
z/OS Basics: ABEND and Recovery
(All You Need to Know to Write Your First ESTAE)

Vit Gottwald
CA TechnologiesCA Technologies

August 3, 2010
Session Number 8017

Agenda

• Introduction
• Basic Hardware Terms
• Instruction Execution Loop
• Interrupts

• Recovery

2

• Recovery
• Program Error
• Recovery/Termination Manager
• ESTAE
• z/OS Control Blocks
• Special Considerations

• References

Basic terms

• Storage
• Programs
• Data
• Low Core (first 8K of storage)

• CPU

3

• CPU
• 16 General Purpose Registers
• Program Status Word (instruction pointer)

• Instruction
• Operation code
• Operands
• Length

• Sequential

Instruction Execution Loop

• How does the CPU know the instruction length?
• First two bits of operation code

• 00 – instruction is 2 bytes long
• 01 or 10 – instruction is 4 bytes long
• 11 – instruction is 6 bytes long

4

• Branch

Instruction Execution Loop

• Branch type instructions
replace the instruction address in PSW

5

• Branch & Interrupt

Instruction Execution Loop

6

What does the hardware do?

• Save into Low Core
• Current PSW
• PSW extension

• Interrupt code
• Instruction Length Code (ILC)

7

• Instruction Length Code (ILC)

• TEA
• BEAR

• Load from Low Core
• New PSW assigned to the type

of interrupt that occurred

} discussed later

Interrupts

• Each interrupt type has its own fields in Low Core
• old-PSW
• new-PSW

• First Level Interrupt Handler (FLIH)
• Routine pointed to by instruction address in new-PSW

8

• Routine pointed to by instruction address in new-PSW

• Interrupt types
• Restart, External, Machine Check, I/O
• SVC
• Program Check

• CPU recognized problem in execution of an instruction
• Categorized by Program Interruption Code (PIC)

Program Interruption Code (PIC)

PIC Reason Type of instruction ending
0001 Operation suppressed
0002 Privileged operation suppressed
0003 Execute suppressed
0004 Protection suppressed or terminated
0005 Addressing suppressed or terminated
0006 Specification suppressed or completed
0007 Data suppressed, terminated or completed

S0C1

9

For more PICs see, SA22-7832-07 ,
Chapter 6, Figure 6-1 Interruption Action

0007 Data suppressed, terminated or completed
0008 Fixed-point overflow completed
0009 Fixed-point divide suppressed or completed
000A Decimal overflow completed
000B Decimal divide suppressed
000C HFP exp. overflow completed
000D HFP exp. underflow completed
000E HFP significance completed
000F HFP divide suppressed
0010 Segment translation nullified
0011 Page translation nullified
...

S0C4

Program error

• Hardware detected (Program Check)
• FLIH receives control and decides whether the program check is

an error (e.g. PIC 11 - page fault - is not always a program error)
• If the P.C. is considered an error, FLIH passes control to RTM
• Results in 0Cx ABENDs

• Software detected

10

• Software detected
• Either a z/OS component or a user program discover a problem

and decide to terminate abnormally (call ABEND macro)
• The call of ABEND macro is an entry to RTM
• Typically the ABEND code is in the form xNN

• NN - SVC hex number of the z/OS service detecting the
problem

• e.g. x13 is a group of ABENDs related to open processing

Recovery/Termination manager (RTM)

• Receives control early after the discovery of a
program error (or when a program ends normally)

• Passes control to appropriate recovery routine (if present)
• If recovery not successful and either of

• //SYSUDUMP, //SYSABEND, or //SYSMDUMP DD

11

• //SYSUDUMP, //SYSABEND, or //SYSMDUMP DD

present, requests documentation of the error by calling
z/OS dump services (SNAP macro)

• Handles the final termination of the program
• Closing any open datasets
• Freeing memory
• Releasing ENQs

Recovery routine

• Responsible for
• Fixing the error and giving the failing program another chance

(retry)
• Documenting the error, cleaning up resources, and continuing

with termination process (percolate)

12

with termination process (percolate)

• Two basic types
• ESPIE – to handle Program Checks with PIC 1-F hex

• ESTAE-like – to handle ABENDs
(Program Checks are special case)

Extended Specify Task Abnormal Exit
(ESTAE)

