
1 32of

An Introduction to CICS JVMServers
Ian J Mitchell
IBM Distinguished Engineer, CICS Transaction Server

1st March 2011
Session 8265

2 32of

Topics

• Evolution of the JVM in CICS Transaction Server
• How are JVM Servers different to JVM Pools
• Defining JVM Server resources
• How applications run in JVM Servers
• The future for JVMs in CICS TS

3 32of

Notes
• Information regarding potential future products is intended to outline our general product direction and it should not be relied

on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not
be incorporated into any contract. The development, release, and timing of any future features or functionality described for
our products remains at our sole discretion.

• Unless specifically advised otherwise, you should assume that all information presented in Inner Circle sessions and contained in these presentations is IBM Confidential
and restrict access to this information in accordance with the WebSphere Inner Circle Participation Agreement.

• The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided for informational purposes
only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any participant. While efforts were made to verify the
completeness and accuracy of the information contained in this presentation, it is provided AS-IS without warranty of any kind, express or implied. IBM shall not be
responsible for any damages arising out of the use of, or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended
to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable
license agreement governing the use of IBM software.

• References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.

• Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any
user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those
stated here.

• All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer. Nothing contained in these materials is intended to, nor shall have the effect of, stating or
implying that any activities undertaken by you will result in any specific sales, revenue growth or other results.

• © IBM Corporation 2010. All rights reserved. IBM, the IBM logo, ibm.com and the globe design are trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml. Other company, product, or service names may be trademarks or service marks of others.

file:///home/ijmitch/Documents/home/ijmitch/Documents/Documents%20and%20Settings/Administrator/Local%20Settings/Temp/notesEA312D/www.ibm.com/legal/copytrade.shtml

4 32of

Topics

• Evolution of the JVM in CICS Transaction Server
• How are JVM Servers different to JVM Pools
• Defining JVM Server resources
• How applications run in JVM Servers
• The future for JVMs in CICS TS

5 32of

CICS and the z/OS JVM

 JVM implementation in CICS continues to evolve

– JDK 1.1.8 CICS TS V1.3

– HPJ and Hotpooling “ “ “

– IBM Persistent Reusable JVM (Shiraz)
JDK 1.4.2 CICS TS v2.x

– zAAP (from 2004 and z/OS 1.6)

– Continuous mode CICS TS v3.1

– Java 5 (via PTF) CICS TS v3.2

– Java 6 CICS TS v4.1

6 32of

Topics

• Evolution of the JVM in CICS Transaction Server
• How are JVM Servers different to JVM Pools
• Defining JVM Server resources
• How applications run in JVM Servers
• The future for JVMs in CICS TS

7 32of

Differences between pools and servers

 CICS JVM pools

– A JVM pool is a set of single task, serially reuseable JVMs

– Large memory footprint

– Excellent isolation characteristics

 CICS JVM Servers

– Multiple CICS tasks execute as threads in a JVM concurrently

– Much larger capacity for concurrent workload

– Some risk of collateral damage

– Exploited for Dynamic Scripting FeaturePack

– Limited customer application use in v4.1
– Will be primary execution model in vNext

• Pooled model retained for migration only

8 32of

JVM Pool Architecture - CICS TS v3 (and v2)

CICS TS v3
JVMLE enclave

CICS
Task

J8 OTE
Thread

JVM
thread

A CICS task
needing to execute
Java application
code must acquire
a JVM from the
pool.

A JVM in the pool is
managed by an
OTE (J8) TCB.

When a task needs
a JVM is switches
to an appropriate J8
TCB owning a JVM.

The J8 and JVM is
allocated to the task
until the completes.

Heap &
Classes

9 32of

CICS
Task

Thread

JVM
LE enclave

JVM
thread

JVM Pool Architecture - CICS TS v3 (and v2)

CICS TS v3
JVMLE enclave

CICS
Task

J8 OTE
Thread

JVM
thread

So concurrent task
count limited to the
number of JVMs in
the pool.

That is limited by
the number that can
fit in the 31-bit
address space.

JVM

Heap &
Classes

LE enclave

CICS
Task

J8 OTE
Thread

JVM

JVM
thread

Heap &
Classes

Heap &
Classes

10 32of

CICS
Task

Thread

JVM
LE enclave

JVM
thread

JVM Pool Architecture - CICS TS v3 (and v2)

CICS TS v3
JVMLE enclave

CICS
Task

J8 OTE
Thread

JVM
thread

Each JVM 'costs'
approx. 20Mb plus
the application
heap value.

