
CICS TS Performance Tutorial
-- Other Tuning Opportunities

Eugene S. Hudders
C\TREK Corporation
eshudders@aol.com
407-469-3600

Session 8269
March 2, 2011
8:00 AM

DISCLAIMERS/TRADEMARKS

• YMMV

• Remember the Political Factor

• CICS/VS, CICS/MVS, CICS/ESA, CICS TS, COBOL LE,

COBOL 2, VSAM, DB2, OS/390, MVS, z/OS and z/VSE

Are Trademarks of the International Business Machines

Armonk, NY

Agenda

• Introduction Data Tables

• CICS Maintained Data Tables (CMDT)

• User Maintained Data Tables (UMDT)

• Temporary Storage

• Virtual Storage

• Real Storage

• Closing

Data Tables

What is a Data Table?

• With the increased availability of real storage, consideration should be given to more use of Shared
Data Tables (SDT)

• A data table is simply a VSAM KSDS that has been placed in VS
• Entire data set

• Partial data set

• Subset of the data set

• SDTs can be shared in the same z/OS image

• Major advantage is that if the desired record is found in the table, no I/O operation occurs
• Fast access for hits– Use of z/OS Cross Memory Services whenever possible

• Cross memory services for same image
• Function shipping may occur

• Different z/OS images
• Update requests

• Limited I/O (e.g., GET UPDATE/REWRITE)

• Faster than having the entire file in LSR
• Data Table uses an in-storage index
• LSR uses an Index search

What is a Data Table?

• Candidates for data tables are:
• Usually small to medium sized data sets

• Very high read-only access (90% or more read-only operations)

• Support for VSAM KSDS
• No Alternate Index Support for SDT

• Changes made to source KSDS via AIX are reflected in the SDT

• Must be defined to use LSR

• SDTs use data spaces for data and index storage
• SDT can be greater than 2GB in size

• There are two types of data tables available:
• CICS Maintained Data Tables (CMDT)

• User Maintained Data Table (UMDT)

• Global Exits available to tailor (UMDT only) and/or eliminate (or select) records loaded
into the table

CICS Maintained Data Table (CMDT)

• Updates to the CMDT are reflected in the source VSAM data set (as
well as the in-storage SDT)

• Full API Support – no application programming changes required

• Variable or fixed length support

• Maximum record length 32 KB

• Easy to implement

• Full recovery is available

• Only non-RLS files supported

CICS Maintained Data Table (CMDT)

• Commands that access the CMDT
• READ

• No UPDATE
• No RBA option

• STARTBR, RESETBR, READNEXT and READPREV
• No RBA option

• ENDBR (unless sequence has accessed the source data set)

• Commands that access the source data set
• READ

• UPDATE
• RBA option

• STARTBR, RESETBR, READNEXT and READPREV
• RBA option

• ENDBR for sequence that accessed the source data set

• READ, READNEXT and READPREV for records that are currently processed by a
DELETE, REWRITE or WRITE

• WRITE, REWRITE and DELETE commands

User Maintained Data Table (UMDT)

• Updates to the UMDT are NOT reflected in the source VSAM data set (only
the SDT is updated)

• Source data set is closed immediately after load is completed

• Source is independent of the UMDT

• Any update activity would have to be handled by the user

• Must specify variable length records

• Maximum record length is 32 KB

• Some API changes are required for the application (Limited API support)

• Easy to implement

Data Spaces (DS)

• Data is stored in several data spaces whether or not the SDT is shared or not

• Maximum support for 100 data spaces
• Each data space can be up to 2 GB in size (Max 200 GB)

• DS size can be controlled by installation IEFUSI exit

• The initial data spaces used are:
• DFHDT001 – used for table entry descriptors

• DFHDT002 – used for index nodes

• DFHDT003 – used for storing the data records

• DFHDT004 to DFHDT100 – available for data record space expansion (if required)

• Data Spaces are shared by all SDTs used by the CICS region

• Data tables remain until CICS region is brought down
• Storage used by a data table is released if the data table is closed

• Released storage is available for reuse

Data Spaces (DS)