• Established through ESTAE macro
• At entry receives pointers to

• Parameter specified by the user at ESTAE macro call
• System Diagnostic Work Area (SDWA)

• Contains the ABEND information

13

• Contains the ABEND information
• May not be available, check if R0 equals 0C hex

• Communicates with RTM via SDWA
• Read information directly from SDWA

• SDWAABCC, SDWACRC, SDWAEC1, SDWAILC1, SDWAINC1,
SDWAGRSV, SDWAFLGS, SDWATRAN, SDWABEA, …

• Write information directly to SDWA
• SDWASR00 – SDWASR15, …

Extended Specify Task Abnormal Exit
(ESTAE), cont’d

• Communication with RTM via RTM, cont’d
• SETRP macro

• Whether to retry (RC=4) or percolate (RC=0)
• Specify the retry address (RETADDR=)
• Restore retry registers from SDWA (RETREGS=YES)

14

• Restore retry registers from SDWA (RETREGS=YES)
• … all options described in [3]

• SDWA 64 bit extension
• provided only when SDWALOC31=YES in ESTAE macro call

• Detailed usage in [1], Chapter named “Providing recovery”
• Not easy to digest at first time (following sample should help)

Translation Exception Address (TEA)

• Location 168-175 in Low Core
• Filled in when page or segment translation occurs

(PIC 10 and 11)
• Bits 0-51 contain address of the page we tried to access
• Bits 52-63 are unpredictable

15

• Bits 52-63 are unpredictable
• Provided in SDWA

• 32 bit portion in SDWATRAN
• Full 64 bit in SDWA 64 bit extension (SDWATRNE)

Breaking Event Address Register (BEAR)

• 8 bytes long CPU register
• When a branch type instruction is executed, it’s address is

placed in the breaking-event-address register
• When a program interruption occurs, the current contents

of the BEAR is placed into Low Core location 110-118

16

of the BEAR is placed into Low Core location 110-118
• Provided in 64 bit SDWA extension (SDWABEA)
• Priceless for debugging

“wild branches”

Very Simple Example

1. Establish an ESTAE
2. Cause a Program Check by branching to FFFFFFFEhex

3. Recovery routine gets control and sets retry registers:
• Clear R0 Translation Exception Address to R3
• ABEND code into R1 Breaking Event Address to R4

17

• ABEND code into R1 Breaking Event Address to R4
• Reason code into R2

4. Retry
5. Disable the ESTAE
6. Cause an S0C1 ABEND by DC H’0’

• ESTAE no longer defined -> proceed with termination
• Register content displayed in the ‘diagnostic dump’ in file 1

Very Simple Sample, cont’d

COPY ASMMSP ENABLE STRUCTURED PROGRAMMING MACROS

SYSSTATE ARCHLVL=2 USE Z/ARCHITECTURE INSTRUCTIONS

ASMMREL ON USE RELATIVE BRANCHING

SAUTH CSECT

SAUTH AMODE 31 ABOVE THE LINE TO GET BEAR

SAUTH RMODE ANY

STM 14,12,12(13)

18

STM 14,12,12(13)

LARL 8,RECOVERY RECOVERY ROUTINE ADDRES

LARL 9,RETRY RECOVERY ROUTINE PARAMETER ADDRESS

ESTAE (8),CT,PARAM=(9),SDWALOC31=YES ESTABLISH ESTAE

LHI 15,-2 MAX EVEN 31 BIT ADDRESS -> S0C4-11 X

SEE BOTH TEA AND BEAR

BR 15 BRANCH TO HELL (PSW USELESS)

