “Gotta encrypt stuff now!”

» Breaches are in the news 'l'm Heartland

PAYMENT SYSTEMS"

= Heartland, TJX, RBS WorldPay, et al. %€ RBS WorldPay wake it happen*
» Many sites have implemented several point solutions
= Different platforms, different problems...not interoperable!

» DLP (data leakage prevention) is not foolproof
= If it's leaked but encrypted, you care a whole lot less!

» The h4xx0rs are out there...
= ...and they’re getting smarter and more creative

» Internal breaches are increasing
= Gartner et al. agree: 70%++ breaches are internal

security

Encryption Basics

security

» Encryption means

= using an algorithm (cipher)

= plus a secret value (key)

= to transform data (plaintext)

= Into another format (ciphertext)

= SO0 It IS no longer readable without decryption

» In other words:

= Make important data useless to anyone who isn’t
authorized to read it!

» Note: Encryption tends to talk in terms of “messages”
= Stored data may not go anywhere, but same principles apply

THE MISSILE LAUNCH CODE) MV*U24AT2HalKUewzgWPzvL
1S XYZzY123plover XaT9UGMIN\zj (" 1wPO..

Encryption Types: Symmetric *

» Symmetric encryption means same key is used to
encrypt and decrypt
= Means both parties need access to the same keys
» Many varieties (algorithms):
- DES, TDES, AES, Twofish, RC4, CAST5, IDEA, Blowfish...
» Can be strong and also fairly high-performance

= “Strength” determined by key length in bits e
as well as algorithmic integrity N -

SSSSSSSS

: DES DES DES
e B o .
T [BRI F) B
0 A X Encoded H et =iy
Gt % §"§ % :&& '-2'. ex GOy
o&&' ¢ o&%g* ng' f ? T i

&2
I,
ke R Sks Og
o ’&' % ,&’%’ % PG
HF -,'. 73 ,_é,*. &
¢ 2 OIS
Ve

bW [R1s=LiaHRy g Ky sl
Y S%e: 8 bytes 8 bytes I e
g i -
PREOUTPUT [Rygtyg (o MRy 5 (..\] l st _]
e —
I . f 3
L.luvil SEINITIAL
64 bytes 64 bytes =

ddddddddddd Lé Lé L(%) Lé) 64 bytes : .
LHhdhd LHhdhd Shdd Lbdhd | ourPuT]

........

Symmetric Encryption: Stream*e

» Symmetric encryption comes in two flavors:

= Stream ciphers transform the key as they progress,
processing one chunk (bit, byte, whatever) at a time

= Block ciphers use fixed keys every block (blocksize=keysize)
» Difference matters little in practice

= Stream generally faster, but requires more key complexity

= Many block ciphers have modes that effectively operate like
stream ciphers

Plaintext
- Most data protection products use block ciphers . l ——
Block Cipher
Key » Encryption
FD ofprqofrgrqojogr 1o i
E— TTTTTITT]
Stream Cipher Ciphertext

Asymmetric aka Public Key Ent

» Asymmetric encryption means what it sounds like:

= Different keys needed to encrypt and decrypt

= Each entity has two keys: public and private

= Invented in 1970s (Diffie-Hellman, RSA, UK government)
» Makes key distribution much easier:

= | can publish my public key safely

= You encrypt using public key, | decrypt using my private key
» Downside is performance

= Symmetric algorithms are typically much faster—public key
often too expensive for application data protection

= Requires significant data layout/application changes

Asymmetric Encryption Uses

» Some use cases are ideal for public key encryption
- Hassle-free (public) key exchange makes some things easy

= A key is a key, so either (private/public) usable for encryption
or decryption, provided “other” used for opposite function

» Better yet, encrypt twice: my private, your public
= You and | can email each other our public keys
= | encrypt with my private, your public
= You decrypt with your private, my public

» You now know the data was encrypted by me,
| know only you could decrypt it
= Provided neither of us has exposed our private keys!

