—

SHARE
Technology + Connections - Results

z/OS Basics: ABEND and Recovery

(All You Need to Know to Write Your First ESTAE)

Vit Gottwald
CA Technologies

August 3, 2010
Session Number 8017

Agenda

* Introduction
e Basic Hardware Terms
 |nstruction Execution Loop
 Interrupts

* Recovery
* Program Error
« Recovery/Termination Manager
« ESTAE
e z/OS Control Blocks
e Special Considerations

 References

Basic terms

« Storage

* Programs

e Data

* Low Core (first 8K of storage)
- CPU

* 16 General Purpose Registers

* Program Status Word (instruction pointer)
¢ Instruction

e Operation code

e Operands

e Length

Instruction Execution Loop

« Sequential
Fetch Update PSW
Instruction to point to Execute the
pointed to byp—»{ The Next - instruction
PSW into Sequential
CPU Instruction

« How does the CPU know the instruction length?

 First two bits of operation code
00 — instruction is 2 bytes long
01 or 10 — instruction is 4 bytes long
11 — instruction is 6 bytes long

Instruction Execution Loop

* Branch
Fetch Update PSW
Instruction to point to
pointed to by—#»1 The Next
PSW into Sequential
CPU Instruction

« Branch type instructions

YES—>

Update PSW
from the
instruction

Branch type
insturcion?

NO

Execute the
instruction

replace the instruction address in PSW

;""’”

ra

Technology « Connections - Results

Technology + Connections - Results

Instruction Execution Loop

Update PSW
* Branch & Interrupt vES—»| from the
instruction
Fetch Update PSW
Instruction to point to Branch tvbe
pointed to by The Next insturcioynp’?
PSW into Sequential '
CPU Instruction

NO
) Execute the
NO instruction
Is there an
interrupt to
service?
YES Hardware

—pp INTERRUPT
handling

What does the hardware do?

» Save into Low Core
e Current PSW

 PSW extension
Interrupt code
Instruction Length Code (ILC)

« TEA
« BEAR

 Load from Low Core

 New PSW assigned to the type
of interrupt that occurred

} discussed later

;"*’4_’

s

Technology « Connections - Results

Hardware
INTERRUPT
handling

Interrupts

« Each interrupt type has its own fields in Low Core
e old-PSW
° new-PSW

 First Level Interrupt Handler (FLIH)

* Routine pointed to by instruction address in new-PSW
* Interrupt types

* Restart, External, Machine Check, 1/O

« SVC

* Program Check
CPU recognized problem in execution of an instruction
Categorized by Program Interruption Code (PIC)

Technology « Connections - Results

Program Interruption Code (PIC)

PIC Reason Type of instruction ending
0001 Operation suppressed

/ 0002 Privileged operation suppressed

S0C1 0003 Execut(_e suppressed |

0004 Protection suppressed or terminated
0005 Addressing suppressed or terminated
0006 Specification suppressed or completed
0007 Data suppressed, terminated or completed

0008 Fixed-point overflow completed
s0C4 0009 Fixed-point divide suppressed or completed
O00A Decimal overflow completed
000B Decimal divide suppressed
000C HFP exp. overflow completed
000D HFP exp. underflow completed
O00E HFP significance completed
000F HFP divide suppressed Chaptor 6, Fiaure 6-1. Interrantion Action
0010 Segment translation nullified
0011 Page translation nullified

Program error

« Hardware detected (Program Check)
FLIH receives control and decides whether the program check is
an error (e.g. PIC 11 - page fault - is not always a program error)

If the P.C. is considered an error, FLIH passes control to RTM
Results in 0Cx ABENDs

« Software detected
Either a z/OS component or a user program discover a problem
and decide to terminate abnormally (call ABEND macro)

The call of ABEND macro is an entry to RTM
Typically the ABEND code is in the form xNN
* NN - SVC hex number of the z/OS service detecting the

problem
* e.g. x13 is a group of ABENDSs related to open processing

10

Recovery/Termination manager (RTM)

* Receives control early after the discovery of a
program error (or when a program ends normally)