Bytecode of loaded
classes may be
shared between
JVMs using the
classcache.

Result is about 20
task/JVMs
concurrently in
each region.

JVM

Heap &
Classes

LE enclave

CICS
Task

J8 OTE
Thread

JVM

JVM
thread

Heap &
Classes

Heap &
Classes

(master) JVM

Shared
Classes

11 32of

JVM Server Architecture

CICS TS v4.1
JVMLE enclave

CICS
Task

T8 OTE
PThread

JVM
thread

In a JVMServer,
a task will still use an
OTE TCB and
a thread in the JVM.

The OTE TCB is a
new “T8” mode rather
than a J8.

It is also an LE
“pthread”.

A Java Native
Interface (JNI) call is
used to make the
CICS Task/T8/LE
pthread combo into a
Java thread.

JNI mechanism is
called
“AttachCurrentThread”.

Heap &
Classes

12 32of

JVMServer Architecture

CICS TS v4.1
JVMLE enclave

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

The difference is
that other CICS
tasks are attached
to the same JVM at
the same time.

Therefore the
system serves
more requests
using a single JVM.

JVMServer thread
memory “cost” is
very small.

Result is hundreds
of tasks
concurrently per
region.

Heap &
Classes

13 32of

JVMServer Architecture

CICS TS v4.1
JVMLE enclave

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

Architected to allow
multiple JVMServers
in a single CICS.

Different types of
work, or just a
degree of isolation.

Typically the same
limit of 20
JVMServers exists
as for JVMs in a
pool.

CICS
Task PThread

JVM
thread

JVMLE enclave

CICS
Task PThread

JVM
thread

Dynamic
Scripting

Application
“A”

Dynamic
Scripting

Application
“B”

14 32of

So what can JVMServers do?
Dynamic Scripting in CICS

■ 3 hour test using HTTP and HTTPS into a single region.

– 250 HTTPS clients & 100 HTTP clients.
– The HTTPS clients read 12,150 MB of data, and wrote

1,121MB and the HTTP clients read 3,417 MB of data,
and wrote 301MB.

■ One CICS region, MXT=500, JVMSERVER Threads set to 50.

– At the end of the test, we'd run 4.2 million tasks, at a
transaction rate of 326.59 per second.

15 32of

“Library” application,
xmx = 500M, machine 2097 710

CICS CPU vs Rate

0
100
200
300
400
500
600
700
800
900

1000

100 600 1100 1600

Business requests per sec

A
P

P
L

%

Smash

16 32of

Millisecs of CPU per request zAAP vs CP

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Smash

M
il

li
 S

e
c
s
 o

f
C

P
U

G-CP zAAP

17 32of

Topics

• Evolution of the JVM in CICS Transaction Server
• How are JVM Servers different to JVM Pools
• Defining JVM Server resources
• How applications run in JVM Servers
• The future for JVMs in CICS TS

18 32of

Defining JVM Servers

• Resource Definition
• CSD, BAS

• Profile – configures the JVM
• In zFS

• LE RunOpts – configures the LE Enclave in which the
JVM executes
• In SDFHLOAD

19 32of

JVM Server Resource Definition

20 32of

JVM Server Profile

• Sample is DFHJVMAX
• CICS finds such profiles in the directory identified in the

SIT parm JVMPROFILEDIR
• File is an EBCDIC text file (typically IBM-1047)

• (Note, use of “JVM Property Files” is deprecated in v4.1)

21 32of

JVM Server Profile contents

• Libpath – path to the native code required to run the JVM
• LIBPATH=/usr/lpp/java/J6.0/bin/j9vm:\
/usr/lpp/java/J6.0/bin

• Workdir – directory for zFS files written by the JVM
• STDIN, STDOUT, STDERR

• Standard JVM options - “-Xblah-blah”
• -Xms16M,-Xmx32M, -Xoss4M, -Xss512K

• JVMServer classpath – where the apps will be found
• -Djava.class.path
• (We'll come back to this later!)