Hybrids: Key “Wrapping”

» Because asymmetric encryption is expensive, hybrid
solutions are attractive:
= Sender generates random symmetric key
= Encrypts actual data (“payload”) using that symmetric key
= Encrypts symmetric key using target’s public key
= Sends encrypted symmetric key with data

» To decrypt:
= Key decrypted using (expensive) asymmetric (private key)
- Payload decrypted using cheaper symmetric algorithm

Cryptographic Hashes and Digé
PR ".‘

» Related to encryption: cryptographic hashes aka digests
= Functions that convert variable-length input to fixed-length output
= Any change to original data changes the hash
= Used In digital signatures, as checksums, etc.

» Good hashes (SHA-1/2/3, MDA4/5) have these properties:
= Easy to compute for given data
= Infeasible to reconstruct data from hash
= Infeasible to modify data without changing hash
= Collisions (same hash from different data) very rare

» A good way to represent data without leakage risk 1“7,
= Frequently used for things like verifying downloads o

Digital Signatures

» Digital signatures are also related to cryptography
= Generated from the data using public/private-like key pairs
= Result is a hash-like blob

» Signhatures prove data authenticity and integrity

= Authenticity: Data is from who it says it's from

= Integrity: Data has not been tampered with (since signing)
» Implements important concept: non-repudiation ...z,

= Means sender cannot (reasonably) say
“I didn’t sign that”

» Frequently used for things like secure email
= Avoids problems due to forged mail

Message Authentication Codes

» A MAC (Message Authentication Code) is a keyed hash

= Created using a hash function plus a secret key
= Verify both data integrity and authenticity

» Different from digital sighatures: same secret key used

by creator/reader

= Thus more like symmetric encryption, where digital signatures
are more like public key encryption

» Generally faster to generate than digital signatures

aga

= MAC sent along with data

= Receiver re-generates MAC
against data, confirms match

= Useful for verifying transactions 1 >
L.;'};ﬁ:\‘@ ' _‘f l =

Sender

=== Secret Key Known Only to Sender and Receiver

A Few Words About “Encryptio

» Encryption strength refers to the likelihood that an
attacker can “break” encrypted data

= Typically tied to bit length of encryption key

= Exponential: 128-bit key is 2%4 times as strong as 64-bit

= See “Understanding Cryptographic Key Strength” on

youtube.com/user/VoltageOne for a good discussion/illustration

» The encryption community is collaborative

= Research, algorithms are all published and peer-reviewed

= Cryptographers look for weaknesses in their own and each
others’ work

More About “Encryption Strenc
s

» Cryptographers “cheat” in favor of attacker when
analyzing
= Make assumptions like “attacker has multiple known examples
of encrypted data and matching plaintext”
= Also assume they’ll know plaintext when they find it, and that
the encryption algorithm is known
» “Weaknesses” reported are often largely theoretical—
only NSA could really exploit
= Huge amounts of time, brute-force computing power required

More About “Encryption Streng

» This “cheating” ensures encryption strength is real*
= This approach increases security for all

= By the time an algorithm is accepted as a standard and
Implemented in products, confidence is high

= Even if a weakness is later discovered, it’s likely largely
theoretical/impractical for most to exploit

» Makes it easy to spot the charlatans

= Companies whose proprietary algorithms are not peer-reviewed

= Also look for claims like “unbreakable encryption”, or focus on
key length rather than standards-based cryptography

* Well, as real as the smartest minds in the business can make it!

Encryption Algorithm Examples

» DES: Data Encryption Standard

= Selected as standard by US government in 1976

= Block cipher, uses 56-bit keys

= Considered insecure: as of 1999, “breakable” in < 24 hours
» TDES: Triple DES

= What it sounds like: DES applied three times

= Uses two or three different keys

= Thus at least 2112-bit key strength (168-bit with three keys)
= Considered secure, though relatively slow

More Encryption Algorithm EXé

» AES: Advanced Encryption Standard
= Adopted as US standard in 2001
= 128-, 192-, or 256-bit keys
= Relatively fast
» Blowfish, Twofish, Serpent...
= Similar to AES in strength
= Mostly a bit slower (with exceptions)
= Algorithms are public domain (as is AES)

» Dozens (hundreds!) more exist, of course

= Given AES’s ubiquity and proven strength, generally no
reason to use anything else

System z Encryption Facilities

Integrated Cryptographic Service

» Encryption can be done in software routines, in
software using specialized instructions, or in hardware

= The U.S. considers encryption a “munition”, thus places
restrictions on its export