« Passes control to appropriate recovery routine (if present)

* If recovery not successful and either of
e [ISYSUDUMP, /[ISYSABEND, or //[SYSMDUMP DD

present, requests documentation of the error by calling
z/OS dump services (SNAP macro)

« Handles the final termination of the program
« Closing any open datasets
e Freeing memory
e Releasing ENQs

11

Recovery routine

* Responsible for

 Fixing the error and giving the failing program another chance

(retry)
 Documenting the error, cleaning up resources, and continuing
with termination process (percolate)

* Two basic types
 ESPIE —to handle Program Checks with PIC 1-F hex

« ESTAE-like — to handle ABENDs
(Program Checks are special case)

12

Extended Specify Task Abnormal Exit £
(ESTAE) LELL

» Established through ESTAE macro

« At entry receives pointers to
« Parameter specified by the user at ESTAE macro call

« System Diagnostic Work Area (SDWA)
Contains the ABEND information
May not be available, check if RO equals 0C hex

« Communicates with RTM via SDWA

* Read information directly from SDWA

SDWAABCC, SDWACRC, SDWAEC1, SDWAILC1, SDWAINCI1,
SDWAGRSV, SDWAFLGS, SDWATRAN, SDWABEA, ...

e Write information directly to SDWA
SDWASROO — SDWASRI15, ...

13

Extended Specify Task Abnormal Exit £
(ESTAE), cont'd LELL

« Communication with RTM via RTM, cont'd

« SETRP macro
Whether to retry (RC=4) or percolate (RC=0)
Specify the retry address (RETADDR=)
Restore retry registers from SDWA (RETREGS=YES)
... all options described in [3]

« SDWA 64 bit extension
e provided only when SDWALOC31=YES in ESTAE macro call

* Detailed usage in [1], Chapter named “Providing recovery”
* Not easy to digest at first time (following sample should help)

14

Translation Exception Address (TEA)

Location 168-175 in Low Core

Filled in when page or segment translation occurs
(PIC 10 and 11)

Bits 0-51 contain address of the page we tried to access
Bits 52-63 are unpredictable

Provided in SDWA
e 32 bit portion in SDWATRAN
e Full 64 bit in SDWA 64 bit extension (SDWATRNE)

15

-8

Breaking Event Address Register (BEAR) S

8 bytes long CPU register

 When a branch type instruction is executed, it's address is
placed in the breaking-event-address register

 When a program interruption occurs, the current contents
of the BEAR is placed into Low Core location 110-118

* Provided in 64 bit SDWA extension (SDWABEA)

* Priceless for debugging
“wild branches”

16

Very Simple Example

1. Establish an ESTAE
2. Cause a Program Check by branching to FFFFFFFE hex
3. Recovery routine gets control and sets retry registers:

e Clear RO Translation Exception Address to R3

« ABEND code into R1 Breaking Event Address to R4
« Reason code into R2

4. Retry
5. Disable the ESTAE

6. Cause an SOC1 ABEND by DC H'O’

« ESTAE no longer defined -> proceed with termination
* Register content displayed in the ‘diagnostic dump’ in file 1

17

Very Simple Sample, cont’d

COPY ASMMSP ENABLE STRUCTURED PROGRAMMING MACROS
SYSSTATE ARCHLVL=2 USE Z/ARCHITECTURE INSTRUCTIONS
ASMMREL ON USE RELATIVE BRANCHING

SAUTH CSECT

SAUTH AMODE 31 ABOVE THE LINE TO GET BEAR

SAUTH RMODE ANY
STM 14,12,12(13)

LARL 8,RECOVERY RECOVERY ROUTINE ADDRES
LARL 9,RETRY RECOVERY ROUTINE PARAMETER ADDRESS
ESTAE (8),CT,PARAM=(9),SDWALOC31=YES ESTABLISH ESTAE
LHI 15,-2 MAX EVEN 31 BIT ADDRESS -> S0C4-11 X
SEE BOTH TEA AND BEAR
BR 15 BRANCH TO HELL (PSW USELESS)
RETRY DS OH
ESTAE O REMOVE THE ESTAE

