
© 2011 IBM Corporation

IRRXUTIL: Analyzing your RACF
Database Using REXX

Mark Nelson
SHARE Session 8255
z/OS Security Server (RACF) Design and Development. IBM Poughkeepsie
markan@us.ibm.com

© 2011 IBM Corporation2

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with
a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks
may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of others.

© 2011 IBM Corporation3

Agenda

�What is R_admin?
–Functions
–Authorizations

�What is IRRXUTIL?
–Relationship to R_admin
–Invocation syntax
–Sample invocation
–Considerations
–Return Codes
–Returned data
–Getting the “next” profile
–Finding field names
–References

© 2011 IBM Corporation4

What is the R_admin Callable Service?

� The R_admin callable service (IRRSEQ00) is an assem bler programming
interface which allows for management of RACF profi les and system wide
settings (SETROPTS)

� R_admin allows you to:

– Execute RACF commands
• With the exception of RVARY, BLKUPD, RACLINK, RACF operator

commands (TARGET, SET, SIGNOFF, etc.)

– Update/Extract profile information into a tokenized format
• USER, GROUP, user-to-group connections, general resources including

access lists
• Data set profiles (UPDATE only)

– Set/Extract SETROPTS information
• SMF Unload-like format
• “Tokenized” format

… and more!

© 2011 IBM Corporation5

Authorization for R_admin

� R_admin may be invoked by authorized and unauthorized
callers.

–Authorization is required to set or change the user ID under
which the function is performed.

–Non-authorized callers cannot use the R_admin update function
codes

–Non-authorized callers must have READ authority to a function-
spepcific resource in the FACILITY class. For example:

• IRR.RADMIN.command for a RACF command (such as
IRR.RADMIN.LISTUSER for an LU command)

• IRR.RADMIN.SETROPTS.LIST to extract SETROPTS data

© 2011 IBM Corporation6

What is IRRXUTIL?
� IRRXUTIL allows a REXX program to use the R_admin

interface to extract RACF profile and SETROPTS Data

–Supports the extraction of USER, GROUP, CONNECT,
RESOURCE and SETROPTS data from RACF

–Data set extraction not supported
–Digital Certificate information not supported

� IRRXUTIL places the returned data directly into REXX
variables which can then be easily used simply by
referencing the REXX variables

� Since IRRXUTIL uses R_admin, you must authorize
IRRXUTIL users to the underlying R_admin function

© 2011 IBM Corporation7

What IRRXUTIL is not

� IRRXUTIL does not have any support for any of the oth er
function codes supported by R_admin, such as those which
update profile information

� However, it is relatively simple to create a command
invocation and run it directly from REXX. Certainly si mpler
than attempting to create any sort of REXX data struct ure to
map back the tokenized functions of R_admin.

� Because R_admin does not support the extraction of d ata
from RACF DATASET profiles, IRRXUTIL does not support
RACF DATASET profiles.

© 2011 IBM Corporation8

IRRXUTIL Invocation Syntax

� myrc= IRRXUTIL(function,type,profile,stem,prefix,generic)

–Function: “EXTRACT” or “EXTRACTN”

–Type: “USER”, “GROUP”, “CONNECT”, “_SETROPTS”, general
resource class. DATASET not supported.

–Profile: Profile to extract. Case sensitive. Specify '_SETROPTS'
for SETROPTS data.

–Stem: REXX stem variable name to populate with results. Do not
put the '.' at the end.

–Prefix: Optional prefix for returned variable name parts (more
later)

–Generic: Optional, 'TRUE' or 'FALSE' (uppercase). Applies to
general resource profiles only.

© 2011 IBM Corporation9

A Quick Example
� Here is a simple program which retrieves a general resource profile and

dumps the access list.

�Note the complete lack
of parsing code. Just
retrieve the profile and
directly access the
required data.

�Note also the lack of
return code checking.
Bad code. No donut!