= Thus some hardware facilities not available in some countries

» Integrated Cryptographic Services Facility (ICSF)
= z/OS Started Task providing crypto interfaces for applications
= Invoked using well-documented API
= Requires hardware facilities for some functions

» Active area for IBM development
= New ICSF levels often appear between z/OS releases

Cryptography and Hardware

» Cryptographic algorithms tend to be CPU-intensive
= Easy to peg CPU when encrypting via software
= Optimized hardware is thus appealing

- 321 0
75 o
20'°

» Plaintext encryption keys in memory are worrisome
= Auditors are paid to worry about this stuff

= Even though we know z hardware protection is solid, Evil
Sysprog could conceivably troll through storage

» These are different problems, with different solutions

Problem: CPU-Intensiveness

» Most crypto uses one of the common algorithms
= DES, TDES, AES, RSA, SHA-1...
= Means “90-10" rule applies to optimization

» System z offers CP Assist for Cryptographic Functions
= CPACEF is no-cost Feature Code (3863), enabled per CEC
= Adds hardware instructions (KM/KMC, with subcodes)
= Implements common crypto algorithms on the z chip
= Not quite “free”, but way faster than software implementations!
= More capabilities on z10 than z9
= zEnterprise adds even more

Problem: Plaintext Keys in Men

» Plaintext key problem not unique to System z
= Perhaps even more critical on less inherently secure systems
» Solution: Hardware Security Modules (HSMs)
= Typically tamper-resistant, plug-in cards
= Cryptographic operations sent off to HSM, results returned
= Non-System z: nCipher (now Thales), Futurex, Atalla (HP) ...
= System z: Crypto Express2 & 3 (CEX2 & CEX3)
» CEX2/3 include two processors per card

= Each supports up to 16 cryptographic domains
= A single CEC can have up to eight CEX installed
= CEX2-1P and CEX3-1P also exist: one processor per card (BC)

Problem: Plaintext Keys in Men

» CEX stores Master Key (Key Encryption Key, or KEK)

= Entered via ICSF or using Trusted Key Entry (TKE)
Workstation feature

= Operational keys are encrypted in CEX using KEK
= Encrypted keys are stored on System z (in CKDS/PKDS)

» Operation:

1. Application reads encrypted key, passes to ICSF
ICSF passes request to CEX
Key decrypted inside CEX, operation performed
Crypto result returned to ICSF, thence to application
Plaintext keys never reside in System z memory

b Th|s IS called Secure Key operation

g W N

CPACEF vs. Crypto Express

» ICSF exploits both CPACF and Crypto Express
= Uses CPACF or CEX as appropriate (and if available)
= Note: Linux for System z crypto drivers also exploit both

» CPACF and Crypto Express are often confused
= “We have a CEX, so encryption should be fast”
= Not necessarily: CEX is for security, CPACF for performance

» BUT... CEX can be used in performance-related ways:

= To offload processing from expensive System z MIPS when
throughput less critical (requires large data chunks to be a “win”)

= When configured as “accelerator” for SSL operations

Protected Key Operations

» Secure Key operations using CEX are “very” slow*
= Throughput requirements often preclude use of Secure Key

» Latest ICSF and microcode add Protected Key
= Hybrid solution, providing (most of) “Best of both worlds”
= Exploits combination of CPACF and CEX (via ICSF)
» Stored keys in z/OS are still encrypted
= CEX decrypts secure key, re-encrypts with “wrapping key”
= Copies wrapping key to protected HSA memory
= Wrapped key returned and used on CPACEF calls
» “Most of the performance with most of the security”

= But some auditors may not “buy” it, even though protected
memory cannot be dumped, even with HSM diagnostics

* FSVO “very” — certainly much slower than Clear Key operations via CPACF

Implementing Encryption

What is “Enterprise Encryption

» A scalable, manageable data protection plan
= Standards-based, provably secure

» Applies across multiple data sources (databases etc.)
= Not just point solutions for specific data sources

» Cross-platform
= Everyone has multiple platforms nowadays

» Includes key management

Encryption Is Difficult

» Lots of different technologies D
= Hardware-based, software-based, hardware-assisted -

- DES, TDES, AES, Blowfish, Twofish, CAST, PGP, GPG ... !