DC H'O INVALID OPERATION CODE -> S0C1-1

18

Very Simple Sample, cont’d

RECOVERY DS OH
IF CHI,0,EQ,X'0C' Q.SDWA MISSING
* WTO 'SDWA MISSING' may change registers 0,1,14,15

SR 15,15 PERCOLATE
BR 14 RETURN TO RTM=PERCOLATE BY DEFAULT
ENDIF
STM 14,12,12(13) SAVE REGISTERS
LR 3,1 SAVE POINTER TO SDWA
USING SDWA,3 MAP SYSTEM DIAGNOSTIC SAVE AREA

see next slide and include here
SETRP RC=4,RETADDR=(2), WKAREA=(3),RETREGS=YES

DROP 3

LM 14,12,12(13) LOAD REGISTERS

BR 14 RETURN TO RTM
< *

IHASDWA GENERATE SDWA DSECT

END SAUTH END ASSEMBLY

19

Very Simple Sample, cont’d

SR 0,0
ST 0,SDWASRO00
MVC SDWASRO01,SDWAABCC SAVE ABEND CODE IN R1
MVC SDWASRO03,SDWATRAN SAVE TRANSLATION EXCEPTION ADDRESS
L 4,SDWAXPAD ADDRESS OF SDWA EXTENSION POINTERS
USING SDWAPTRS,/
L 5,SDWASRVP RECORDABLE EXTENSION
USING SDWARC1,5
MVC SDWASRO02,SDWACRC SAVE REASON CODE
DROP 5
L 6,SDWAXEME 64-BIT EXTENSION
USING SDWARCA4,6
MVC SDWASRO04,SDWABEA+4 SAVE BREAKING EVENT ADDRESS-31
DROP 6
DROP 4

20

QW53270 Edit

__ R - -

View Options Tools Help

}_APPLID(AiiIHGSS}
= JOB(¥8WVsSMPL ,1893)

USER(Y8V,GOTVIG1)

SCRBL CSR COLS 006809 00688 F 81 P 06681

s T . T T e = T L =
JOB®1893 TS570011T Count=87696 Mode=Fail Locktime=MNone HName=GOTTWALD, WVIT
JOB@1893 FHASP373 Y8WVSMPL STARTED - KWLM INIT — SRVCLASS BATSTWLM - SY5S CA31
JOBB1893 TEF483I ¥38VSMPL - STARTED - TIME=@4.24.30
JOB@1893 IEA995I SYMPTOM DUMF OUTPRPUT 745
SY¥STEM COMPLETION CODE=8C4 REASON CODE=G86886811
TIME=84.24.31 SEQ=27556 CPU=0B06 ASTD=8B23E
PSHW AT TIME OF ERROR B78DBBAG FFFFFFFE ILC 2 INTC 11
MO ACTIVE MODULE FOURND
NAME=UNKNOWM
DATA AT PSKH TFFFFFF8 — 3se3sacaeacaex 3 3 3 3 I I 3 I 00A0B0R6
GR @: 20808081 _0000aa 1: 00000000 _3ADBBFSC
2: 20000008 _0000a0840 3: 20eeeeee_eaervDAaDS4
4: 0200000 _00T7TDADGE 5: 00000000 _0B7FF370
5: 00 _BB7TEBFE® T 2800000888 _FDRORORO
8: 00808088 _3ADBAF94 9: 008888 _3ADABFEC
Al 90000000_00000000 B: 0000000 _OB7FF370
C: 200808838 _88Ca979D2 D: 20000000 _000BG6GF60
E: 90060008 _88FDD4BES F: 0000000 _FFFFFFFE
EMND OF SYMPTOM DUMP
JOBB1893 TEAD995TI SYMPTOM DUMP OUTPUT 746
SY¥STEM COMPLETION CODE=&C1 REASON CODE=G0080801
TIME=84.24.31 SEQ=27557 CPU=0B06 ASTD=B23E
PSH AT TIME OF ERROR B878DBBAG BADBAF94 ILC 2 INTC &1
ACTIVE LOAD MODULE ADDRESS=3ADBOBF48 OFFSET=2088884C
NAME=GO
DATA AT PSH 3ADBAFSE - @8840A3C B0ATAE BaaCATT4
GR ©0: 00000001 00000000 1: 00000000 _840C4000
2: 0000808 _B0806881.1 3: 08000 _YFFFFORG
4: 20000000 _3ADBBAFB8A 5: 80000000 _0B7FF370
S5: 000000 00_0B7EBFE® ¥: 000000000 _FDOOOBRO
8: 00000088 _3ADBAF94 9: 000888 _3ADBBFEC
Al 90000000 _000000080 B: 00000000 _BB7FF370
C: @8eeaaa_sacorobDz2 D: 00000000 _0000G6GFG0
: 90000808 _S80FDD4B8 F: 908000000 _0000000a8
EMND OF SYMPTOM DUMP
JOBB1893 TEF4568I Ys8VsSMPL RUNPGM - ABEND=58C1 UGEGE REASON-00000001 riG ¥
TIME=84._.24_.31
JOBB1893 TEF484I Y8VSMPL - EMNDED - TIME=04.24_.31
JOBB1893 EFHASP395 Y¥8WVSMPL ENDED