/* REXX */
myrc= IRRXUTIL ("EXTRACT", "FACILITY" , "BPX.DAEMON", "RACF" , "" , "FALSE")

say "Owner: " RACF.BASE.OWNER.1

Say "ACL:"

do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say " " ||RACF.BASE.ACLID.a|| ":" ||RACF.BASE.ACLACS.a

end

READY
EX ‘SAMPLE.CLIST(IRREXXRS)’
Owner: IBMUSER
ACL:

IBMUSER:READ
WEBSRVR:READ
MEGA:READ
LDAPSRVR:READ
FTPD:READ

READY

© 2011 IBM Corporation10

IRRXUTIL Considerations

� The caller needs access to use R_admin extract via th e appropriate
FACILITY class profile protecting the desired functio n.

� In addition, the caller must be allowed to retrieve t he profile in
question. The caller will only have fields they are a llowed to view
returned.

� This is all enforced by the R_admin extract function which
IRRXUTIL calls.

Required FACILITY profileProfile Type

IRR.RADMIN.SETROPTS.LIST Setropts

IRR.RADMIN.RLIST General Resource

IRR.RADMIN.LISTGRP Group

IRR.RADMIN.LISTUSERUser, Connect

© 2011 IBM Corporation11

IRRXUTIL return codes
� myrc=IRRXUTIL(function,type,profile,stem,prefix,generic)

� MYRC is the return code from IRRXUTIL. It is a list of 5 numbers. If the
first=0, IRRXUTIL was successful and data has been returned.

0For IBM
support

For IBM support0=Rexx Error

4=R_admin
error

16Environmental error

R_admin
racfrsn

R_admin
racfrc

R_admin safrc1212R_admin failure

01=Bad length

2=Bad value

3=Imcompatible
with other parms

Index of bad
parameter

8Parameter Error

0Max
number
allowed

Min number
allowed

Number of
parms specified

4Bad number of parameters specified

00002Warning, stem contained '.'

00000Success

RC5RC4RC3RC2RC1Description

0

© 2011 IBM Corporation12

Common Return Codes

� 0 0 0 0 0 = Success

� 8 x y 0 0 = Error in IRRXUTIL invocation
–“x” – Number of the incorrect parameter
–“y” – What’s wrong

• 1: Bad length
• 2: Bad value
• 3: Inconsistent with other parameters

� 12 12 4 4 4 = Profile not found

� 12 12 8 8 24 = Not authorized to R_admin extract

© 2011 IBM Corporation13

Return Code Checking

Check the first value in the return code string. I f it is 0, the call was
successful.

/* REXX */

myrc= IRRXUTIL ("EXTRACT", "FACILITY" , "BPX.DAEMON", "RACF" , "" , "F
ALSE")

If (word(myrc,1)>0) then do

say "Error calling IRRXUTIL "||myrc

exit

end

say "Profile name: " ||RACF.profile

do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say " " ||RACF.BASE.ACLID.a|| ":" ||RACF.BASE.ACLACS.a

end

© 2011 IBM Corporation14

Two Ways to Process IRRXUTIL Output

�The variables returned by IRRXUTIL can be used in 2
ways:

–Known data can be retrieved directly by simply
referencing REXX variables by segment and field.

–Programs with no knowledge of what segments and
fields exist are given enough information to find all of
the segments and fields returned by IRRXUTIL.

• But, there is no mechanism to find out all potential
segments/field which could exist. It only returns
what exists for a given profile.

© 2011 IBM Corporation15

Retrieving Unknown Data Example

stem.0 = 4
.1 = “BASE”
.2 = “TSO”
.3 = “OMVS”
.4 = “CICS”

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLAUTH”

.4 = … … …

.0 = 1

.1 = “BRUCE WELLS”

.0 = 1

.1 = “FALSE”

.0 = 3

.1 = “USER”

.2 = “FACILITY”

.3 = “UNIXPRIV”

stem.BASE
stem.BASE.NAME

stem.BASE.SPECIAL

stem.BASE.CLAUTH
.PROFILE = “BRWELLS”
.CLASS = “USER”
.GENERIC = “FALSE”
.VERSION = 0

.FLAGS = “00000000”

.BOOLEAN = “FALSE”

.OUTPUTONLY = “FALSE”

.REPEATING = “TRUE”

© 2011 IBM Corporation16

Retrieving Repeating Data
Repeating fields have some additional control informa tion stored

in the 'repeat header' field.

� Stem.segment.field.repeatCount: Non-zero value indictates field is
a repeat header. This is the number of repeat groups for this field.