• Space within the DS is allocated in 16 MB increments

• Sub-allocation in smaller quantities occur for the different
requirements:
• 32 KB for table entry descriptors
• 32 KB for index nodes
• 128 KB for data records

• New storage increments are allocated as required (16 MB
increments)

• If maximum DS size reached, a new additional DS is allocated
• If maximum capacity reached, CICS notes DS is full
• New requests for space fail

Data Spaces (DS)

• There is no facility for viewing amount of space allocated

• CICS statistics provide information as to how much storage is

allocated and used by file

Global User Exits

• XDTRD – select records that can be loaded into the SDT when the file

is initially read and the table created

• For UMDT, this exit can be used to modify the records loaded into

the table

• XDTAD – select records to be added to the table when records are

added to the data set

• XDTLC – perform some processing at the end of the SDT load

Defining a Data Table

• RDO File definition parameters:

• TABLE (NO|CICS|USER|CF)

• MAXNUMRECS (NOLIMIT|number)

• Maximum # of records supported is 16,777,215

• FILE (name)

• DSN (name)

• LSRPOOL (number|1)

• Any I/O operations required by the SDT are done using LSR

SDT Candidates

• Consider using CMDT because:

• Are easier to implement

• Have a more complete API precluding application program changes

• Data sets that have a high amount of read-only activity (90%)

• Small to intermediate sized data set

• High payback for data sets that are accessed by remote regions

• Function shipping overhead versus cross memory services

SDT Candidates

• Consider using UMDT for:

• Data sets that have update activity but do not have to update

source file

• The amount of information required is smaller than the record

size (subset)

• Require information from other sources that are not a VSAM

KSDS (RLS, IMS, DB2 etc.)

SDT Performance Issues

• SDT can provide better performance for read-only files

than LSR

• CPU utilization

• Search for record requires less CPU time than with LSR

• Initial load of the data table uses LSR resources

• Write operations require the use of LSR

SDT Performance Issues

• Storage utilization
• Efficient use of CICS Region storage because information is kept in a
data space
• Data records are stored in DFHDT003 (and up)
• Storage in this data space is allocated in 16 MB increments
• Record storage is allocated in 128 KB increments
• Records are stored in page-aligned frames that loosely resemble the CI
• Where ever possible, records are stored next to records with closest lower

key
• If many records are added and/or record lengths increased, then records

are added randomly across the data space with an increased amount of
storage (e.g., 2X)

SDT Performance Issues

• Table-entry descriptor storage are allocated in storage

acquired from data space DFHDT001

• Space is allocated in increments of 32 KB

• There is one table-entry descriptor per record in the data set PLUS

• One table-descriptor entry for each gap in the key sequence (e.g.,

where one or more records have been omitted from a CMDT)

• The size of each entry is KL + 9 bytes rounded to a double word

boundary

SDT Performance Issues

• Index node entries are allocated in storage acquired from data

space DFHDT002

• Space is allocated in increments of 32 KB

• The size depends on number of records as well as the format of

the key values and distribution of the keys

• In the case of dense keys (all keys are consecutive – no gaps) –

Binary = 5.1 bytes; Decimal = 8.5 bytes; Alphabetic = 19 bytes

• In the case of sparse keys (no keys are consecutive – gaps exist)

– decimal = 44 bytes; Alphabetic = 51 bytes

• Worst case scenario = 76 bytes

SDT Performance Issues

• Some ECSA storage is required for communication with other regions that
share the SDT
• Used for control block storage

• Bottom line is that converting from LSR to an SDT may lead to an increased
use of real storage in exchange for lower CPU utilization
• Possible alternatives are reducing number of LSR buffers, if file was converted from

LSR
• Eliminating read-only files that were replicated among regions

• Deleted space within an SDT remains available for that particular SDT until
the data set is closed

• Free space within the data table is tracked and reused where possible
• Free space within a frame are not necessarily in sequence and consolidation

of free space is not done – records are located indirectly by descriptors
• Consolidation would preclude concurrent reading by other regions

SDT Performance Issues

• From where does the magic 90% read-only ROT for data tables come?

