
1

Hands-on Lab: Optional Lab #1
Building and using ACLs (Access Control Lists) for the non-SDBM data.

Background:
The z/OS TDS server can be very flexible in how it protects access to its data. The data in this discussion is the

LDAP data that is stored in the TDBM (DB2) and LDBM (USS file) backend stores. The RACF (SDBM) data

that is accessed via the z/OS TDS server is protect by RACF controls. Only users with the RACF authority can

access data via the SDBM. Therefore, ACLs are not used or needed for the SDBM data. But ACLs are needed to

protect the data that is stored in the TDBM and LDBM backend stores. The z/OS TDS server comes set up with a

default ACL and this propagated down to all the entries as the z/OS TDS server is configured. Once the z/OS

TDS server is configured and ready for operations, the ACLs can be set up to meet the demands of the security

policy and applications. This exercise will demonstrate how ACLs can use displayed, added, and modified to the

z/OS TDS server. It will also show how ACLs can be propagated to lower entries within the directory tree

structure or overridden if needed. And lastly, we will demonstrate how special z/OS features, such as RACF and

pseudo-DNs can be used to add flexibility to the protection of the TDBM and/or LDBM data.

Below is a picture of a sample of ACLs that might be set up for the z/OS TDS server.

2

Exercise Instructions:

Phase 1 - Verify that your z/OS TDS server is running correctly (you can bypass

this phase if you have just completed the DSCONFIG lab):

1. Logon to the MVS system with the information provided by the lab instructor(s).

2. Get into SDSF in DA option. Check to see if your z/OS TDS server is running. Your z/OS TDS server’s proc

(STC) name will be provided by the lab instructor.

3. In OMVS, check to be sure that there is a subdirectory in your home directory called tdslab/tdsacl. This

contains several Unix scripts that execute LDAP commands to set up your ACLs and to test that they are correct.

To check if this subdirectory exist (and to place yourself in the subdirectory), issue the following command from

you home directory (your home directory is /sharelab/sharyxx – where y is your room letter and xx is your userid

number):

cd tdslab/tdsacl

4. Edit the file called tdbmivp by entering the following command: oedit tdbmivp

5. Change ‘####’ to your unsecured port number. Save and exit the file by pressing the PF3 key.

6. Run the tdbmivp file. This will display data from the TDBM (the DB2 database).

7. Now we want to repeat the last 3 steps for the SDBM. Edit the file called sdbmivp. Change the ‘??’ to your

userid number. Change ‘!’ to your room letter. Change ‘%%%%%%%%’ to your RACF password. Change

‘####’ to your unsecure port number. Exit and save the file. Run the sdbmivp file. This will display data from

the SDBM (the RACF database). If both of these commands run correctly, we know that your z/OS TDS server is

set up correctly and that we have connectivity to it.

Phase 2 - Check the default ACL that comes with the LDAP server:

8. Edit the listrootacl file. Change ‘####’ to your unsecured port number and save the file. This file will display

the initial default ACL that is currently protecting your LDAP Server. Run the listrootacl script file. Examine the

result that is display on your screen. Notice that cn=anybody (which is similar to the RACF UACC) can do

anything to normal and senitive data but can not even view critical data.

9. To demonstrate the differences between cn=anybody and an authenticate user edit the following scripts:

Change ‘####’ to your unsecured port number in the listunauth file. In this ldap request, we are doing an

ldapsearch without an authenticated user. Notice that we get the information about the cn=admin,o=sharedb2

user and that there is no userpassword displayed. The userpassword attribute is an example of critical data. Edit

the file: listauth. Change the ‘####’ to your unsecured port number, save the file, and then run it. In this request,

you are authenticating with a user that is authorized to critical data. Notice on the output from this request that the

administrator id has the authority to display all types of data including critical data - therefore you should see the

userpassword is now displayed for the cn=admin.o=sharedb2 user.

3

Phase 3 - Add a new ACL to the LDAP server (list the old ones, then add the

new ACLs):

10. Now edit the acllist file. Change the ‘####’ to your unsecured port number and save the file. This file will

return the ACL attributes of each entry under the root ‘o=sharedb2’. If you examine the ldapsearch command in

the file, you will notice that we have requested that all the ACL attributes be displayed. This is necessary because

if they are not explicitly requested they will not be returned by the ldapsearch command. Run the acllist file.