» Companies have lots of data in lots of places -
= Much of it probably of unknown value/use
= The sheer volume is daunting |
» Difficult to imagine how to get started =
= Easier to stick your head in the sand and hope it goes away

» For mainframe folks, it's even easier to (try to) ignore
= System z OSes are traditionally more secure than distributed

Encryption Is Scary
» Most of us don’t understand the technologies

= Math classes were a looong time ago

It changes constantly
= We hear “DES has been broken, use AES” o
= What does that mean? Is DES useless? Is AES next to fall?

» Lots of snake-oil salesmen in encryption
= www.meganet.com touts “unbreakable encryption”

Easy to decide encryption is unapproachably complex
= Like buying your first house, or doing your own taxes...

v

v

» Yes, If you get it wrong, you will lose data! m IRS

= Another reason prompting avoidance behavior...

Department of the Treasury
Internal Revenue Service

The Five Ws of Encryption
e

» Why encrypt data?

» What should be encrypted?

» Where should it be encrypted?

» When should it be encrypted?

» Who should be able to encrypt/decrypt?

» How will you encrypt it?

Why Encrypt?

» Every company has data to protect
= NPPI, PIlI, or just PI
= Customer information
= Internal account information
= Intellectual property
= Financial data

» Every company moves data around
= Backup tapes
= Networks
= Laptops
= Flash drives
= Data for test systems

Why Encrypt?

» Different media have different issues
= Very few backup tapes get lost...but it does happen
= Networks get compromised fairly regularly
= Laptops are lost or stolen every day
= Flash drives are disposable nowadays

» Different media types mean different levels of risk
= Deliberate, targeted network breaches are obvious concern
= Missing backups probably won'’t be read
= Missing laptops probably won’t be analyzed for PlI
= Found flash drives are probably given to the kids

Why Encrypt?

» Breaches happen!

= 2009: 498; 2010: 662 (per Identity Theft Resource Center)

= A healthy increase...and what about undetected/small ones?

= Can you afford to bet your job/business? /'
» Data encryption is not a luxury =il

= Claimed cost per compromised card is $154—-$215!! *
= Heartland breach: 130M cards; TJX: 94M cards
= Do the math...

|GOING OUT OF
BUSINESS!
* Source: Ponemon Institute
$154 = negligent inside
$215 = malicious/criminal act

Why Encrypt?

» Data breach sources:
= 73%: external —
= 18%: insiders p—
= 39%: business partners
= 30%: multiple parties

Source: Verizon Business, 2009 Data Breach Investigations Report

» But insider breaches far more expensive:
= External attack costs averages $57,000
= Insider attacks average $2,700,000!

Why Encrypt? \
g™ 4

» Commonalities: » Causes:

= 66%: victim unaware data = 62%: attributed to a
was on system “significant error”

= 75%: not discovered by victim = 59%: from hacking or

- 83%: not “highly difficult” intrusions

- 85%: opportunistic = 31%: used malicious code

- 87%: avoidable through = 22%: exploited vulnerability
“reasonable” controls = 15%: physical attacks

The real card reader slot. The capture device The side cut out is not visible when on the ATM.

Why Encrypt?

» The law Is catching up with the reality

PCI DSS (Payment Card Industry Data Security Standard)
Red Flag Identity Theft Rules (FACTA)
GLBA (Gramm-Leach-Bliley Act)
SB1386 (California)

Directive 95/46/EC (EU)

HIPAA P
etc.

» PCI DSS not only requires data encryption, but also:
Restrict cardholder data access by business need-to-know
This is called separation of duties

What To Encrypt?

» Everything! (Well, maybe not...)
= Performance, usability, cost are barriers
= Partners likely use different encryption technology

= Changing every application that uses the data is prohibitive

» No single answer
= Laptops, flash drives: at least PII, probably all data
= Backup tapes: all data
= Whole-database encryption possible but not a good answer

What To Encrypt?

» Whole database encryption fails on several counts
Can impose unacceptable performance penalty
Prevents data compression, using more disk space etc.
Violates separation of duties requirements
Better to just encrypt the PIlI (whatever that is)!