• Any output related requests (READ for UPDATE, WRITE, etc.) are
automatically directed to the source VSAM KSDS (data table is also updated)

• Lets review:

• VSAM KSDS

• 100,000 requests

• 90% read operations

• Breakdown
• 90,000 Reads

• 10,000 Output related requests (READ for UPDATE/REWRITE/DELETE)

SDT Performance Issues

• Worst case scenario if you have to go to disk for the data:
• 1 Index level data set – 2 I/O operations required (1 for the index and 1 for the data)

• 2 Index level data set – 3 I/O operations required (2 for the index and 1 for the data)

• 3 Index level data set – 4 I/O operations required (3 for the index and 1 for the data)

• So, with 10,000 read for update operations
• 1 IX = 20,000 I/O operations

• 2 IX = 30,000 I/O operations

• 3 IX = 40,000 I/O operations

• The figures do not consider the output I/O
• REWRITE/DELETE/UNLOCK

• Also, we are not considering any I/O as a result of adds (insertions) to the file and any
subsequent I/O caused by CI/CA Splits

SDT Performance Issues

• It is important to note that any output operation to a CMDT will entail

I/O

• A CMDT data set has to be assigned to LSR

• Therefore, there are two types of look-aside hits possible for a CMDT:

• A look-aside hit at the table level

• A look-aside hit at the LSR pool level

• The difference is the amount of CPU required to locate the record

SDT Performance Issues

• LOOK-ASIDE FORMULA:

• Look-Aside % = ____Hits_______ * 100

(Hits + I/O Operations)

Note: Hits includes direct hits to the data table plus CIs found

in the LSR pool

SDT Performance Issues

• So, using a worst case scenario with 0% look-aside in
LSR, the data table look-aside hit ratios are:

• 1 IX = ((90000/(90000+20000)*100)) = 82%

• 2 IX = ((90000/(90000+30000)*100)) = 75%

• 3 IX = ((90000/(90000+40000)*100)) = 69%

• In this case, there were no CIs found in the LSR pool
requiring an I/O operation to occur

SDT Performance Issues

• Then, using a slightly higher case scenario with a 50% look-aside in
LSR, the data table look-aside hit ratios are:

• 1 IX = ((95000/(95000+(20000*.5))*100)) = 90%

• 2 IX = ((95000/(95000+(30000*.5))*100)) = 86%

• 3 IX = ((95000/(95000+(40000*.5))*100)) = 83%

• As we indicated that there would be a 50% look-aside hit ratio in the
LSR pool, then the number of “look-aside” hits for the data set has to
be adjusted by those CIs found in the LSR buffers

• The difference is slightly more CPU usage

SDT Performance Issues

• Finally, using a better case scenario with 90% look-aside

in LSR, the data table look-aside hit ratios are:

• 1 IX = ((99000/(99000+(20000*.1))*100)) = 98%

• 2 IX = ((99000/(99000+(30000*.1))*100)) = 97%

• 3 IX = ((99000/(99000+(40000*.1))*100)) = 96%

• The higher LSR look-aside hit ratio greatly improves the overall hit

ratio for the data set

SDT Performance Issues Recommendations

• The trick to good performance with data tables that receive some type
of write commands is to ensure a good LSR hit ratio

• This may be difficult if the table shares a pool with other non-data table
data sets because other more active data sets in the pool may push the
data table’s CIs out of the buffer pool

• Therefore, use a separate LSR pool for data tables where any contention
only comes from other data table files
• Ensure excellent index buffering

• Data tables that receive insertions (adds) can cause additional I/O and a
significant increase in virtual/real storage requirements (not recommended)

SDT Performance Issues Recommendations

• In the case of File Owning regions (FOR) Shared Data Tables (SDT)

should be used for read-only data sets that are propagated across

regions to avoid function shipping requests

• Data tables that receive insertions (adds) can cause additional I/O and

a significant increase in virtual/real storage requirements (not

recommended)

Temporary Storage

TEMPORARY STORAGE (TS)

• Two types of Temporary Storage (TS) are available:

• TS MAIN – queues are maintained in virtual storage (ECDSA)

• TS AUX – queues are written to auxiliary storage (disk)
• Recovery is possible for TS Aux
• Disk data set is DFHTEMP
• VSAM ESDS data set
• Formatted and handled by TS

• Major problem with TS today is that many programmers forget that this
facility is for TEMPORARY use

• TS = Permanent Storage!

