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Why are WMQ and CICS being used 
together?

• CICS processes an estimated 80% of ‘completed business functions’
• The cost of each transaction is often quite small

• Rewriting custom applications is very costly
• Reusing the existing applications is very cost effective

• WMQ provides:
• Once and only once delivery of data
• No need to write your own queueing mechanism
• No sockets code
• Quality of service can be as granular as at the message level

• Message persistence
• Messages can survive an outage or not

• Messages can provide other QoS differentiation
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Why are WMQ and CICS being used 
together? - Notes

• CICS has improved performance and lowered cost 
significantly over its lifespan.

• Often customized application are the core business 
processes – maintaining the databases of record, etc.

• Rewriting those processes have a relatively high failure 
rate and often cost much more to run ‘off the frame’ than 
originally estimated.

• We are seeing some customers port applications back to 
CICS
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Why are WMQ and CICS being used 
together?

• Transactions
• WMQ requests can fully participate in a CICS unit of work

• Or not – if needed
• Asynchronous processing

• Often used for batch modernization
• Messages can build up to be processed during non-peak hours or 

as capacity is available
• Trickle processing, in place of ‘batch windows’
• Persistent messages will be available for processing even after an 

outage
• Pushing lower priority work out to other regions

• Pseudo-synchronous
• Messages are async by nature
• Often used in a ‘pseudo-synchronous’ fashion for request and reply 

scenarios    
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Why are WMQ and CICS being used 
together? - Notes

• Asynchronous processing
• Advantage is that work becomes time independent
• No requirement of requestors and processors to be available at the 

same time
• Often used to push lower priority/less time critical work to other 

regions or environments
• Pseudo-synchronous

• Advantage is that the same API is used for both sync and async
• Messages and requests can expire, allowing the user app to send 

the request again.
• Can be used for ‘important’ requests as well 

• if the request expires before a response is received, then the user can 
be informed that the work will be processed later

• The request is not lost, even when the applications are not available
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Why are WMQ and CICS being used 
together?

• Availability
• Using a CICSplex and a QUEUEplex together can provide 

continuous availability 
• Using Messages on shared queues to initiate CICS transactions 

allows workload to be moved about, without disruption to the end
user

• An individual queue manager or CICS region is no longer a SPOF
• Application and tools familiarity

• Standard debugging capability via CEDX
• Common API 

• COBOL, PL/1, C, Assembler and Java
• JMS is not supported under CICS 
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Messaging Patterns 
Customer-facing 
transaction. 
Pseudo-synchronous 
does NOT mean slow !!

Could also be a 
Customer-facing 
transaction but no 
response is required.
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Messaging Patterns - notes

• Certainly not the only styles, but these are very common
• Often there are multiple ‘hops’ to go thru a business 

process
• In this example

• Retail sales:
• Process A might be running on a retail point of sale machine
• Process B is a CICS transaction to authorize a charge

• Banking
• Process A is an ATM
• Process B is a CICS transaction to verify account balance before

dispensing cash
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How are WMQ and CICS being used 
together?

• Traditionally:
• Bridging Techniques:

• Initiating CICS transactions and programs with no changes
• Using the MQ API in CICS programs

• Allows for data greater than 32K to be passed into the programs
• No channels and containers required

• Provides simple ASCII-to-EBCDIC translation for string data
• Simple and consistent API 

• Newer:
• SOAP over MQ
• WebServices
• New WMQ verbs – more on that later
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How are WMQ and CICS being used 
together? Notes

• Traditionally:
• Bridging Techniques:

• MQ/CICS Bridge
• Works best for DPL enabled programs
• Only using COMMAREA link (no channels and Containers) 
• New with WMQ V7 – MQCB function – we’ll talk about that 

later

• Newer:
• SOAP over MQ
• WebServices
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WMQ and CICS – A match made in 
Heaven 

• Well Hursley at any rate
• As of CICS 3.2 – CICS development own the MQ interface 

code
• It’s threadsafe
• Runs on L8 TCB (just like DB2)

• CICS 4.1 supports group attach
• Like the attach to a DB2 Data Sharing group
• CICS will attach to a queue manager in a QSG on the same 

LPAR
• Selection is made randomly

• CICS PA can analyze some WMQ Performance 
information
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WMQ and CICS – A match made in 
Heaven 

• Some would say the match was made elsewhere
• Most customers are using the CICS delivered code

• Performance improvements have been significant
• No longer limited to 8 TCBs
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WMQ and CICS – Things to Avoid

• Just because you can
• Does not always mean you SHOULD!

