
1

Using WMQ in your CICS System
Lyn Elkins – elkinsc@us.ibm.com
IBM

Session 8288
Wednesday 02 March, 2011 1:30

2

Agenda

• Why are they used together?
• How are they being used together?
• Things to avoid
• Evolution not Revolution - WMQ and CICS

• What’s new and improved?
• What do I need to get there?

• Summary

2

3

Why are WMQ and CICS being used
together?

• CICS processes an estimated 80% of ‘completed business functions’
• The cost of each transaction is often quite small

• Rewriting custom applications is very costly
• Reusing the existing applications is very cost effective

• WMQ provides:
• Once and only once delivery of data
• No need to write your own queueing mechanism
• No sockets code
• Quality of service can be as granular as at the message level

• Message persistence
• Messages can survive an outage or not

• Messages can provide other QoS differentiation

4

Why are WMQ and CICS being used
together? - Notes

• CICS has improved performance and lowered cost
significantly over its lifespan.

• Often customized application are the core business
processes – maintaining the databases of record, etc.

• Rewriting those processes have a relatively high failure
rate and often cost much more to run ‘off the frame’ than
originally estimated.

• We are seeing some customers port applications back to
CICS

3

5

Why are WMQ and CICS being used
together?

• Transactions
• WMQ requests can fully participate in a CICS unit of work

• Or not – if needed
• Asynchronous processing

• Often used for batch modernization
• Messages can build up to be processed during non-peak hours or

as capacity is available
• Trickle processing, in place of ‘batch windows’
• Persistent messages will be available for processing even after an

outage
• Pushing lower priority work out to other regions

• Pseudo-synchronous
• Messages are async by nature
• Often used in a ‘pseudo-synchronous’ fashion for request and reply

scenarios

6

Why are WMQ and CICS being used
together? - Notes

• Asynchronous processing
• Advantage is that work becomes time independent
• No requirement of requestors and processors to be available at the

same time
• Often used to push lower priority/less time critical work to other

regions or environments
• Pseudo-synchronous

• Advantage is that the same API is used for both sync and async
• Messages and requests can expire, allowing the user app to send

the request again.
• Can be used for ‘important’ requests as well

• if the request expires before a response is received, then the user can
be informed that the work will be processed later

• The request is not lost, even when the applications are not available

4

7

Why are WMQ and CICS being used
together?

• Availability
• Using a CICSplex and a QUEUEplex together can provide

continuous availability
• Using Messages on shared queues to initiate CICS transactions

allows workload to be moved about, without disruption to the end
user

• An individual queue manager or CICS region is no longer a SPOF
• Application and tools familiarity

• Standard debugging capability via CEDX
• Common API

• COBOL, PL/1, C, Assembler and Java
• JMS is not supported under CICS

8

CF

Message Availability

Queue 1

Q Mgr 4

B

Q Mgr 3

Queue 1

B

Q Mgr 2

B

A

Q Mgr 0

?

B
Q Mgr 1

Msg2
Msg9
Msg10

Msg3
Msg7
Msg8

Msg11

Msg4
Msg5
Msg6

QSG1

Msg1-
Processed

5

9

A

B

Queue

1

Queue

2

A

B

Queue

1

Request/Reply

Fire and Forget (or Send and Depend)

Messaging Patterns
Customer-facing
transaction.
Pseudo-synchronous
does NOT mean slow !!

Could also be a
Customer-facing
transaction but no
response is required.

10

Messaging Patterns - notes

• Certainly not the only styles, but these are very common
• Often there are multiple ‘hops’ to go thru a business

process
• In this example

• Retail sales:
• Process A might be running on a retail point of sale machine
• Process B is a CICS transaction to authorize a charge

• Banking
• Process A is an ATM
• Process B is a CICS transaction to verify account balance before

dispensing cash

6

11

How are WMQ and CICS being used
together?