TS MAIN

• To implement TS MAIN you should ensure that:
• You have sufficient VS expansion room within the REGION

• You have sufficient real storage and are not paging

• You can force all requests to TS MAIN by specifying no buffers and strings in the TS SIT parameter
• You can also use a TS Model

• Tuning TS MAIN is mainly ensuring:
• Sufficient EDSA is available

• A large REGION specification to accommodate a larger EDSALIM

• There are several ways to determine the EDSA requirements for TS MAIN
• Study the Peak Storage used in DFHTEMP for several days to determine the HWM

• Using the peak CI used value times the CISZ gives a starting value for VS
• Add the current TS MAIN peak usage
• Using the previous figure increase by a % or growth factor
• As this is usually a “guess-timate”, you should occasionally monitor the TS MAIN use

• Use the total CIs allocated for DFHTEMP times the CISZ

• Major advantage of TS MAIN is speed of access to queues

• Major disadvantage is that you are exposed to SOS
• Programming guidelines and enforcement regarding queue deletion is required

• A generic TS queue delete program/exit may be safety valve

TEMPORARY STORAGE

TS MAIN USAGE

STATS

CISZ, TOTAL CIs in

DFHTEMP and PEAK

CIs USED

TS AUX
• Most tuning to TS AUX is related to the DFHTEMP data set

• The major tuning item is to eliminate I/O to DFHTEMP
• I/O reduction is a function of adding buffers

• TS uses delayed writes – that is, the buffer is not written to DFHTEMP until the buffer is needed
• So, if the READQ finds the queue in a buffer, then an I/O operation is eliminated

• I/O Look-Aside Hit Ratio = (1 – ((Buffer Reads + Buffer Writes)/(PUTQ Aux + GETQ Aux) * 100)
• Objective would be to achieve 80% or greater look-aside hit ratio

• So, with a smaller VS investment than TS MAIN, a user can achieve a “simulated TS MAIN” with acceptable response time

• However, there is a price attached – more buffer compressions increase CPU usage
• Buffer compressions are still better than an I/O

• TS can handle records greater than the CISZ assigned to DFHTEMP
• Writes greater than CISZ add CPU overhead

• IF ((# OF WRITES GT CISZ / # OF AUX WRITES) * 100) EXCEED 3%, THE DFHTEMP CISZ SHOULD BE INCREASED
• NEW CISZ SHOULD NOT BE BASED ON THE LONGEST RECORD WRITTEN TO DFHTEMP
• BE SURE TO ADJUST DISK SPACE ALLOCATION TO ENSURE SAME NUMBER OF AVAILABLE CIs IN DFHTEMP TO AVOID

SHORT ON AUX CONDITIONS

TS AUX
• TS format writes indicate that DFHTEMP had to be extended

• The primary allocation should be sufficiently large so that the peak CI usage is in the 60-70%
range of the primary allocation

• Use secondary allocation as a safety valve

• Format writes should not occur

• Increase the primary allocation for DFHTEMP to include any secondary allocations for the
DFHTEMP reorganization

• Increasing the # of strings to resolve string wait conditions on DFHTEMP may not be the
appropriate solution
• Evaluate if you are achieving the proper look-aside hit ratio (e.g., 80%)

• If NOT, then add more buffers
• If yes, then add more strings

• The major advantage of TS AUX is that you can achieve good response times with proper
buffering without committing a lot of VS
• TS Aux full versus SOS – which is worst?