• Long running transactions
• Commit frequency is still important

• API issues
• MQPUT1 in loops
• No ‘fail if quiescing’
• Non-expiring MQGETs
• Poison messages
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WMQ and CICS – Things to Avoid - Notes

• Long running transactions
• Default uncommitted message count is 10,000
• That builds up in storage

• Even though it’s above the bar in WMQ V7, should not be 
abused 

• API issues
• MQPUT1 in loops

• We estimated that at 3 MQPUT1s to the same queue in one 
transaction it becomes more expensive in CPU than an 
MQOPEN, loop of MQPUTs and MQCLOSE

• Use backout thresholds and re-queue queues correctly
• Avoiding poisoned message looping can save a lot
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WMQ and CICS – Evolution (not 
revolution) 

• CICS now fully supports the new WMQ V7 verbs
• MQ PUB/SUB

• CICS applications can publish to topic objects or topic strings
• They can also be subscribers

• Cooperative Browsing
• Multiple applications can flag messages as having been ‘touched’

• Message Properties
• Values associated with the message, but not part of the message body.  

May be used as:
• Selection Criteria
• To drive application function without changing the message body

• MQ Callback – aka the Async Consumer
• CICS transactions can be started asynchronously based on selection 

criteria
• Message data is passed in channels and containers
• May remove the need for the CICS Bridge
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WMQ and CICS – Evolution (not 
revolution) - notes

• MQ pub/sub is now available on ‘all the major platforms’
including z/OS
• Simple to use, allows further decoupling of applications

• Message properties
• Lots of interest to provide:

• Starting multiple transactions using MQCB based on selection 
criteria

• Provide a processing ‘marker’ (I was here)

• Async consumer
• There are new COBOL samples with the latest WMQ and 

CICS PTFs
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WMQ – CICS Samples using the new 
verbs

• CICS sample programs that illustrate async consume and pub/sub
• Asynchronous consume

• Two message consumers and one event handler
• CSQ4CVRG – Registers callback handlers

• CSQ4CVEV – Event handler
• CSQ4CVCN – Simple message consumer
• CSQ4CVCT – Control message consumer

• Asynchronous consume and pub/sub
• CSQ4CVPT – Two functions:

• Publishes message to topic – consumed by CSQ4CVCN
• Puts control messages to queue for consumption by CSQ4CVCT

• MVMP transaction allows user to control interaction
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WMQ – CICS Samples using the new 
verbs

• These have been delivered with WMQ V7.0.1 maintenance
• ATS are also providing other single function samples available or in-

flight:
• QPUB - QPUBCBL 

• This program will publish a specified number of messages to the 
topic and/or topic string provided in a control message.

• Published as a TechDoc
• http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4549

• QSUB - QSUBCBL
• This transaction will subscribe to a topic and/or topic string 

provided and read the specified number of publications.
• In Progress

• QDISP – QDISPCBL
• This program will demonstrate cooperative browsing in dispatching work 

to other transactions.
• In Progress
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Loose Coupling with Publish/Subscribe
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Loose Coupling with Publish/Subscribe

• Loose coupling is a key factor in a true SOA environment
• My business process requests a service, that service can 

reside anywhere
• The services may even be asynchronous

• SOA has been around a long time for CICS users
• I’ve been encouraging the use of CICS transactions as 

‘services’ for more than 20 years
• The names have changed
• Now there are standards

• Pub/Sub is ideally suited for an SOA environment, 
because the data producer (the publisher) and the data 
consumer (the subscriber) can be anywhere.  
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Pub/Sub example