� Stem.segment.field.subfield.0: Number of subfields in this repeat
group.

� Stem.segment.field.subfield.1-n: subfield names

� Stem.segment.subfieldname.0: same as
Stem.segment.field.repeatCount. Number of values.

� Stem.segment.subfieldname.1-n: subfield values

Much needed example on next page

© 2011 IBM Corporation17

Stem Structure for a Simple Repeating Field

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLCNT”

.4 = “CLAUTH”

.5 = “CONNECTS”

.6 = “CGROUP”

.7 = “CAUTHDA”

.8 = “COWNER”

.n = … … …
.0 = 3
.1 = “USER”
.2 = “FACILITY”
.3 = “UNIXPRIV”

stem.BASE

stem.BASE.CLCNT

.REPEATCOUNT = 3

.SUBFIELD.0 = 1

.SUBFIELD.1 = “CLAUTH”

stem.BASE.CLAUTH

.REPEATING = “TRUE”

.OUTPUTONLY = “FALSE”

.BOOLEAN = “FALSE”

.REPEATING = “FALSE”

.OUTPUTONLY = “TRUE”

.BOOLEAN = “FALSE”

© 2011 IBM Corporation18

Stem Structure for a Complex Repeating Field

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLCNT”

.4 = “CLAUTH”

.5 = “CONNECTS”

.6 = “CGROUP”

.7 = “CAUTHDA”

.8 = “COWNER”

.9 = “CLJTIME”

.10= “CLJDATE”

.n = … … …

stem.BASE

stem.BASE.CONNECTS

.REPEATCOUNT = 3

.SUBFIELD.0 = 15

.SUBFIELD.1 = “CGROUP”

.SUBFIELD.2 = “CAUTHDA”

.SUBFIELD.3 = “COWNER”

.SUBFIELD.n = … … …

.0 = 3

.1 = “SYS1”

.2 = “RACFDEV”

.3 = “IBMPOK”

stem.BASE.CGROUP

.0 = 3

.1 = “07/06/87”

.2 = “03/12/91”

.3 = “08/21/94”

stem.BASE.CAUTHDA

.0 = 3

.1 = “IBMUSER”

.2 = “ADMIN1”

.3 = “ADMIN2”

stem.BASE.COWNER

stem.BASE.CLJTIME
… … …

stem.BASE.CLJDATE
… … …

stem.BASE.Cxxxxx
… … …

© 2011 IBM Corporation19

Sample Code to Get Field Names

� Here’s a code fragment which shows how to extract a ll of the field names
for a profile

/* REXX */
RACF.profile='IBMUSER'
myrc=IRRXUTIL("EXTRACT","USER",RACF.profile,"RACF")

If (Word(myrc,1) <> 0) Then Do
Say myrc
exit
end

say "The USER profile" RACF.profile " has " racf.0
"segments“

/* Continued on the next page */

© 2011 IBM Corporation20

Sample Code to Get Field Names…

do i=1 to RACF.0 /* get the segment names */
segment=RACF.i
say "====" segment "===="
do j=1 to RACF.segment.0

field=RACF.segment.j
say " FIELD="LEFT(Field,8,' ')
end

end

•The Result:
The USER profile IBMUSER has 2 segments
==== BASE ====

FIELD=CREATDAT
FIELD=OWNER
FIELD=ADSP
FIELD=SPECIAL
FIELD=OPER
FIELD=REVOKEFL
FIELD=GRPACC
…

© 2011 IBM Corporation21

The Importance of Prefixing
�Consider the following program which determines if the

OMVS UID of the supplied user id matches a supplied UID
value.

/* REXX */
arg user idNum
myrc= IRRXUTIL ("EXTRACT", "USER",user, "RACF")
uid =idNum
if (RACF.OMVS.UID.1= uid) then

say "Uid matches"
else

say "No match"

� The problem is that the REXX variable UID is overus ed. It is
used as a variable, and also set by IRRXUTIL as par t of a
variable. The uses conflict. Because we cannot ex pect
REXX programs to anticipate all possible future seg ment
and field names, IRRXUTIL has a 'prefix' option.

© 2011 IBM Corporation22

The Importance of Prefixing…
�Let’s fix the program using prefix.