RETRY DS 0H

ESTAE 0 REMOVE THE ESTAE

DC H'0' INVALID OPERATION CODE -> S0C1-1

Very Simple Sample, cont’d

RECOVERY DS 0H

IF CHI,0,EQ,X'0C' Q.SDWA MISSING

* WTO 'SDWA MISSING' may change registers 0,1,14,15

SR 15,15 PERCOLATE

BR 14 RETURN TO RTM=PERCOLATE BY DEFAULT

ENDIF

STM 14,12,12(13) SAVE REGISTERS

19

STM 14,12,12(13) SAVE REGISTERS

LR 3,1 SAVE POINTER TO SDWA

USING SDWA,3 MAP SYSTEM DIAGNOSTIC SAVE AREA

... see next slide and include here

SETRP RC=4,RETADDR=(2),WKAREA=(3),RETREGS=YES

DROP 3

LM 14,12,12(13) LOAD REGISTERS

BR 14 RETURN TO RTM

-- -------------------

IHASDWA GENERATE SDWA DSECT

END SAUTH END ASSEMBLY

Very Simple Sample, cont’d

SR 0,0

ST 0,SDWASR00

MVC SDWASR01,SDWAABCC SAVE ABEND CODE IN R1

MVC SDWASR03,SDWATRAN SAVE TRANSLATION EXCEPTION ADDRESS

L 4,SDWAXPAD ADDRESS OF SDWA EXTENSION POINTERS

USING SDWAPTRS,4

20

USING SDWAPTRS,4

L 5,SDWASRVP RECORDABLE EXTENSION

USING SDWARC1,5

MVC SDWASR02,SDWACRC SAVE REASON CODE

DROP 5

L 6,SDWAXEME 64-BIT EXTENSION

USING SDWARC4,6

MVC SDWASR04,SDWABEA+4 SAVE BREAKING EVENT ADDRESS-31

DROP 6

DROP 4

21

22

Some more SDWA fields of interest

• SDWAXPAD – SDWA extension pointers (SDWAPTRS dsect)
• SDWASRVP – address of recordable extension (SDWARC1 dsect)
• SDWAXEME – address of 64-bit extension (SDWARC4 dsect)

• SDWAERRB,on,SDWAPERC– a previous ESTAE percolated

23

• SDWAERRB,on,SDWAPERC– a previous ESTAE percolated
• When your ESTAE gets control make sure whether it is the first one or

whether some other ESTAE already percolated !!!

Make sure to

• Establish your recovery routine when your routine gets
control from system, exit, or other app.

• Remove the recovery routine before returning to the caller

• Learn more

24

• Learn more
• Read “Providing recovery”, especially section “Special

considerations” in [1]
• Learn about TCB and RB chains and how they relate to recovery

routines

• Be careful when dealing with Linkage Stack, see IEALSQRY
macro

Multiple ESTAEs

• When your program establishes multiple ESTAEs
• And an ABEND occurs

1. The most recently defined ESTAE routine gets control
2. When it decides to percolate, previously dedined ESTAE

gets control

25

gets control
3. Ditto
4. ...

• ESTAE is represented by a STAE Control Block (SCB)
• SCBs form a stack (LIFO) with the newest SCB on the top
• When an ESTAE percolates its SCB is removed from the

stack and control is passed to the next on the top

z/OS Dispatcher Control Blocks

26

z/OS Dispatcher Control Blocks

27

Other Recovery Routine Types

• ESTAI
• Subtask recovery
• Defined on ATTACH(X) macro with ESTAI= parameter

• Associated Recovery Routine (ARR)

28

• Associated Recovery Routine (ARR)
• Recovery for abends in PC routines

• Functional Recovery Routine (FRR)
• Recovery in SRB routines
• Defined through SETFRR macro

References

• [1] - MVS Programming Assembler Services Guide (SA22-7605)
• [2] - MVS Programming Assembler Services Reference (SA22-7606)
• [3] - MVS Data Areas
• [4] - MVS Control Blocks, Hank Murphy, McGraw Hill 1995
• [5] - Principles of Operation (SA22-7832)

29

• [5] - Principles of Operation (SA22-7832)

References, cont’d

• [JB] - Joachim von Buttlar, “System z Architecture”, [big, but worth
reading, skip the IBM propaganda at the beginning],
http://public.dhe.ibm.com/software/dw/university/systemz/SystemzArchi
tectureCourse.pdf

• [EJ] - Ed Jaffe, Structured Assembler Language Programming Using
HLASM,

30

HLASM,
ftp://ftp.phoenixsoftware.com/pub/demo/Structured_Assembler.pdf

Please do not forget to fill in the
evaluation forms.

31

evaluation forms.

Session #8017

z/OS control blocks

• Piece of storage that has a meaning to z/OS
• Described in IBM manual “MVS Data Areas, Vol1. – Vol6.

