
Click here to type page title

Ken Irwin
IBM Corporation

August 5, 2010

Java Diagnosis for the z/OS System
Programmer

Java has many diagnostic data
sources

● Because problems may need multiple
diagnostic data types for resolution, it is up to
the Systems personnel to capture and collect
the various types of output.

● We'll talk about some features in Java6 that
can help you in this area. We'll also cover
some diagnostic options available on z.

2

Diagnostic Data Types

● Dumps
– Heapdumps : a dump of the java heap contents

● phd format (Portable Heap Dumps)
● txt format (Classic)
● Common across all platforms
● Triggered for OOM errors or programmatically

– Javacores: a dump of the java virtual machine
● Txt format
● Triggered via exception or programmatically
● Common across all platforms

3

Diagnostic Data Types (cont'd)

– Tdumps (Transaction Dumps)
● Unique to z/OS
● IPCS compatible format
● Similar to a console dump of the Address Space
● Includes typical zOS dump contents

– Snap trc files
● Technically is a trace file containing

a dump of internal jvm trace data
● Must be formatted to display its contents
● Common (mostly) content across all platforms

4

Trace Data Types

● Garbage Collection Trace
– Common across all platforms
– Enabled with -verbosegc (or -verbose:gc)

● Method Trace
– Captures method entry and exit
– Potential performance impacts

● Class-loader Trace
– Captures class loader searching and application

class loading data
5

How can I investigate this
diagnostic data together ?

● ISA (IBM Support Assistant)
– See John Hutchinson's Boston SHARE

presentation titled
”Introduction to using IBM Support Assistant for
WebSphere Application Server for z/OS”

● ISA provides the user with multiple tooling
options for analyzing diagnostic data captured
from the JVM (Java Virtual Machine)

6

What can I do on the z platform?

● While ISA does provide a great deal of
diagnostic and analytic capability, it isn't z-
based.

● Data must be transferred to ISA for analysis,
most likely your workstation. Diagnostic data
may be the javacore, the heapdump,
verbosegc traces, etc.

● Consider using -Xdiagnosticscollector to
simplify data collection

7

How can -Xdiagnosticscollector
help me?

● The Diagnostics Collector runs just after the
Java runtime produces diagnostic files

● It will search for:
– System dumps
– Java dumps
– Heap dumps
– Java trace dumps
– Verbose GC logs matching the problem event

timestamp
8

How can -Xdiagnosticscollector
help me?

● Optionally, if a system dump (tdump) is found,
it can execute jextract to post-process the
dump and capture extra information required
to analyze the system dump using jdmpview.

more on jextract and jdmpview later

9

How can -Xdiagnosticscollector
help me? (cont'd)

● Pros:
● Provides a one-step collection action, with additional

actions optional, to collect all diagnostic data possible.
● Creates a single .zip file containing all the diagnostic

data.

● Cons:
● Requires processing time to perform the collection
● Requires additional space to contain the resulting .zip

10

How can -Xdiagnosticscollector
help me? (cont'd)

● PRO or CON? A .zip file will be created for
every problem event
– Example: multiple OutOfMemory errors occur but

the application continues to run. Each OOM will
create a .zip file

11

Diagnostics collector zip file format

● General zipfile name format is:

java.<event>.<YYMMDD.hhmmss.pid>.zip
 where event describes what triggered the
diagnostics collector.

● Example:
java.outofmemoryerror.
20100803.171454.83952567.zip

12

What analysis can I do with a
TDump?

● Tdumps can be analyzed using IPCS, much
like any z/OS address space dump.

● Commands that might help
– ip verbx ledata 'nthreads(*),asid(xxxx)'

where xxxx is the asid in Hex
● Formats the C stacks (DSAs) for threads in the asid

– ip verbx ledata 'asid(xxxx),tcb(tttttt),ceedump'
● Formats the C stack for a single TCB in the ASID

 13

What analysis can I do with a
TDump?

● The system trace table may help with
diagnosing a looping/hanging/long running
application threads
– ip systrace asid(x'XXXX') time(gmt)
– ip systrace asid(x'XXXX') time(local)

● IPCS is beneficial if the applications use JNI
or are primarily written in Native code, but not
Java

 14

So what do I need to use to look at
Java data in a TDump?

● jextract and jdmpview
● jextract

– Platform-specific utility to extract and package
(compress) data from the dump generated by the
operating system

– jextract MUST be executed using the EXACT
same java version as was in use by the JVM within
the dump. Otherwise, jextract will fail with
”This version of jextract is incompatible with this
dump.”

15

So what do I need to use to look at
Java data in a TDump?

● jextract is executed from the OMVS
command line. The dump passed to the
command can either be in the HFS or it may
be the actual zOS dump dataset name.

● The command is :
jextract <dumpname>

● The output will be a zip file named
<dumpname>.zip, containing a copy of the
dump, the .xml , and the .dat file

16

So what do I need to use to look at
Java data in a TDump?

● The .zip file created by jextract will be used
as input to jdmpview

● The command is :
jdmpview -zip <dumpname>.zip

● GOOD NEWS! jdumpview does NOT require
using the same jvm version as jextract.
– Why? Because the .xml file in the zip is used for

accessing the data within the dump

17

What commands should I use?

● start with “help” to display the command list
● info proc

– Displays threads, arguments, envars, shared
modules

● info thread *
– Displays information about Java and Native threads

● info thread <thread address>
– Displays information about a specific thread

18

Suggested Reading:

Java 6 Diagnostics Guide
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

QUESTIONS?????????????

 19