• Traditionally:
• Bridging Techniques:

• Initiating CICS transactions and programs with no changes
• Using the MQ API in CICS programs

• Allows for data greater than 32K to be passed into the programs
• No channels and containers required

• Provides simple ASCII-to-EBCDIC translation for string data
• Simple and consistent API

• Newer:
• SOAP over MQ
• WebServices
• New WMQ verbs – more on that later

12

How are WMQ and CICS being used
together? Notes

• Traditionally:
• Bridging Techniques:

• MQ/CICS Bridge
• Works best for DPL enabled programs
• Only using COMMAREA link (no channels and Containers)
• New with WMQ V7 – MQCB function – we’ll talk about that

later

• Newer:
• SOAP over MQ
• WebServices

7

13

WMQ and CICS – A match made in
Heaven

• Well Hursley at any rate
• As of CICS 3.2 – CICS development own the MQ interface

code
• It’s threadsafe
• Runs on L8 TCB (just like DB2)

• CICS 4.1 supports group attach
• Like the attach to a DB2 Data Sharing group
• CICS will attach to a queue manager in a QSG on the same

LPAR
• Selection is made randomly

• CICS PA can analyze some WMQ Performance
information

14

WMQ and CICS – A match made in
Heaven

• Some would say the match was made elsewhere
• Most customers are using the CICS delivered code

• Performance improvements have been significant
• No longer limited to 8 TCBs

8

15

WMQ and CICS – Things to Avoid

• Just because you can
• Does not always mean you SHOULD!

• Long running transactions
• Commit frequency is still important

• API issues
• MQPUT1 in loops
• No ‘fail if quiescing’
• Non-expiring MQGETs
• Poison messages

16

WMQ and CICS – Things to Avoid - Notes

• Long running transactions
• Default uncommitted message count is 10,000
• That builds up in storage

• Even though it’s above the bar in WMQ V7, should not be
abused

• API issues
• MQPUT1 in loops

• We estimated that at 3 MQPUT1s to the same queue in one
transaction it becomes more expensive in CPU than an
MQOPEN, loop of MQPUTs and MQCLOSE

• Use backout thresholds and re-queue queues correctly
• Avoiding poisoned message looping can save a lot

9

17

WMQ and CICS – Evolution (not
revolution)

• CICS now fully supports the new WMQ V7 verbs
• MQ PUB/SUB

• CICS applications can publish to topic objects or topic strings
• They can also be subscribers

• Cooperative Browsing
• Multiple applications can flag messages as having been ‘touched’

• Message Properties
• Values associated with the message, but not part of the message body.

May be used as:
• Selection Criteria
• To drive application function without changing the message body

• MQ Callback – aka the Async Consumer
• CICS transactions can be started asynchronously based on selection

criteria
• Message data is passed in channels and containers
• May remove the need for the CICS Bridge

18

WMQ and CICS – Evolution (not
revolution) - notes

• MQ pub/sub is now available on ‘all the major platforms’
including z/OS
• Simple to use, allows further decoupling of applications

• Message properties
• Lots of interest to provide:

• Starting multiple transactions using MQCB based on selection
criteria

• Provide a processing ‘marker’ (I was here)

• Async consumer
• There are new COBOL samples with the latest WMQ and

CICS PTFs

10

19

WMQ – CICS Samples using the new
verbs

• CICS sample programs that illustrate async consume and pub/sub
• Asynchronous consume

• Two message consumers and one event handler
• CSQ4CVRG – Registers callback handlers

• CSQ4CVEV – Event handler
• CSQ4CVCN – Simple message consumer
• CSQ4CVCT – Control message consumer

• Asynchronous consume and pub/sub
• CSQ4CVPT – Two functions:

• Publishes message to topic – consumed by CSQ4CVCN
• Puts control messages to queue for consumption by CSQ4CVCT

• MVMP transaction allows user to control interaction

20

WMQ – CICS Samples using the new
verbs

• These have been delivered with WMQ V7.0.1 maintenance
• ATS are also providing other single function samples available or in-

flight:
• QPUB - QPUBCBL

• This program will publish a specified number of messages to the
topic and/or topic string provided in a control message.

• Published as a TechDoc
• http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4549

• QSUB - QSUBCBL
• This transaction will subscribe to a topic and/or topic string

provided and read the specified number of publications.
• In Progress

• QDISP – QDISPCBL
• This program will demonstrate cooperative browsing in dispatching work

to other transactions.
• In Progress

11

21

Loose Coupling with Publish/Subscribe

Subscriber
Subscriber

Subscriber

Publisher

Topic

1:Many

Publisher

Subscriber

1:1

Topic

Publisher
Publisher

Subscriber

Many:1

Topic

Publisher
Publisher

Subscriber
Subscriber

Many:Many

Topic

Publisher

1:None

Topic

22

Loose Coupling with Publish/Subscribe

• Loose coupling is a key factor in a true SOA environment
• My business process requests a service, that service can

reside anywhere
• The services may even be asynchronous

• SOA has been around a long time for CICS users
• I’ve been encouraging the use of CICS transactions as

‘services’ for more than 20 years
• The names have changed
• Now there are standards

• Pub/Sub is ideally suited for an SOA environment,
because the data producer (the publisher) and the data
consumer (the subscriber) can be anywhere.