» What about referential integrity and other
data relationships?
- Database 1 & database 2 both use SSN as key
= If you encrypt them, encrypted SSNs better match!
= Else must decrypt every access, and indexes useless

Application & Database Encryp

Four Approaches

b

Whole Database Encryption
= Encrypt all data in DB—slows all applications

= No granular access control, no separation of duties

= No security of data within applications

» Column Encryption Solutions

Encrypt data via DB API or stored procedure

CC#

2
&,
(3

Encrypted CC# -

Major DB type/version dependencies

4391471208007120

Zrroor TrTT— Ty oT

No data masking support and poor separation of

v

Traditional Application-level Encryption
- Encrypt data itself via complex API

- Requires DB schema/application format changes

' L
complexity %

= High implementation cost plus key management

duties

43911471208007120 Ly

v

Account # CC Index

383491 12345678p0123456

Lookaside Database (aka “Tokenization™)
- CC# indexed, actual CC# in protected DB J

7’

CC Index /

CC#

- Requires online lookup for every access
- Requires major rearchitecting; scope issues’

1234567890123456

4391471208007120

Where To Encrypt?

» Different question than “what™:
= Data at rest and in motion
» Data at rest

= “Brown, round, and spinning” (DASD of all types)
= On tape (backup or otherwise)

» Data in motion
= Traversing the network

Where To Encrypt?

» Data in motion particularly troublesome

= How do you know Iif it's been sniffed as it went by?

» Data at rest somewhat easier

= Intrusion detection systems fairly effective (if installed and
configured, and if someone actually checks the logs)

= ESMs very effective on z/OS (if administered correctly)
» Different issues, thus different criteria!

uam l9\2

192,186,1,101
162,180, 1, 101
208.57.222.222
1gz.168.1, 101
208,67, 222,220
e KT TII AT

fRadddgnd

TSI | W BereiT |
yiew Ga Capture analyze Statistics Halp
ﬁﬁﬁ SfiEeRr & T EEE K
[Eiker 4 Expres % Cloar | o apply
Drestination Pratecs F
FUBr R s S smey i g wrma R T R e
2 647288 163168 a1 xss:mm ohs .n:l rd g uuy o
13 15.937058 308.67.323.3322 19,168, 1.101 oS 51'ar|:| rd guery raspon
14 15.8937457 192.168,1.101 75,126, 43,292 TCR 45861 = wew [SrN] Sen
15 1631450 75.128.4 E’z 1683, 168.1. 101 TCR e = ABEAY [SYN, ACK
6 16.314665 192, » 13 75,126, 43, 333 4585] > W [M] =1
i‘]6 Alacaq 153, 0'. 75,126.43, 230 [TO® sagmant o res
18 16.31500 162 J1o1 7812643, 732 Nt rea

sStandard quary A we.

Standard query respon

Standard guery &SR8 w|
Aim

When To Encrypt?

» ldeally, data is encrypted as it’s captured

» Inreality, it’s often done far downstream

= The handheld the flight attendant just used—is it encryptrng’P
= Did last night’s restaurant encrypt your credit card number?
= If the data goes over a wireless network, is it WEP? WPA?

» “Doing it right” is harder: more touchpoints

= Easier (if less effective) to say “Just encrypt at the database”
= Avoids interoperability issues (ASCII/EBCDIC, partners)

Who Can Encrypt/Decrypt?

» Usual question is: who decrypts?
= Who should have the abllity to decrypt PI1I?

» Should your staff have full access to all data?
= Many unreported (or undetected) internal breaches occur

» What if someone leaves the company?
= How do you ensure their access is ended?

» What if an encryption key is compromised?
= Can you revoke it, so it’s no longer useful?

» PCI DSS et al. require these kinds of controls
= This is a big deal—not trivial to implement

o Security ™
Standards Council

How Will You Encrypt Data?
o

» Hardware? Software?
= Many options exist for both

» Is a given solution cross-platform?
= If not, you must decrypt/re-encrypt when data moves

» AES? TDES? Symmetric? Public/private key?
= Many, many choices exist—too many!

How Will You Encrypt Data?

» Different issue: How do you get from here to there?

100M++ data records—how to encrypt without outage?

“Customer database down next week while we encrypt™?!

» What about data format changes?

Encrypted data usually larger than original

Does not compress well (typically “not at all”)

Database schema, application fields expect current format
Can you change everything that touches the data?
(Should you need to?)

Key Management

» “Encryption Is easy, key management is hard”
= Ultimately, encryption is just some function applied to data
= To recover the original data, you need key management

» Three main key management functions:

1.
2.