Connected to tpx port 23 MUM 04:26:21 IBM-3278-4-E - AS5T3147

- s

QW53270 Edit

View Options

Tools Help

= APPLID(A11IR0OS3)
= JOB(¥8WVsSMFL ,1893)

USER(¥Y8V,GOTVI®@1)

SCRL C3SR COLS 886881 a0asae

F 84 P 0683

ZEoooPoccodooocecTooooEo oo PocooMoocecToooocAo oo e FPooooDoocoe Fooocl®ooooPoooaolooce e Taoools
aaaeaa 2a0ee 00aB4 1611 SAUTH CSECT
1612 SAUTH AMODE 31 ABOVE
1613 SAUTH BRMODE ANY
28060668 9QEC DeacC aaaac 1614 STH 14 ,12,12(13)
200064 COEG G0 ABz24 aaa4C 1615 LARL 8, RECOVERY RECOV
2a0eA CO9E 000G Aa1D aaa44 1616 LARL 9, RETRY RECOV
1617 ESTAE (8),CT,PARAM=(9) ,SDWALOCS3
1619+ MACDATE 16/01 /94
aagei1a 1621 + CNOP a, 4 E
2aee1e AYT1S 0AAE aaaz2Cc 1622+ BRAS 1,=+28 L
0814 16 1623+ DC AL1(22) F
+ A
200615 800060 1624+ (B AL3I(B) F
20018 0000 AB 1625+ oC ACB) =
2061 C 0008006 1626+ oC ACB) =
aaeezae 36 1627 + oC AL1(128) F
aaeez1 a1 1628+ oC AL1 (1) T
Qeaazz agae 1529+ DC ALZ2(B) R
0624 008080086 16308+ (B ACB) s
06028 00808006 1631 + (B AL4(B) 5
aaee2Cc 56881 686814 a1 4 1632+ ST 8,20(1,0) P
2000368 56091 0G4 2064 1633+ ST 9,4(1,8) P
280834 416060 0106 166 1634+ LA 8,256(60,0) C
2038 41160 1606006 aa0ee 1635+ LA 1.86(0,1) |
Baea3Cc B8A3C 1636+ SVC 50 I
Ba8B3E AYFE8 FFFE FFFFFE 1637 LHI 15,2 MAX E
SEE B
aaee4z2 ar7FF 1638 BR 15 BRANC
aaaa44 1639 RETRY DS aH
1540 ESTAE @ REMOWV
1542 +2¢ MACDATE 16/601/94
Ga0a44 1544 + DS aH
2806044 416060 0B84 aaas4 1645+ LA 0,132(6,08) I
aa0e48 BA3C 1646 + SVC 50 I
2a0604A 0000 1647 oC H"&" ITMNWVAL
20064C 1648 RECOVERY DS aH
1649 IF CHI,®,EQ,.X"8C" Q.5DKW
2a8e4C ATAE 0068C aagac 1668 + CHI ag,x"ac’
20858 ATYT74 0QAF BaA6E 1661 + BRC ¥, HALB1