11. Now we are ready to start adding ACL information. In this step you will add an additional aclEntry value to

the ACL to allow another person or group to access the entry(s). Edit the aclinfo file. Change the ‘####’ to your

unsecured port number and save the file. Run the aclinfo file. This will display the current ACL values for an

entry (in this case, Mary Burnnet). Notice that current ACL lists the aclsource as o=sharedb2 and the

ownersource of default. This means that we are propagating the ACL from o=sharedb2 (the one we displayed in

the previous step) for this entry.

12. Now browse (no changes are required) the addaclentry.ldif file. Once we load this file into the LDAP Server,

we will add Judy Simms to the ACL for Mary Burnnet. Exit this file

13. Edit the addaclentry file. Change the ‘####’ to your unsecured port number and save the file. Then run the

addaclentry file. This will load the new ACL information that we reviewed in the previous step

(addaclentry.ldif). Now rerun the aclinfo file to display the new ACL information for Mary Burnnet. Note that 1

attribure has changed (aclsource) and a new aclentry has been added.

Phase 4 - Build and maintain Group definitions within the LDAP server:

14. Now we are going to define a group for the ACL. First browse the addgroup.ldif file. No changes are

required. This file will load a group definition into the LDAP directory and identify which users are members of

the group. Exit the file.

15. Edit the addgroup file. Change the ‘####’ to your unsecured port number and save the file. Then run the

addgroup file. This will load the addgroup.ldif data and then display the results for you. You now have a group

defined in your LDAP directory.

16. To change the members within a group definition, you use the ldapmodify command. Review the

delmem.ldif file (no changes are required in this file). Note that we are going to delete David Delbert from this

group. Exit this file and edit file delmem. Change all the ‘####’ to your unsecured port number and save the file.

Run the delmem file. This will delete the member and display the new results for you. Note that you have deleted

David Delbert from the group.

Phase 5 - Add our Group to the ACL:

17. Now we can add the group to our ACL. Edit the addaclgroup file. Change the ‘####’ to your unsecured port

number and save the file. Run the addaclgroup file. Then rerun the the aclinfo file to display our ACL for Mary

Burnnet.

18. We have now built a new ACL for the Mary Burnnet entry. What access does group1 have to the entry with

the dn of Mary Burnnet?

4

Hands-on Lab: Optional Lab #2
Setting up Native Authentication for the z/OS LDAP Server.

Background:
The z/OS TDS server can be set up to use data that is stored in a TDBM or LDBM backend store. It can also use RACF,

the z/OS security environment to bind (authenticate) users to the z/OS TDS Server. Sometimes it is an advantage to

combine these two functions. To use the security database (RACF) to store highly sensitive password information,

while using the DB2 backend store for the more flexible and non-security related data that users and applications need

to perform their daily business is a big advantage of the z/OS TDS server. This can be done very easily and in a fashion

that the applications and users are not impacted. In other words, all the changes and configuration is done within the

z/OS TDS server. This is called native authentication. Below is a picture that demonstrates the inner workings of

native authentication:

As depicted, the LDAP client performs an LDAP Bind with a ‘standard’ DN and the password. By ‘standard’ DN, this

means a DN that follows the X.500 or dc format for DN. The z/OS TDS server will find the entry with the requested

DN. The z/OS TDS server will check to see if this entry is within the scope of native authentication, if native

5

authentication has been configured. If this z/OS TDS server has been configured for native authentication and if this

entry has been set up to use native authentication, then the z/OS TDS server will find the associated RACF userid for

this entry and perform a SAF call to RACF to authenicate this user.

Exercise Instructions:

Phase 1 - Verify that your LDAP server is running correctly (you can

 bypass this phase if appropriate):

1. Logon to the MVS system with the information provided by the lab instructor(s).

2. Get into SDSF in DA option. Check to see if your z/OS TDS server is running. Your LDAP server’s STC name will

be provided by the lab instructor.

3. In OMVS, check to be sure that there is a subdirectory in your home directory called tdslab/tdsna. This contains

several Unix scripts that execute LDAP commands to setup and test your native authentication environment.