12

23

Pub/Sub example

• Problem:
• Three major applications with different data stores
• Customer contact information is continuously out of sync
• Customers don’t want to update information multiple times to

change the same data
• Three primary applications:

• DDA – CICS applications with VSAM data store
• Mortgages – CICS applications using DB2 on z/OS
• Consumer Loan – CICS applications using DB2 on z/OS

24

Pub/Sub example - notes

• This is an example keenly felt by the author
• To get my cell phone number changed at a bank I had to

make several trips to cover all my account types.
• While there clearly had been an attempt to integrate some

of the applications, it failed.
• When I altered my cell phone in the DDA system it updated

there
• It overlaid my home phone number on my mortgage account
• When I repaired the mortgage account, my entire contact

information got deleted on a consumer loan account, etc.

13

25

Pub/Sub and CICS sample

• Solution:
• Create a ‘Customer Contact Change’ topic object
• Publish changes:

• Alter all systems to publish contact change information OR
• Create a single ‘contact update’ application

• This could be a very simple browser based app
• Alter the update processes to subscribe to contact change

information
• If this is currently queue driven, no application changes are required
• ‘Administered’ Subscriptions

• When a change is made each application will receive a copy of the
update and make the appropriate change to their back-end.

26

Pub/Sub and CICS sample - notes

• Solution:
• This simple solution assumes that the data for all three systems is

virtually the same, which is not always the case. There are times
when you must use a brokering tool to change formats for each of
the systems. Again, the broker – the data transformation tool – can
be the subscriber and can reformat the update request as needed.

14

27

Prior to Pub/Sub

DDA Transactions

DDA VSAM

Mortgages

Consumer Loans

DB2 Databases

DB2 Databases

Update Mobile
Number

Update Contact
Number

Update Contact
Information

Customer
Update
Request

Update Contact NumberRequest

Update Contact Request

28

Pub/Sub Sample solution

DDA Transactions

DDA VSAM

Mortgages

Consumer Loans

DB2 Databases

DB2 Databases

Customer Contact Update

MQ Publish

MQ Subscribe

MQ Subscribe

MQ Subscribe

WMB Data
Transformation

Mobile Number Update

Mobile Number Update

Mobile
Number
Update

15

29

WMQ and CICS – To Evolve

• Apply the correct WMQ and CICS maintenance
• WMQ - APARs PK97364 and PK97972
• CICS V4.1 - APAR PK89844

• Remove the MQ INITPART from CICS
• Add the new CICS MQCONN resource definition
• Upgrade the CICS resource definitions to include the new

features
• Run DFHCSDUP with the UPGRADE USING(DFHCURDM)

command

30

Enablement PTFs
• What are they

• PTF to enable WMQ V7.0.x new function in CICS TS 3.2 and 4.1
• What do they enable

• API verbs and new function support for:
• PUBLISH/SUBSCRIBE
• ASYNCHRONOUS CONSUME
• MESSAGE PROPERTIES

• APARS/PTFs
• CICS TS 3.2 – PK66866 (UK52671,UK52672,UK52673,UK52680)
• CICS TS 4.1 – PK89844 (UK52619,UK52667,UK52668,UK52669)

• What happens if they’re not applied
• Function can’t be exploited from CICS environment
• Just linking with new stub doesn’t mean it will work
• Applications will be returned MQRC_FUNCTION_NOT_SUPPORTED

• Or the AMQC abend

16

31

Enablement PTFs - notes

• Check for the most recent updates
• The full function was added in Dec. 2009/Jan 2010
• If you have a fix prior to that date, you may be missing a few

things

32

CICS WMQ Abend codes

• AMQA DFHMQCON had enabled DFHMQTRU with a global work area smaller than that needed by
DFHMQTRU. This could be due to a mismatch of version level between DFHMQCON and
DFHMQTRU.

• AMQB DFHMQCON had enabled DFHMQTRU with a task local work area smaller than that needed
by DFHMQTRU. This could be due to a mismatch of version level between DFHMQCON and
DFHMQTRU.

• AMQC Unrecognizable WMQ API call. All supported API calls are
documented in the WebSphere MQ Application Programming Reference
manual.

• AMQD Unrecognizable RMI API call. The CICS-MQ task related user exit (TRUE) was invoked with
an unrecognizable request type.