Connected to tpx port 23

1/2

MUM 04:29:29 IBM-32758-4-E - AS5T3147

Technology « Connections - Results

Some more SDWA fields of interest

« SDWAXPAD — SDWA extension pointers (SDWAPTRS dsect)
« SDWASRVP — address of recordable extension (SDWARC1 dsect)
« SDWAXEME - address of 64-bit extension (SDWARC4 dsect)

« SDWAERRB,on,SDWAPERC- a previous ESTAE percolated

* When your ESTAE gets control make sure whether it is the first one or
whether some other ESTAE already percolated !!!

23

Make sure to

« Establish your recovery routine when your routine gets
control from system, exit, or other app.

 Remove the recovery routine before returning to the caller

* Learn more
* Read “Providing recovery”, especially section “Special
considerations” in [1]
* Learn about TCB and RB chains and how they relate to recovery
routines
« Be careful when dealing with Linkage Stack, see IEALSQRY
macro

24

Multiple ESTAES

When your program establishes multiple ESTAES

And an ABEND occurs
1. The most recently defined ESTAE routine gets control

2. When it decides to percolate, previously dedined ESTAE
gets control

3. Ditto
4

« ESTAE is represented by a STAE Control Block (SCB)
« SCBs form a stack (LIFO) with the newest SCB on the top

When an ESTAE percolates its SCB is removed from the
stack and control is passed to the next on the top

25

z/OS Dispatcher Control Blocks

TCB

+0 (TCBRBP)

+1C

PRB

A ic

SVRB

f +1C

PRB

!

(RBLINK)

(RBLINK)

(RBLINK)

26

z/OS Dispatcher Control Blocks

TCB

+88

—

TcBLTC |d

TCB

l +80 (TCBNTC)

Cc

TCB

l +80 (TCBNTC)

TCB
b

+88
L | TCB |—

TCBLTC +1C (RBLINK)

+0 (TCBRBP) PRB
f +1C (RBLINK)

SVRB

* +1C (RBLINK)

PRB

!

27

Other Recovery Routine Types

« ESTAI

e Subtask recovery
* Defined on ATTACH(X) macro with ESTAI= parameter

« Associated Recovery Routine (ARR)
« Recovery for abends in PC routines

* Functional Recovery Routine (FRR)
* Recovery in SRB routines
« Defined through SETFRR macro

28

References

- MVS Programming Assembler Services Guide (SA22-7605)

- MVS Programming Assembler Services Reference (SA22-7606)
- MVS Data Areas

- MVS Control Blocks, Hank Murphy, McGraw Hill 1995

- Principles of Operation (SA22-7832)

([]
O s W N B

29

References, cont'd

* [JB] - Joachim von Buttlar, “System z Architecture”, [big, but worth
reading, skip the IBM propaganda at the beginning],
http://public.dhe.ibm.com/software/dw/university/systemz/SystemzArchi
tectureCourse.pdf

« [EJ] - Ed Jaffe, Structured Assembler Language Programming Using

HLASM,
ftp://ftp.phoenixsoftware.com/pub/demo/Structured Assembler.pdf

r\) T J
- [. 30

Technology + Connections - Results

Please do not forget to fill in the
evaluation forms.

Session #8017

z/OS control blocks

* Pilece of storage that has a meaning to z/OS

» Described in IBM manual “MVS Data Areas, Voll. — Vol6.

* Not very verbose, useful if you know what you are looking for
and are familiar z/OS (MVS) terminology

32

z/OS control blocks — PSA, CVT RRARS

* Prefix Save Area (PSA)

* Prefix Area contains several fields that have hard wired
addresses in the CPU for interrupt handling. The rest is used
by FLIH and various other components of z/OS

* In z/OS terminology Prefix Area is called Prefixed Save Area

e Contains pointers to other control blocks
Task Control Block (TCB) at offset 21C
Address Space Control Block (ASCB) at offset 224
Communication Vector Table (CVT) at offset 10

« Communication Vector Table (CVT)
 Anchor to most If not all z/OS control blocks!