• Not very verbose, useful if you know what you are looking for
and are familiar z/OS (MVS) terminology

32

z/OS control blocks – PSA, CVT

• Prefix Save Area (PSA)
• Prefix Area contains several fields that have hard wired

addresses in the CPU for interrupt handling. The rest is used
by FLIH and various other components of z/OS

• In z/OS terminology Prefix Area is called Prefixed Save Area

33

• In z/OS terminology Prefix Area is called Prefixed Save Area
• Contains pointers to other control blocks

• Task Control Block (TCB) at offset 21C
• Address Space Control Block (ASCB) at offset 224
• Communication Vector Table (CVT) at offset 10

• Communication Vector Table (CVT)
• Anchor to most if not all z/OS control blocks!

z/OS control blocks – ASCB, TCB

• Address Space Control Block (ASCB)
• Represents single instance of virtual storage to z/OS (recall

MVS = Multiple Virtual Storage)
• Usually one ASCB per Job – XTCB

• Task Control Block (TCB)

34

• Task Control Block (TCB)
• Represents unit of work to z/OS (a task)
• Think of a “task” being a “thread” in PC/UNIX terminology
• It is an anchor to all resources z/OS allocated on behalf of the

task, when TCB is removed, all resources for the task are
deallocated

z/OS control blocks - PRB, SVRB

• Request Block (PRB, SVRB, IRB)
• While TCB represents a unit of work to z/OS, RB represents a

particular item we want z/OS to do on behalf of our task
• When we request a particular program to be run, Program

Request Block is created

35

Request Block is created
• When our program wants to use operating system services, it

issues a suitable SVC and a Service Request Block is created
• External interrupt may generate an asynchronous exit routine

to be run (e.g. IRB created for STIMER exit routine)
• The sequence of the Request Blocks is then called an RB

chain, it is chained of a TCB in a reverse order than it was
created

RB Chain

• TCB at offset 0 contains a
fullword pointer to the most
recently created RB

• Each RB points to the
previously created RB

36

previously created RB
• Last RB in the chain (the

first created) points back to
the TCB

TCB chain

• TCB created by ATTACH
macro, DETACH removes

• Program running under
a TCB can request further TCBs to be
created -> multi-threaded application

37

created -> multi-threaded application
• Here the mother task a)

attached three daughter tasks (subtasks)
b), c), and d) in the respective order

TCBLTC (+88) field points to the subtask the current TCB attached last
TCBOTC (+84) –not shown on picture- points to the parent task
TCBLTC (+80) – points to the task attached previously by parent task

How does RTM receive control?

• Through an ABEND macro call (SVC 13 - 0A0D)
• Terminates either current TCB or the job step TCB in the

current address space

• Through a CALLRTM macro call

38

• Through a CALLRTM macro call
• TYPE=ABTERM

• a “super” version of ABEND
• Allows to terminate a (TCB=) in current or other address space

• TYPE=MEMTERM
• Terminates an address space without giving control to task level

recovery routines and resource managers

Recovery/Termination macros

• CALLRTM
• TYPE=ABTERM is used by CANCEL operator command
• TYPE=MEMTERM is used by he FORCE oper. command
• You definitely want to stay away from it, supervisor state and

key 0 is required to do a CALLRTM

39

key 0 is required to do a CALLRTM

Recovery/Termination macros

• ABEND
• Generates an SVC 13 (0A0D)

• Also has a branch entry
• Allows to specify

• ABEND code (12 bits) - separate values for System/User ABEND

40

• ABEND code (12 bits) - separate values for System/User ABEND
• Reason code (RETURN=, 32 bits) - passed to recovery routines
• Dump options

• DUMP – request a dump
• DUMPOPT – parm. list for the SNAP macro

• Scope of the ABEND
• STEP – if specified, the job step TCB is terminated, if not

specified, the default is to terminate the current TCB

RTM1 and RTM2

• RTM is composed of two parts
• RTM1 aka “System Level RTM”
• RTM2 aka “Task Level RTM”

• RTM1
• Entered via CALLRTM (e.g. from FLIH for an erroneous P.C.)