/* REXX */
arg user idNum
myrc= IRRXUTIL ("EXTRACT", "USER",user, "RACF" , "R_")
uid=idNum
if (RACF. R_OMVS. R_UID.1=uid) then

say "Uid matches"
else

say "No match“

� The specified prefix is added to all variable name parts as
the REXX variables are created. Specifying a prefi x which
you know will never be used in your program variabl es
guarantees that there will be no name collisions. As long as
the above program does not use any variables starti ng with
'R_', it is safe.

© 2011 IBM Corporation23

Extract Next

�The extract next function returns the profile follo wing the
specified profile .

�To return the user following 'BOB', issue the follo wing:
myrc= IRRXUTIL ("EXTRACTN", "USER", "BOB" , "RACF")

�Repeatedly calling IRRXUTIL(EXTRACTN…) with the
previously retrieved profile is a way to iterate th rough all
profiles in a class.

© 2011 IBM Corporation24

Extract NEXT for General Resource Profiles

�When extracting General Resources with EXTRACTN,
start out with non generic profiles, by specifying 'FALSE'
for the GENERIC parameter.

�Every time IRRXUTIL(EXTRACTN…) is called, pass in t he
returned 'generic' indicator (stem.GENERIC), along with
the returned profile name.

� IRRXUTIL(EXTRACTN..) will automatically switch over to
GENERIC profiles when it has gone through all discr ete
profiles.

© 2011 IBM Corporation25

Extract NEXT for General Resource Profiles

�When extracting General Resources with EXTRACTN,
start out with non generic profiles, by specifying
'FALSE' for the GENERIC parameter.

/* REXX */
class = 'FACILITY'
RACF.R_PROFILE = ' '
RACF.R_GENERIC= 'FALSE'
Do Forever

myrc= IRRXUTIL ("EXTRACTN",class,RACF.R_PROFILE, "RACF" , "R_" ,RACF.R_GENERIC)

If (Word(myrc, 1) <> 0) Then Do
Say myrc
Leave

End
Say RACF.R_PROFILE /* print profile name */

End

© 2011 IBM Corporation26

Specifying '.' as a Part of Stem Name

� IRRXUTIL resets the entire supplied stem to '' (nul l) before
populating any values. This means that each call t o IRRXUTIL
has new data and no residual data is left over from previous
calls.

� If the stem variable contains a '.' (period) charac ter, this is not
possible, and IRRXUTIL does not clean anything. Re turn code
'2' is returned as a warning that residual data has not been
cleared.

�However, this quirk can be useful, as long as the R EXX
programmer is careful.

© 2011 IBM Corporation27

Specifying '.' as a Part of Stem Name

�This small program creates a small 'database' of us er profile
data, which is easily referenced by user id.

/* REXX */
arg IDS
USERS.="" /* only init to "", never 0 */
do i= 1 to words (IDS) /* populate specified users into USERS. stem */

ID= word (IDS,i) /* Get next user */
myrc= IRRXUTIL ("EXTRACT", "USER" ,ID, "USERS." ||ID)

end
/* We now have all specified users saved, process t hem */
do i= 1 to words (IDS) /* Retrieve data from multiple users without */

ID= word (IDS,i) /* extracting them again */
say ID|| " Owner=" ||USERS.ID.BASE.OWNER.1

end

� A silly example, but it does illustrate extracting mu ltiple users and
indexing them nicely by user id. By placing the us er id as part of
the stem, we can organize all extracted data by user i d. In this
example, myrc is set to '2 0 0 0 0' when successful.

EX ‘SAMPLE(IRREXXDS)’ ‘ibmuser mega elvis’
IBMUSER OWNER=IBMUSER
MEGA Owner=SYS1
ELVIS Owner=MEGA
READY

© 2011 IBM Corporation28

Specifying '.' as part of stem name, be careful
�This small program shows the wrong way to use a '.' in the stem.
/* REXX */
say "Extract users with no '.' in stem"
myrc= IRRXUTIL ("EXTRACT", "USER", "MEGA", "RACF" , "")
say "MEGA UID is " RACF.OMVS.UID.1
myrc= IRRXUTIL ("EXTRACT", "USER", "ELVIS" , "RACF" , "")
say "ELVIS UID is " RACF.OMVS.UID.1
say "Extract users with '.' in stem to demonstrate erro r"
myrc= IRRXUTIL ("EXTRACT", "USER", "MEGA", "RACF.A" , "")
say "MEGA UID is " RACF.A.OMVS.UID.1
myrc= IRRXUTIL ("EXTRACT", "USER", "ELVIS" , "RACF.A" , "")
say "ELVIS UID is " RACF.A.OMVS.UID.1

� This example demonstrates how specification of a '. ' in the
STEM allows residual data to remain after an new ex tract
operation.