33

z/OS control blocks — ASCB, TCB

« Address Space Control Block (ASCB)

e Represents single instance of virtual storage to z/OS (recall
MVS = Multiple Virtual Storage)

» Usually one ASCB per Job — XTCB

« Task Control Block (TCB)
» Represents unit of work to z/OS (a task)
e Think of a “task” being a “thread” in PC/UNIX terminology

e [tis an anchor to all resources z/OS allocated on behalf of the
task, when TCB is removed, all resources for the task are

deallocated

34

z/OS control blocks - PRB, SVRB

* Request Block (PRB, SVRB, IRB)

 While TCB represents a unit of work to z/OS, RB represents a
particular item we want z/OS to do on behalf of our task

 When we request a particular program to be run, Program
Request Block is created

 When our program wants to use operating system services, it
Issues a suitable SVC and a Service Request Block is created

« External interrupt may generate an asynchronous exit routine
to be run (e.g. IRB created for STIMER exit routine)

* The sequence of the Request Blocks is then called an RB
chain, it is chained of a TCB in a reverse order than it was
created

35

s
RB Chalin A LLL
« TCB at offset O contains a TCB e
fullword pointer to the most
recently created RB ronren PR;C{RBW}
- Each RB points to the
previously created RB SVE;: (RBLINK)
 Last RB in the chain (the
first created) points back to § +1C (RELINK)
the TCB SVRB
+ +1C (RBLINK)
PRB

36

TCB chain

 TCB created by ATTACH

macro, DETACH removes a TCB

+88
EEEEEE—

TCBLTC

* Program running under
a TCB can request further TCBs to be
created -> multi-threaded application

« Here the mother task a)

d

TCB

l +80 (TCBNTC)

C

TCB

attached three daughter tasks (subtasks)

b), c), and d) in the respective order

l +80 (TCBNTC)

b

TCB

TCBLTC (+88) field points to the subtask the current TCB attached last
TCBOTC (+84) —not shown on picture- points to the parent task

TCBLTC (+80) — points to the task attached previously by parent task

37

How does RTM recelve control?

« Through an ABEND macro call (SVC 13 - 0AOD)

e Terminates either current TCB or the job step TCB in the
current address space

* Through a CALLRTM macro call

e TYPE=ABTERM
a “super” version of ABEND
Allows to terminate a (TCB=) in current or other address space

« TYPE=EMEMTERM

Terminates an address space without giving control to task level
recovery routines and resource managers

38

Recovery/Termination macros

« CALLRTM
« TYPE=ABTERM is used by CANCEL operator command
e TYPE=EMEMTERM is used by he FORCE oper. command

* You definitely want to stay away from it, supervisor state and
key O is required to do a CALLRTM

39

Recovery/Termination macros

« ABEND
e Generates an SVC 13 (OAOD)

« Also has a branch entry

» Allows to specify
ABEND code (12 bits) - separate values for System/User ABEND
Reason code (RETURN=, 32 bits) - passed to recovery routines
Dump options
* DUMP —request a dump
* DUMPOPT — parm. list for the SNAP macro
Scope of the ABEND

« STEP - if specified, the job step TCB is terminated, if not
specified, the default is to terminate the current TCB

40

RTM1 and RTM?2

« RTM is composed of two parts
« RTM1 aka “System Level RTM”
e RTM2 aka “Task Level RTM”
« RTM1
e Entered via CALLRTM (e.g. from FLIH for an erroneous P.C.)
* Runs under the environment of the failing program
« ESPIE registers with RTM1 — low overhead recovery routine
« RTM2

* Entered via ABEND macro call either from RTM1 or directly
 Runs as an z/OS subroutine (RB created — 0AOD)

« ESTAE registers with RTM2 (another RB created when called)

41

ESTAE macro I

« Assume you are writing your first ESTAE routine for your
very simple program to recover from a B37 system ABEND

* You will use
ESTAE EXIT_ADDR,CT,PARAM=PARM _LIS"
 EXIT _ADDR- address of the recovery routine