22 32of

Notes – Example profile

SETUP_CLASSES and TERMINATION_CLASSES used to specify Java classes which are invoked

when starting/terminating the JVM

THREAD_TIMEOUT – specifies how long a setup/termination class can run for before being timed out

- default of 60 secs (min 1, max 60,000)

LIBPATH – tells the shell which directories to search for dynamic-link libraries

- note, LIBPATH_PREFIX and LIBPATH_SUFFIX not supported

WORK_DIR – is a CICS option – (in the wrong section, will be moved in APAR) – set to /tmp by default

-Xms<size> – sets initial Java heap size

-Xmx<size> – sets maximum Java heap size

-Xoss<size> – sets maximum Java stack size for any thread

-Xss<size> – sets maximum native stack size for any thread

-Xgcthreads<size> – sets number of garbage collection helper threads

 (defaults to one less then number of physical CPUs present)

-Djava.class.path – tells the JVM where to look for user-defined classes and packages in Java

programs

23 32of

JVMSERVER’s LE runtime options

• Sample is DFHAXRO

• Compiled version in SDFHLOAD

• Override by recompiling source and placing in load library

• Certain options forced by CICS
• XPLINK(ON)

• POSIX(ON)

• Useful options:
• RPTOPTS(ON) - generates, after an application has run, a report

of the run-time options in effect while the application was running

• RPTSTG(ON) - generates, after an application has run, a report
of the storage the application used

24 32of

Topics

• Evolution of the JVM in CICS Transaction Server
• How are JVM Servers different to JVM Pools
• Defining JVM Server resources
• How applications run in JVM Servers
• The future for JVMs in CICS TS

25

Applications running in JVM Servers

• Applications in JVM Servers have ALL the same facilities
available as in a JVM in a pool
• JCICS classes for accessing CICS services
• JDBC (however with a current restriction, more later)
• MQ classes
• Debug via standard JPDA interfaces

• As with the change to Continuous mode there are
semantic changes to sharing of static data
• “static” data in a JVM Server will be concurrently accessed by

multiple threads
• Need to consider... um... threadsafety!

26 32of

Static data in a JVM server

• The “static” keyword makes a variable into a 'class
variable'
• It is part of the class data so one copy exists – not one per

instance of the class

• Uses for static data...
• 'global' values
• A 'global' collection or cache

27 32of

Semantic evolution of static scope
in CICS JVMs

• Version 2, JDK 1.4.2 Persistent Reusable JVM
• One task at a time in the JVM

• Application statics reinitialised between uses of the JVM

• Cannot use it to hold application state between requests

• Version 3, Continuous mode
• One task at a time in the JVM

• Application statics persist from one use to the next

• Can hold long-lived data, but serial access

• Version 4, JVM server
• Multiple tasks at the same time in the JVM

• Application statics persist

• Visible to multiple tasks concurrently

28 32of

JVM Server threadsafety – an example

• The JCICS implementation had lent on pooled JVM
serialisation.

• The 'task' object declared as a static (implementing the
singleton pattern).
• OK when there IS only one task in the JVM

• Corrected to be “ThreadLocal”
• ThreadLocal introduced in Java 5 to handle precisely this sort

of requirement

• MORAL – CICS Java is now just like Java everywhere with
respect to concurrency
• See http://java.sun.com/developer/technicalArticles/J2SE/concurrency/

29 32of

JVM Server JDBC restriction

• We fixed JCICS use of static data with affinity to a single
task in the JVM.

• The JDBC driver has a similar issue – Hursley is working
with SVL to address this.

• Current restriction is one task at a time can use JDBC
• Documented restriction for Dynamic Scripting
• Fully intend to remove the restriction ASAP.

30 32of

Topics

• Evolution of the JVM in CICS Transaction Server
• We keep learning from customer experience and investing

• How are JVM Servers different to JVM Pools
• Revolution in scaleability

• Defining JVM Server resources
• Getting easier

• How applications run in JVM Servers
• Just like everywhere else

• The future for JVMs in CICS TS
• Is very BRIGHT indeed!

31

Any Questions?

32

Thank You for your Attention

Please fill out a session evaluation form

	Title of Presentation (Type Size=32, can accommodate up to a maximum of 3 lines)
	Slide Title (Type Size=28) (no more than two lines)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Notes – Example profile
	Notes - JVMSERVER’s LE runtime options
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