EX ‘SAMPLE(IRREXXSR)’
Extract users with no ‘.’ in stem.
MEGA UID is 8
ELVIS UID is
Extract users with '.' in stem to demonstrate error
MEGA UID is 8
ELVIS UID is
READY

© 2011 IBM Corporation29

Where Do You Find Field Names?

� z/OS Security Server RACF Callable Services contain s tables
which document every segment and field name support ed
by R_admin in appendix A.2

�Fields which are 'Returned on Extract Requests' are
supported by IRRXUTIL.

Segment

Field

Extract?

© 2011 IBM Corporation30

Gotchas

� IRRXUTIL sets the entire stem to "" (null) before s etting new
data. Fields which do not exist in the extracted p rofile remain
null.

–This can cause problem in fields which are usually returned as numeric
fields because they also remain "", and not 0. So, care must be taken
before referencing numeric fields as numbers.

/* REXX */
arg group
myrc= IRRXUTIL ("EXTRACT", "GROUP",group, "RACF" , "")
do i= 1 to RACF.BASE.SUBGROUP.0

say "Subgroup: " RACF.BASE.SUBGROUP.i
end

The above program fails if the specified group has no SUBGROUPs
because RACF.BASE.SUBGROUP.0="" which is not a number.

© 2011 IBM Corporation31

Gotchas…

� Universal Groups.

–Remember that a universal group profile does not contain a list of the
users who are connected to the group with USE authority.

� Discrete profiles which contain generic characters wi ll cause the
underlying R_admin service to fail if they are encount ered during an
EXTRACTN call.

–IRRXUTIL fails also

–The only solution is to RDELETE these erroneous profiles.

–There are few cases where discrete profiles are expected to contain
generic characters and R_admin handles these properly.

� Do not beat on the RACF database. For example, do n ot EXTRACT-
NEXT all users in an attempt to find all users which belong to a given
Universal Group.

© 2011 IBM Corporation32

References

� RACF Callable Services – R_admin documentation

� Command Language Reference
– http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ICHZBKA0

� Macros and Interfaces – IRRXUTIL, including an exhaus tive list
of all REXX variables set by IRRXUTIL.

– http://publibz.boulder.ibm.com/cgi-
bin/bookmgr_OS390/BOOKS/ichza3a0/14.0?SHELF=EZ2ZBK0H.bks&DT=20090610215513

� RACF Downloads page – Sample R_admin extract program
(RACSEQ)

– http://www.ibm.com/servers/eserver/zseries/zos/racf/downloads/racseq.html

� RACF Downloads page – IRRXUTIL examples.
– http://www-03.ibm.com/servers/eserver/zseries/zos/racf/downloads/irrxutil.html

© 2011 IBM Corporation33

IRRXUTIL Samples, from the RACF Downloads Page .

� XDUPACL.txt - A program which looks for user ACL entries which may be
redundant with existing group ACL entries

� XLGRES.txt - A program which resumes the group connection of every
member of a group

� XLISTGRP.txt - A program which displays a group's connected users in
alphabetic order, with each user's name and connect authority

� XLISTUSR.txt - A program which displays a user's connect groups in
alphabetic order

� XRACSEQ.txt - A program which re-implements the RACSEQ download to
demonstrate features of IRRXUTIL

� XRLIST.txt - A program which displays the standard access list of a general
resource profile with the users listed first, in alphabetic order, with the user's
name, followed by the groups, in alphabetic order

� XSETRPWD.txt - A program which displays only the password-related
SETROPTS options, and indicates whether password and password phrase
enveloping is active

� XWHOCAN.txt - A program which displays certain users who can modify the
specified profile