• The major disadvantage is that it is not as fast as TS MAIN

TEMPORARY STORAGE

TS AUX STATS

TEMPORARY STORAGE

TEMPORARY STORAGE

TS AUX

STATS

TEMPORARY STORAGE

BUFFER

INFORMATION

Virtual Storage

Introduction

• Virtual Storage (VS) has traditionally been the “Achilles Heel” of CICS

• Lack of VS causes the system to be under stress that results in SOS conditions and
response time elongation

• CICS/TS design of separate (E) DSAs and dynamic (E) DSA allocation should limit the
occurrences of SOS conditions, if appropriate region and limit VS are allocated

• Baring a program loop error, there are no valid reasons for running SOS or reaching
limit conditions above the line VS
• Possible exception – JAVA

• Major giveaway that there may be a VS problem within CICS/TS is excess program
loading

Introduction

• Among the new things in the CICS/TS design to help with VS are:

• Eight different dynamic storage areas
• Dynamic storage allocation for (E) DSAs

• Dynamic (E) DSA allocation based on the VS allocated in the
EDSALIM/DSALIM SIT parameters

• Periodic program compression based on a percentage of available
free storage
• Only compress sufficient programs to relieve situation

• Delay penalty for new transactions when approaching VS limit
conditions

• Better storage violation recovery of storage areas

Introduction

• Traditional VS tuning opportunities are still valid some of which are:

• Split system (MRO/ISC)

• Tune for VS

• Increase CICS Region size

• Increase DSALIM/EDSALIM, if possible

• Major obstacle to be faced is getting OS system programmers to allow

the setting of REGION=0M in JCL start-up for CICS

• IEFUSI can be an obstacle

Introduction

• Tuning for VS is somewhat similar to tuning for Real Storage (RS)

• Optimize performance

• Use less resources

• Eliminate unneeded resources

• Improve transaction occupancy time (e.g., response time)

• Different from RS, you may not be able to buy more VS

REGION

• REGION

• Not a SIT parameter

• REGION=0K is recommended to allow the user the capacity to tune
the CICS system without having to worry (a lot) about the amount of
virtual storage available to accommodate the changes (e.g.,
increase EDSALIM, add LSR buffers etc.)

• Many installations control Region size via the IEFUSI SMF exit

• Can be a political issue

• CICS will only allocate/use what it needs

MEMLIMIT

• MEMLIMIT

• Not a SIT parameter

• CICS TS 3.2 needs to have at least a size greater than EDSALIM
(warning message if less than 2 GB but GT EDSALIM or if less,
CICS will not run)

• Recommended size is 2 GB or more

• If REGION=0K and no MEMLIMIT is provided, system takes a
default of NOLIMIT

• Several ways to assign MEMLIMIT but two most common are
through the JCL or IEFUSI SMF exit

• Used for container and control block storage in CICS TS 3.2

• Watch out for z/OS page data set requirements

MEMLIMIT Above the Bar

• MEMLIMIT Information – STAT

DSA Limit

• DSALIM

• Default is 5 MB

• Used to allocate the DSA below the line

• Make as large as required to support transactions that run

below the line

• Ideal objective for DSALIM is that Peak Storage used be 70%

of the DSALIM requested

DSA Below the Line

• DSALIM Information – STAT

Extended DSA Limit

• EDSALIM

• Default is 34 MB

• Used to allocate the Extended DSA above the line

• Sometimes under-allocated
• SOS conditions

• Program loads

• Program compressions uses CPU cycles

• An indication that SOS conditions are “around the corner”

• Make as large as required to support transactions that run above
the line

• Ideal objective for EDSALIM is that Peak Storage used be 70% of
the EDSALIM requested

EDSA Above the Line

• EDSALIM Information – STAT

LOADER DOMAIN
• An early alert that you have you need to correct the DSALIM and/or EDSALIM is provided by

the Loader Domain

• Statistics regarding program loads as a result of being “removed” (greater than zero) indicates

that some program compression has occurred to free-up VS

• Program loads/compression add additional CPU overhead

• Ensure largest possible DSALIM/EDSALIM allocations

• Start region with REGION=0M

• Maximum possible size for DSALIM/EDSALIM

• CICS will allocate only what it needs

• Eliminate unnecessary loads with hold conditions without an intervening release

• Increases the overhead to process the system LLE list

• Eats up ECDSA storage for repetitive LOAD with HOLD without intervening release