• Problem:
• Three major applications with different data stores
• Customer contact information is continuously out of sync
• Customers don’t want to update information multiple times to 

change the same data
• Three primary applications:

• DDA – CICS applications with VSAM data store
• Mortgages – CICS applications using DB2 on z/OS
• Consumer Loan – CICS applications using DB2 on z/OS
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Pub/Sub example - notes

• This is an example keenly felt by the author
• To get my cell phone number changed at a bank I had to 

make several trips to cover all my account types. 
• While there clearly had been an attempt to integrate some 

of the applications, it failed.  
• When I altered my cell phone in the DDA system it updated 

there
• It overlaid my home phone number on my mortgage account
• When I repaired the mortgage account, my entire contact 

information got deleted on a consumer loan account, etc. 
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Pub/Sub and CICS sample

• Solution:
• Create a ‘Customer Contact Change’ topic object
• Publish changes:

• Alter all systems to publish contact change information OR
• Create a single ‘contact update’ application

• This could be a very simple browser based app
• Alter the update processes to subscribe to contact change 

information
• If this is currently queue driven, no application changes are required
• ‘Administered’ Subscriptions

• When a change is made each application will receive a copy of the 
update and make the appropriate change to their back-end.  
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Pub/Sub and CICS sample - notes

• Solution:
• This simple solution assumes that the data for all three systems is 

virtually the same, which is not always the case.  There are times 
when you must use a brokering tool to change formats for each of
the systems.  Again, the broker – the data transformation tool – can 
be the subscriber and can reformat the update request as needed.



14

27

Prior to Pub/Sub
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Pub/Sub Sample solution
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WMQ and CICS – To Evolve

• Apply the correct WMQ and CICS maintenance
• WMQ - APARs PK97364 and PK97972 
• CICS V4.1 - APAR PK89844 

• Remove the MQ INITPART from CICS
• Add the new CICS MQCONN resource definition
• Upgrade the CICS resource definitions to include the new 

features
• Run DFHCSDUP with the UPGRADE USING(DFHCURDM) 

command
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Enablement PTFs
• What are they

• PTF to enable WMQ V7.0.x new function in CICS TS 3.2 and 4.1
• What do they enable

• API verbs and new function support for:
• PUBLISH/SUBSCRIBE 
• ASYNCHRONOUS CONSUME
• MESSAGE PROPERTIES

• APARS/PTFs
• CICS TS 3.2 – PK66866 (UK52671,UK52672,UK52673,UK52680)
• CICS TS 4.1 – PK89844 (UK52619,UK52667,UK52668,UK52669)

• What happens if they’re not applied
• Function can’t be exploited from CICS environment
• Just linking with new stub doesn’t mean it will work
• Applications will be returned MQRC_FUNCTION_NOT_SUPPORTED

• Or the AMQC abend
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Enablement PTFs - notes

• Check for the most recent updates
• The full function was added in Dec. 2009/Jan 2010
• If you have a fix prior to that date, you may be missing a few 

things
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CICS WMQ Abend codes

• AMQA DFHMQCON had enabled DFHMQTRU with a global work area smaller than that needed by 
DFHMQTRU. This could be due to a mismatch of version level between DFHMQCON and 
DFHMQTRU. 

• AMQB DFHMQCON had enabled DFHMQTRU with a task local work area smaller than that needed 
by DFHMQTRU. This could be due to a mismatch of version level between DFHMQCON and 
DFHMQTRU. 

• AMQC Unrecognizable WMQ API call. All supported API calls are 
documented in the WebSphere MQ Application Programming Reference
manual. 

• AMQD Unrecognizable RMI API call. The CICS-MQ task related user exit (TRUE) was invoked with 
an unrecognizable request type. 

• AMQE An attempt to EXEC CICS LOAD the data conversion service module CSQAVICM was 
unsuccessful. 