4. From OMVS, get into your tdslab/tdsna subdirectory by entering the following Unix command:

cd tdslab/tdsna

5. Edit the file called tdbmivp by entering the following command: oedit tdbmivp Change ‘####’ to your unsecured

port number and save the file by pressing the PF3 key.

6. Run the tdbmivp file. This will display data from the TDBM (the DB2 database). If this command gets an error

message, please notify your instructor(s).

7. Now we want to repeat the last 2 steps for the SDBM. Edit the file called sdbmivp. Change the ‘%%%%%%%%’ to

your RACF password. Change the ‘####’ to your unsecured port number. Change ‘!’ to your room letter, Change ‘??’

to your userid number. Save the file. Run the sdbmivp file. This will display data from the SDBM (the RACF

database). This has optional been set up for your LDAP Server - it is not a requirement for native authentication.

Phase 2 - Update your SLAPD conf file and use the new conf file:

8. We are going to set up your LDAP Server to authenticate a user defined in the TDBM with a RACF password. To

start this process, go to SDSF and stop your LDAP Server by entering the following command:

/p <yourLDAPServername>

9. Now the z/OS TDS server must be configured to support native authentication. In ISPF, edit the DSCONFIG

member of the <yourHLQ>.TDSTEST.CNTL dataset. Find first occurrence of ‘nativeAuth’. Scroll down to the

‘#nativeAuthSubtree All’ line. First delete the ‘#’ to uncomment the line. Change ‘All’ to ‘ “ou=Home Town,

o=sharedb2” ‘. Note the double quotes must be included. This indicates that you want to use native authentication for

only part of the z/OS TDS data instead of all the data – only the data whose DN ends with “ou=Home

Town,o=sharedb2”. Next scroll down the line with ‘#nativeUpdateAllow off’. Delete the ‘#’ and change the ‘off’ to

‘on’ This line indicates that you will allow the users to change their passwords if needed. Lastly scroll down several

more lines to the line with ‘#useNativeAuth off’. Delete the ‘#’ and change ‘off’ to ‘selected’. This indicates that you

want to use native authentication but only for selected entries. So the three updated lines in your z/OS TDS server’s

configuration file should look like:

6

nativeAuthSubtree "ou=Home Town, o=sharedb2"

nativeUpdateAllowed on

useNativeAuth selected

10. Go into SDSF and restart your LDAP Server by entering the following command:

/s <yourLDAPServername>

11. To check that the z/OS TDS server is running with native authentication support, under SDSF, go into the DA

option and select your z/OS TDS server. Find the first occurrence of ‘TDBM’. Look down the list of configuration

options for your TDBM backend. You should see that nativeAuthSubtree is set to your RDN, that

nativeAuthUpdateAllow is set to on, and that useNativeAuth is set to selected. If these are not set as you expected, then

you need to review your configuration file again.

Phase 3 - Build some users that use NativeAuth (that is, they use RACF

passwords) and some users that do not use NativeAuth (that is, they use

passwords stored in the TDBM):

12. Now we are ready to test the native authentication with some LDAP client commands. Go into OMVS and get into

your tdslab/tdsna subdirectory by entering the following command:

cd tdslab/tdsna

13. To test native authentication we need to set up the users’ environment. We are going to use four (4) users for our

testing environment. Edit the nasr1 file. Replace all the ‘####’ to your unsecured port number and save the file.

14. Run the nasr1 script. This command will search the z/OS TDS server for the current attributes of the 3 users that

we will be using to test native authentication. The output of this script will be placed in a file called user1.outlist. If

you look at this file you will see the DN, TELEPHONENUMBER, USERPASSWORD, TITLE, and POSTALCODE

for the following users.

• cn=Henry Nguyen, ou=Home Town, o=Share

• cn=Kyle Nguyen, ou=Home Town, o=Share

• cn=Wayne Nguyen, ou=Home Town, o=Share

Note that none of these users currently have a userPasswordd attribute.

15. Next we will add a userPassword to two of these users. These passwords are not RACF passwords but are

passwords stored in the TDBM. They will be used for testing purposes. Edit the naaddpass file. Replace all the ‘####’

to your unsecured port number and save the file.