Give encryption keys to applications that must protect data

Give decryption keys to users/applications that correctly
authenticate according to some policy

Allow administrators to specify that policy: who can get what
keys, and how they authenticate

Key Management

» Key servers generate keys for each new request
= Key server must back those up—an ongoing nightmare
- What about keys generated between backups? T
- Maybe punch a card every time a key is generated... i - ”

» What about distributed applications? L
= How do you distribute keys among isolated networks?

» What about partners?
= If you distribute encrypted data, how do they get the keys?

» “Allow open key server access” not a good answer
= Suggest it, watch network security folks’ heads explode 4

Getting There From Here:
A Realistic Approach

A Realistic Approach: Take A De

= Better now than after breach
= That light at the end of the tunnel is a train!

» Understand that choices have far-reaching effects
- Data tends to live on for a very long time

» EXpect to use multiple solutions
= Backups, laptops, databases all have different requirements
= “Right” answer differs

- E.g., for backups, hardware-based solution; for customer
database, column-based encryption

» Investigate encryption, now or soon | ff
/&

A Realistic Approach: High-Leve

1. Classify data by degree of sensitivity

[_ 1. Data Classification] - This is harder than it sounds!
2. Analyze risks: Security costs
How secure can you afford to be?

3. Implement solution (remediation)
Must be a gradual process
4. Use compensating controls sparingly
By definition, they’re suboptimal
. Goal: persistent encryption everywhere
Best achieves regulatory compliance

2. Risk Analysis

3. Remediation

‘4. Persistent Encryption |€ 3a. Compensatin-

A Realistic Approach: Key Stepg

» Key: Involve stakeholders across the enterprise
= “No database is an island”: multiple groups use the data
= Partners, widespread applications need access too...
» Key: Find a “starter” application
= Generating test data from production is a good beachhead
= If you “get it wrong”, you haven't lost anything “real”
» Key: Designate data by sensitivity:

Red: Regulated (legally required to be protected)

Intellectual property or other internal (unregulated)
Green: Public

= Each requires a different level of isolation/encryption g

85

O |

A Realistic Approach: Proof of*

» Encrypt a representative database
- “Database” could be DB2, IMS, VSAM, flat file...

» Update application(s) that access it

= You know what all your applications do, right? @

» Validate performance, usability, integrity
= Encryption is not free: may see significant performance hit

» Demonstrate to other groups
= Invite discussion, counter-suggestions

» Once (if!) project approved, request executive mandate
= Otherwise, some groups may simply not participate

A Realistic Approach: Finishing@

» Doing all databases/applications takes time
= Expect glitches
= Perhaps most difficult: understanding data relationships
= Table A and Table B seem unrelated, but aren’t

» Lather, rinse, repeat...

- Each database will have
Its own issues/surprises

Alternatives to
Traditional Encryption

Tokenization

» Tokenization is another approach to data protection

Replaces values with randomly generated values
Index to real values stored in database
Detokenization thus requires database lookup

» Confusion abounds re tokenization vs. encryption

Some QSAs think tokenization is better because “there is no
encryption key to be cracked”

Cryptographers see the database index itself as the key
Standards currently don’t help much here; hopefully will clarify

Format-Preserving Encryption
o

» Format-Preserving Encryption is another choice
- Data encrypted with FPE has same format as input

= Encrypted SSN still 9 digits; name has same number of
characters; credit card number has same number of digits...

Name SS# Credit Card # Street Address Zip
James Potter 385-12-1199 5421 9852 8235 6981 1279 Farland Avenue 77901
Ryan Johnson 857-64-4190 5587 0806 2212 0139 111 Grant Street 75090

Carrie Young 761-58-6733 5348 9261 0695 2829 4513 Cambridge Court 72801
Brent Warner 604-41-6687 4929 4358 7398 4379 1984 Middleville Road 91706
Anna Berman 416-03-4226 4556 2525 1285 1830 2893 Hamilton Drive 21842

Credit Card # Street Address
James Cqvzgk 161-82-1292 5184 2292 5001 6981 289 Ykzbpoi Clpppn 77901
Ryan lounrfo 200-79-7127 5662 9566 7734 0139 406 Cmxto Osfalu 75090