• AMQF An internal logic error has been detected in the CICS bridge monitor. 
• AMQG The CICS DPL bridge program has detected an error in a request message for this unit of 

work. 
• AMQH The CICS bridge monitor or DPL bridge program abended due to an unexpected return code 

from an EXEC CICS API call. 
• AMQI The CICS bridge monitor or DPL bridge program abended due to an unexpected return code 

from an MQ API call. 
• AMQJ The CICS DPL bridge program abended before processing any messages for the unit of work. 
• AMQK The CICS DPL bridge program abended during error processing. 
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CICS WMQ Abend codes - notes

• Can you guess which one is my favorite?

• AMQC can occur when:
• You try to use the new functions, but the supporting 

maintenance has not been applied
• You have linked with the wrong version of the stub
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What do you mean my MIPS didn’t go 
down?

• A common pattern has emerged
• A promised ‘MIPS reduction of 10-20%’
• Same Qualities of Service 
• No re-write (or a very limited one) of your business logic
• Pulling transactional workload off z/OS and putting it on a 

distributed platform
• Some workloads are a very good fit for moving
• This is the tale of some that are definitely not! 
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What do you mean my MIPS didn’t go 
down? - Notes

• There have been a number of failed customer projects 
• ATS has been asked for a post mortem on several 

• There are some workloads that can be easily and effectively 
moved, while others cannot

• In some cases these failed solutions have been adopted, with 
the limitations and availability issues left un-addressed

• This information is being presented as a cautionary tale, 
your situation may differ from this pattern
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MIPS reduction:  Problem #1

• The process that was being removed was using DB2 data 
sharing and WMQ shared queues for extreme availability
• This transaction had a firm 24/7 availability requirement
• There were 6 queue managers, 6 DSG members and 24 

CICS regions spread across 2 CECs
• Transactional control was provided by CICS

• DB2 data sharing and WMQ Shared queues are only 
supported on z/OS
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MIPS reduction:  Problem #1

• To provide the same qualities of service, DB2 connect and WMQ 
clients were chosen to access the DSG and WMQ Shared queues
• For both DB2 and WMQ, executing the API calls from a client is 

more expensive than executing those same calls locally
• This also reduced some levels of control

• To achieve the same levels of availability:
• Much more hardware had to be purchased than originally planned

• 6 ‘large scale’ production UNIX machines
• 2 QA UNIX machines
• More software licenses, including a HACMP-like product
• Two additional administrators were required
• DR solution had to be devised
• Network became more complex
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MIPS reduction:  Problem #2

• The typical transaction volume for a non-peak day was 5M per hour
• Each CICS region remained constantly connected to it’s queue 

manager
• Each CICS region had anywhere from 10 to 40 instances of the 

processing transactions available at all times
• Each transaction processed as follows:

• MQGET request message
• Perform 1 DB2 query
• Create 1 to 5 DB2 adds/updates depending on the transaction
• MQPUT reply message
• MQPUT audit message (if required)
• MQPUT ‘additional attention’ message (if required)
• SYNCPOINT
• Loop back
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MIPS reduction:  Problem #2

• Without CICS the process for each request included:
• Establish XA Unit of work
• Connect to DB2 
• MQCONN – to gain access to the queue manager
• MQGET request message
• Perform 1 DB2 query
• Create 1 to 5 DB2 adds/updates depending on the transaction
• MQPUT reply message
• MQPUT audit message (if required)
• MQPUT ‘additional attention’ message (if required)
• Request commit (whoever the TX manager was)
• MQDIS – to disconnect from WMQ
• Disconnect from DB2
• Start next instance

• The additional workload from the client connections to both DB2 and 
WMQ increased MIPS usage by 15-20% before stress tests were run
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MIPS reduction:  Problem #3

• This is certainly an z/OS centric view
• No CICS/WMQ/DB2 evaluations was done

• In the post mortem, it was found that the customer could 
probably have achieved a significant MIPS reduction by:
• Tuning the infrastructure – there were significant issues with 

some of the set-up that had never been addressed
• Tuning the application code – while most of the code was 

quite good, there was some that could have used  some work
• Upgrading to more current releases of hardware 
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Summary

• Talked about why and how
• Mentioned things to avoid
• Example of where the new verbs can be useful
• Example of a failed ‘moving off platform’
• Got forth and remember that CICS and WMQ have been a 

winning combination for most of WMQ’s life! 