16. Run the naaddpass script. This command will modify Henry Nguyen’s and Kyle Nguyen’s definition by adding a

userpassword. It will then search the z/OS TDS server for the new current attributes of the 3 users that we will be using

to test native authentication. The output of this script will be placed in a file called user2.outlist. Note that now Henry

Nguyen and Kyle Nguyen have a userpassword associated with them. Wayne Nguyen does not have a userpassword

attribute in the TDBM.

17. Next we will set Henry Nguyen and Wayne Nguyen to use native authentication. To do this, edit the namod1.ldif

file. Change all the ‘??’ to your userid number. Change all the ‘!’ to your room letter. Save this file and then edit the

namod1 file. Change all the ‘####’ to your unsecured port number. Save this file.

18. Now run the namod1 script. This command will modify Henry Nguyen’s and Wayne Nguyen’s definition by

adding a new objectclass to their definition called ibm-nativeAuthentication. This new objectclass allow the users to

7

have a new attribute in their definition. The new attribute is ibm-nativeId. This script has added both the objectclass

and attribute to these two user that are required for native authentication. The output of this script will be placed in a file

called user3.outlist. Note that now Henry Nguyen and Wayne Nguyen have an attribute called ibm-nativeId and your

RACF userid associated with it. Note that Wayne Nguyen does not have a userpassword attribute in the TDBM and

Kyle Nguyen does not have a ibm-nativeId.

So a quick review at this time - our test environment has three (3) users - Henry Nguyen, who has a userpassword of

‘tomorrow’ in the TDBM and who is also using native authentication - Kyle Nguyen, who has a userpassword of

‘yesterday’ in the TDBM and who is NOT using native authentication Wayne Nguyen who does NOT have a

userpassword in the TDBM but who is using native authetnication.

Phase 4 - Test our NativeAuth environment:

19. Now we are ready to test this environment. First edit the naivp1 file. Change all the ‘####’ to your unsecure port

number. Then save the file and run the naivp1 script. This should produce an authentication error message. The file is

doing an lapdsearch under the Henry Nguyen userid. To authentication Henry Hguyen we are using password,

‘tomorrow’ which is the password from the TDBM. But Henry Nguyen is set up to use native authentication, therefore

the authentication is done in RACF.

20. To correct this error, edit the naivp1 file again. Change the line that has the ‘-w’ parameter. This is the password

parameter. Change the password from ‘tomorrow’ to your RACF password (firstpw). Now save and rerun the file.

You should now see several items of data from your z/OS TDS server being displayed. This means that Henry Nguyen

was authenticated with the SHAREyxx userid and its associated RACF password.

21. Another example of native authentication is in naivp2. Edit the naivp2 file and change all the ‘####’ to your

unsecured port number. Also change the ‘%%%%%%%%’ parameter to your RACF password. Now save and run the

naivp2 file. When you run this ldapsearch, the z/OS TDS server will authenticate Wayne Nguyen with your RACF

userid and password - and then display the DNs and postal codes in your LDAP directory.

22. The last test of native authentication, is in the naivp3 file. Edit the naivp3 file and change all the ‘####’ to your

unsecured port number. Also change the ‘%%%%%%%%’ parameter to your RACF password (firstpw). Now save

and run the naivp3 file. You should get an authentication error message when you run the file. This is because you

tried to authenticate Kyle Nguyen with your RACF userid and password. Kyle Nguyen has not been configured to use

native authentication.

23. Therefore, to correct our error, edit the naivp3 file again and change the password parameter (that is, the -w

parameter) to ‘yesterday’. Save and rerun the naivp3 file. This will authenticate the Kyle Nguyen with the TDBM

userpassword and then display information about Kyle Nguyen.

24. At this point you have got your z/OS TDS server running with native authentication which allows non-RACF

userids to be authenticated with RACF passwords.

8

Hands-on Lab: Optional Lab #3
A lab that accesses the RACF general resources:

Background:

Exercise Instructions (Part 1):

Phase 1 -

Phase 2 –

Phase 3 –

Hands-on Lab: Optional Lab #4
A lab that uses the new CDBM in z/OS 1.11:

Background:

Exercise Instructions (Part 1):

Phase 1 -

Phase 2 –

Phase 3 -

Hands-on Lab: Optional Lab #5
A lab that uses the new password security policy in z/OS 1.11:

Background:

Exercise Instructions (Part 1):

Phase 1 -

Phase 2 –

Phase 3 -