• AMQE An attempt to EXEC CICS LOAD the data conversion service module CSQAVICM was
unsuccessful.

• AMQF An internal logic error has been detected in the CICS bridge monitor.
• AMQG The CICS DPL bridge program has detected an error in a request message for this unit of

work.
• AMQH The CICS bridge monitor or DPL bridge program abended due to an unexpected return code

from an EXEC CICS API call.
• AMQI The CICS bridge monitor or DPL bridge program abended due to an unexpected return code

from an MQ API call.
• AMQJ The CICS DPL bridge program abended before processing any messages for the unit of work.
• AMQK The CICS DPL bridge program abended during error processing.

17

33

CICS WMQ Abend codes - notes

• Can you guess which one is my favorite?

• AMQC can occur when:
• You try to use the new functions, but the supporting

maintenance has not been applied
• You have linked with the wrong version of the stub

34

What do you mean my MIPS didn’t go
down?

• A common pattern has emerged
• A promised ‘MIPS reduction of 10-20%’
• Same Qualities of Service
• No re-write (or a very limited one) of your business logic
• Pulling transactional workload off z/OS and putting it on a

distributed platform
• Some workloads are a very good fit for moving
• This is the tale of some that are definitely not!

18

35

What do you mean my MIPS didn’t go
down? - Notes

• There have been a number of failed customer projects
• ATS has been asked for a post mortem on several

• There are some workloads that can be easily and effectively
moved, while others cannot

• In some cases these failed solutions have been adopted, with
the limitations and availability issues left un-addressed

• This information is being presented as a cautionary tale,
your situation may differ from this pattern

36

MIPS reduction: Problem #1

• The process that was being removed was using DB2 data
sharing and WMQ shared queues for extreme availability
• This transaction had a firm 24/7 availability requirement
• There were 6 queue managers, 6 DSG members and 24

CICS regions spread across 2 CECs
• Transactional control was provided by CICS

• DB2 data sharing and WMQ Shared queues are only
supported on z/OS

19

37

MIPS reduction: Problem #1

• To provide the same qualities of service, DB2 connect and WMQ
clients were chosen to access the DSG and WMQ Shared queues
• For both DB2 and WMQ, executing the API calls from a client is

more expensive than executing those same calls locally
• This also reduced some levels of control

• To achieve the same levels of availability:
• Much more hardware had to be purchased than originally planned

• 6 ‘large scale’ production UNIX machines
• 2 QA UNIX machines
• More software licenses, including a HACMP-like product
• Two additional administrators were required
• DR solution had to be devised
• Network became more complex

38

MIPS reduction: Problem #2

• The typical transaction volume for a non-peak day was 5M per hour
• Each CICS region remained constantly connected to it’s queue

manager
• Each CICS region had anywhere from 10 to 40 instances of the

processing transactions available at all times
• Each transaction processed as follows:

• MQGET request message
• Perform 1 DB2 query
• Create 1 to 5 DB2 adds/updates depending on the transaction
• MQPUT reply message
• MQPUT audit message (if required)
• MQPUT ‘additional attention’ message (if required)
• SYNCPOINT
• Loop back

20

39

MIPS reduction: Problem #2

• Without CICS the process for each request included:
• Establish XA Unit of work
• Connect to DB2
• MQCONN – to gain access to the queue manager
• MQGET request message
• Perform 1 DB2 query
• Create 1 to 5 DB2 adds/updates depending on the transaction
• MQPUT reply message
• MQPUT audit message (if required)
• MQPUT ‘additional attention’ message (if required)
• Request commit (whoever the TX manager was)
• MQDIS – to disconnect from WMQ
• Disconnect from DB2
• Start next instance

• The additional workload from the client connections to both DB2 and
WMQ increased MIPS usage by 15-20% before stress tests were run

40

MIPS reduction: Problem #3

• This is certainly an z/OS centric view
• No CICS/WMQ/DB2 evaluations was done

• In the post mortem, it was found that the customer could
probably have achieved a significant MIPS reduction by:
• Tuning the infrastructure – there were significant issues with

some of the set-up that had never been addressed
• Tuning the application code – while most of the code was

quite good, there was some that could have used some work
• Upgrading to more current releases of hardware

21

41

Summary

• Talked about why and how
• Mentioned things to avoid
• Example of where the new verbs can be useful
• Example of a failed ‘moving off platform’
• Got forth and remember that CICS and WMQ have been a

winning combination for most of WMQ’s life!