41

• Entered via CALLRTM (e.g. from FLIH for an erroneous P.C.)
• Runs under the environment of the failing program
• ESPIE registers with RTM1 – low overhead recovery routine

• RTM2
• Entered via ABEND macro call either from RTM1 or directly
• Runs as an z/OS subroutine (RB created – 0A0D)

• ESTAE registers with RTM2 (another RB created when called)

ESTAE macro

• Assume you are writing your first ESTAE routine for your
very simple program to recover from a B37 system ABEND

• You will use
ESTAE EXIT_ADDR,CT,PARAM=PARM_LIST

42

ESTAE EXIT_ADDR,CT,PARAM=PARM_LIST

• EXIT_ADDR– address of the recovery routine
• PARM_LIST - parameter list passed to the recovery routine

when it is invoked by RTM
• CT – create as opposed to OV- override an existing ESTAE

Virtual Storage

• Virtual storage
• Introduced in S/370 in early 1970’s
• Each “application” (address space) can use the full range of

addresses available on the architecture independently of all
other applications

43

other applications
• Implemented in hardware via Dynamic Address Translation

• VIRTUAL ADDRESSES translated into REAL ADDRESSES

z/Architecture Virtual Storage

Virtual
address space 1

Virtual
address space 2

Real address
space

44

z/Architecture Virtual Storage

Virtual
address space 1

Virtual
address space 2

Real address
space

45

z/Architecture Virtual, Real, Absolute

• How to handle this with multiple CPUs?

• Prefix register
• 64 bits, bits 0-32 are always 0
• Used for assigning a range of real addresses 0-1FFF to a

46

• Used for assigning a range of real addresses 0-1FFF to a
different block in absolute storage for each CPU

• The mechanism is called Prefixing, the storage Prefix Area

z/Architecture Prefixing

Real Address
CPU 1

Real Address
CPU 2

Absolute
Address

47

z/Architecture Prefixing

Real Address
CPU 1

Absolute
Address

P
re

fix
 r

eg
is

te
r

va
lu

e,
 C

P
U

 1

Say Prefix register value
in CPU1 is 6000, then

• Real Addresses 1-1FFF
are translated to
Absolute Addresses

48

P
re

fix
 r

eg
is

te
r

va
lu

e,
 C

P
U

 1

Absolute Addresses
6000-7FFF

• Real Addresses
6000-7FFF are
translated to Absolute
Addresses 1-1FFF

z/Architecture Prefixing

Real Address
CPU 1

Real Address
CPU 2

Absolute
Address

P
re

fix
 r

eg
is

te
r

va
lu

e,
 C

P
U

 1

P
re

fix
 r

eg
is

te
r

va
lu

e,
 C

P
U

 2

49

P
re

fix
 r

eg
is

te
r

va
lu

e,
 C

P
U

 1

P
re

fix
 r

eg
is

te
r

va
lu

e,
 C

P
U

 2

• 16 General (Purpose) Registers (GPR 0 – 15)
• 64 bits numbered 0 (MSB) – 63 (LSB)
• Integer arithmetic
• Address generation/calculation

General Purpose Registers

50

0 z/Arch 32 z/Arch 63
[0] ESA/390 [31]

z/Architecture Program Status Word

51

ESA/390 Program Status Word

• So far z/OS doesn’t support execution of instructions above
the 2GB bar (no room in current control blocks to save all 8
bytes of the instruction address upon an interrupt)

• Usually we still deal with the ESA/390 style PSW in dumps
and within various z/OS control blocks

52

and within various z/OS control blocks

Types of Instruction Ending

• Completion
• Successful completion or partial completion (for interruptible

instructions at a unit of work boundary – CC=3)
• PSW points to the next sequential instruction

• Suppression

53

• Suppression
• As if the instruction just executed was a no-operation (NOP)
• contents of any result fields, including condition code are not

changed
• PSW points to next sequential instruction

Types of Instruction Ending, cont’d

• Nullification
• Same as Suppression but
• PSW points to the instruction just executed

• Termination1)

• causes the contents of any fields due to be changed by the

54

• causes the contents of any fields due to be changed by the
instruction to be unpredictable (some may change, other not)

• The operation may replace all, part, or none of the contents of
the designated result fields and may change the condition
code

• PSW points to the next sequential instruction

1) For detailed description see SA22-7832-07, Chapter 5, Type Of Instruction Ending

Termination

• Releasing all resources acquired by the task being
terminated

• RTM calls Resource Managers to do the actual cleanup
• Closing any open datasets
• Freeing memory

55

• Freeing memory
• Releasing ENQs
• …

• Performed for both normal and abnormal program end