Carrie Wntob 095-52-8683 5774 6343 6896 2829 1498 Zejojtbbx Pgkag 72801
Brent Gzhqlv 178-17-8353 4974 7815 8270 4379 8261 Saicbmeayqw Yotv 91706
Anna Tbluhm 525-25-2125 4288 0276 0003 1830 8412 Wbbhalhs Ueyzg 21842

Format-Preserving Encryptio
| -

» Format-Preserving Encryption benefits:
= Avoids database schema changes
= Minimizes application changes

= In fact, most applications can operate on the encrypted data:
Fewer than 10% of applications need actual data
» FPE Is a proposed mode of AES

= Google “ffix mode” or look for “FFX” on
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html

= Invented by Voltage Security, based on work at Stanford
= Peer-reviewed, proven technology—not snake oll!

National Institute of S

Standards and Technology

...working with industry to foster innovation, trade, security and jobs

Cross-Platform Capable

» ASCII/EBCDIC issues go away

- Data converted to UTF-8 before encryption/decryption

= Stored In native format on host (ASCII or EBCDIC)

= Possible because character sets are deterministic (FPE!)

= Result: z/OS is a full partner in protected data management

» Encrypt/decrypt where the data is created/used
= Avoids plaintext data ever traversing the network

Decrypt on
Encrypton z distributed

eI

Data Masking

» Application testing needs realistic datasets
- Fake sample datasets typically too small, not varied enough

» Best bet: Use production data...but:
= Test systems may not be as secure
= Testing staff should not have full access to PII!
» Answer: Use FPE to mask (anonymize) test data

= With FPE, encrypted production data is perfectly usable for test
= No extra steps required!

Voltage SecureData

Voltage SecureData

g Wlth some key dlfferences, of course!

» Avallable on z/OS, Windows, Linux, z/Linux, HP/UX, AIX

= Built on platform-agnostic codebase (easy to port)
= Can add platforms quickly as customers require them

» Complete suite of options:
= Toolkit (APIs) for application integration
= Bulk data encryption tools for scripting/data masking (z/FPE, CL)
= SOA server for legacy/lightweight platforms
= Tokenization supported via SOA for sites that require it

o i 0 i ® \E /,5 O

SecureData z/IFPE SecureData SecureData
Toolkit SOA

Key Management

» Simplified key management eases most headaches
= Keys are generated dynamically based on identity
= Enables multiple key servers, serving same keys
= Allows geographic/network isolation
= Requires backup only when key server configuration changes

» Key request authentication allows separation of duties
= Users/applications without access cannot get keys
= Voltage SecureData makes full compliance much easier

Voltage Key Server
Application

Base Key
_

app@corp.com E

Voltage SecureData Benefits

» FPE minimizes implementation difficulty
= Most databases require no schema changes
= Most applications require minimal or no code changes

» Persistent encryption prevents accidental leakage
= Compensating controls only cover holes you know about
= Integrate with existing monitoring and scanning tools

» True separation of duties

= DBAs can still do their jobs, no access to “Red” data without
authorization

» Role-based access model allows granular data policies
= CSR only sees last 4 of credit card; fraud investigator sees all 16
= Full re-use of identity/access management systems

Summary

security

Conclusion

» Encryption is not a luxury, not optional today

» A complex topic, but one that can be tamed

» Many solutions exist

» Different data/media require different solutions

» Voltage SecureData solves many of the problems for
data at rest and data in motion
= Not a solution for whole-disk, whole-tape encryption
= The best solution for existing data, existing applications

Voltage

Encryption Resources

» InfoSecNews.org: email/RSS feed of security issues
http://www.infosechews.org/mailman/listinfo/isn

» Voltage security, cryptography, and usability blog
http://superconductor.voltage.com

» Bruce Schneier's CRYPTO-GRAM monthly newsletter
http://www.schneier.com/crypto-gram.html

» RISKS Digest: moderated forum on technology risks
http://catless.ncl.ac.uk/risks

» US Computer Emergency Response Team advisories
http://www.us-cert.gov/cas/signup.html

» Track breaches: www.privacyrights.org and datalossdb.org and

www.idtheftcenter.org

Questions?

Phil Smith Il
703.476.4511 (direct)
phil@voltage.com
www.voltage.com