« PARM_LIST - parameter list passed to the recovery routine
when it is invoked by RTM

 CT- create as opposed to OV- override an existing ESTAE

42

Virtual Storage

 Virtual storage
 Introduced in S/370 in early 1970’s

e Each “application” (address space) can use the full range of
addresses available on the architecture independently of all

other applications
* Implemented in hardware via Dynamic Address Translation

 VIRTUAL ADDRESSES translated into REAL ADDRESSES

43

z/Architecture Virtual Storage

Real address
space

Virtual
address space 2

address space 1
/

A

SHARE “

SHARE
Technology + Connections - Results

z/Architecture Virtual Storage

Real address
space

Virtual]

address space 1

Virtual
address space 2

SHARE "

z/Architecture Virtual, Real, Absolute

« How to handle this with multiple CPUs?

* Prefix register
e 64 bits, bits 0-32 are always 0

« Used for assigning a range of real addresses 0-1FFF to a
different block in absolute storage for each CPU

 The mechanism is called Prefixing, the storage Prefix Area

46

z/Architecture Prefixing

Real Address
CPU 1

Absolute
Address

SHARE

SHARE
Technology + Connections - Results

Real Address
CPU 2

a7

z/Architecture Prefixing

Prefix register value, CPU 1

Real Address Absolute
CPU 1 Address

r_-_-
]

Y

SHARE
Technology + Connections - Results

Say Prefix register value

iIn CPU1 is 6000, then

Real Addresses 1-1FFF
are translated to

Absolute Addresses
6000-7FFF

Real Addresses
6000-7FFF are
translated to Absolute
Addresses 1-1FFF

48

SHARE
Technology + Connections - Results

z/Architecture Prefixing

Real Address

Absolute

Real Address

Address CPU 2

CPU 1

<

Z NdD ‘anjen 1axsibal xiyaid

>

>
T NdD ‘anfea Jajsibal xiyaid

(@)
<

General Purpose Registers

« 16 General (Purpose) Registers (GPR 0 — 15)
e 64 bits numbered 0 (MSB) — 63 (LSB)
* Integer arithmetic
e Address generation/calculation

0 z/Arch 32 z/Arch 63
[0] ESA/390 [31]

50

£

SHARE
Technology + Connections - Results

z/Architecture Program Status Word

o[Rjo[ojo|T\5x| Key [oMwP|As|cc| F°9 00000005

0 5 8 12 16 20 24 31

S| 0000000000000000000000000000000

32 63
Instruction Address

64 95

Instruction Address

96 127

51

r"”

N
ESA/390 Program Status Word ERARS

« So far z/OS doesn’t support execution of instructions above
the 2GB bar (no room in current control blocks to save all 8
bytes of the instruction address upon an interrupt)

« Usually we still deal with the ESA/390 style PSW in dumps
and within various z/OS control blocks

| [E Prog
ROOOTOX Key 1MI\/VPASCC Mask 00000000
5 8 12 16 20 24 31

0
0
E Instruction Address

32 63

52

Types of Instruction Ending

« Completion

« Successful completion or partial completion (for interruptible
Instructions at a unit of work boundary — CC=3)

 PSW points to the next sequential instruction

e Suppression
» As if the instruction just executed was a no-operation (NOP)

« contents of any result fields, including condition code are not
changed

 PSW points to next sequential instruction

53

Types of Instruction Ending, cont'd

* Nullification
e Same as Suppression but
 PSW points to the instruction just executed

 Termination?

« causes the contents of any fields due to be changed by the
Instruction to be unpredictable (some may change, other not)

* The operation may replace all, part, or none of the contents of
the designated result fields and may change the condition
code

 PSW points to the next sequential instruction

1) For detailed description see SA22-7832-07, Chapter 5, Type Of Instruction Ending

54

Termination

* Releasing all resources acquired by the task being
terminated
 RTM calls Resource Managers to do the actual cleanup
« Closing any open datasets
e Freeing memory
e Releasing ENQs

* Performed for both normal and abnormal program end

55