• Small entry in terms of bytes but if CICS is not recycled, it can continue to grow

Deadlock Timeout –DTIMOUT

• Deadlock time out value is used by CICS to purge transactions that

have been suspended (e.g., due to SOS)

• Deadlock time is specified in the transaction definition (Max 68

minutes) (MMSS)

• For DTIMOUT to be effective, SPURGE=YES must also be specified

• All non-update transactions should have DTIMOUT specified to allow

CICS to take action deadlock conditions such as SOS

Deadlock Timeout –DTIMOUT

• Recommendation is to specify DTIMOUT and

SPURGE for all transactions that do not have any

updates to resources such as:

• Inquiry

• Menu

• Browse

Tuning for VS Above/Below
• Tuning for VS above the line is usually relatively easy – increase the OS Region

size, if required, and increase the EDSALIM specification

• May require a new CICS clone in the case of heavy JAVA usage

• Tuning for VS below the line is not as easy because of the limited space
available below the line

• Can be as high as 9 MB and as low as 5 MB

• Requires a lot more effort, testing and planning

• Actions should be done gradually and phased into production

• Be careful when implementing LPA support for CICS – avoid moving CICS
modules into the LPA that are below the line unless there is sufficient VS space
without affecting the zOS CSA one MB boundary

Tuning for VS Above/Below
• If possible, always leave a 1 MB boundary below the line
• For example, if 8 MB available, don’t make the DSALIM greater
than 6 or 7 MB

• Do not use Transaction Isolation (TI) if heavy transaction load
below the line
• UDSA may be affected by fragmentation caused by other DSA
allocations (CDSA/RDSA/SDSA)
• May require the use of the SIT override to allocate a fixed amount
of storage to the UDSA (e.g., 3 MB)
• If high transaction load below the line, consider the use of
TCLASS to control transactions below the line instead of MXT

Tuning for VS Above/Below
• Action items to tune for 24-bit VS

• Move application code above the line

• Move TCTUA above the line or lower maximum size to a used value
plus a buffer

• Make sure MAPs are link edited above the line

• Eliminate unneeded TWAs that are defined for tasks that run below
the line

• Increase DSALIM to maximum without affecting the “above the
region” significantly
• Need about 300 KB for zOS RTM processing

• Ensure that programs linked AMODE 31 and RMODE ANY do not
have a DATA (24) specified in the CBL

Real Storage

Introduction

• CICS performance is affected by the lack of real storage

• General symptom is an irregular response time

• Same transaction response time varies greatly

• Response time usually deteriorates slowly when transaction volume
increases

• Recovery usually observed as transaction volume is reduced

• First area to analyze is the CICS page-in rate

• Check the overall UIC

• Check Region page-in rate

• Check overall system page-in rate

• NOTE: Real storage is not a general problem in today’s environment

CICS TS and Real Storage

• Multiple CICS regions require duplicate working set for the CICS
management routines

• Approximately 600 to 800 KB of central storage after the 1st CICS can
be saved if the CICS management modules are moved to the (E) LPA

• Better control of real storage than the ICV

• Requires an IPL

• Consideration for maintenance must be given

Operating System and Real Storage

• Care must be taken when moving modules into the LPA (below the

line)

• CSA must be on a 1 MB boundary (Segment)

• One byte that exceeds the segment boundary, will cause an entire

1 MB loss to CICS (and all regions) below the line

• Recommendation � do not move CICS below the line modules into

the LPA unless you have room to spare

Closing

• Best tuning option – eliminate I/O

• Data Tables provides a viable option to reduce/eliminate I/O operations
• Look-aside for record occurs at both the data table and LSR buffer pool
• Separate data table files into separate LSR pool

• TS Aux tuning is mainly oriented to reduction of I/O
• Assign sufficient data buffers

• Tuning for storage varies

• Virtual storage (VS) tuning most important below the line
• Allow sufficient VS at CICS initialization

• Real storage (RS) tuning may not be as important today due to increased
availability of real storage on mainframes

• Future challenge will be the implementation of storage support above the
Bar

Questions

• Thank-you

•ANY Questions?

