

A Practical Guide to Storage Tiering for DB2 for z/OS

Paul Pendle EMC Corporation

08/02/2010 1:30 PM-2:30 PM

Agenda

- Why should you care about disk?
 - ... and how we got here
- Disk technologies
 - A brief introduction to Flash Drives
- Defining Storage Tiers
- Static tiering
- Integration with SMS/HSM
- Dynamic tiering
- Thin provisioning
- Sub-Volume tiering
- Futures ...

Why Should You Care About Disk?

- Processors are getting more and more powerful
 - Faster, more efficient and multi-way
 - More memory (up to 1.5TB)
- Channels are getting faster
 - Bus & tag
 - ESCON
 - FICON
 - zHPF, 8Gbit FICON
- Hard Drives
 - Bigger and bigger
 - But not much faster

Why Should You Care (contd.)

The spectrum of choices is broader than ever before:

- Different Capacities
 - From 73GB to 2TB
- Different RAID protections
 - RAID 1
 - RAID 1/0
 - RAID 5
 - RAID 6
- Different technologies
 - FC
 - SATA
- SSD
 SHARE in Boston
 Copyright © 2010 EMC Corporation

{|||

Solid State Disk

- They are good for every kind of workload
- They are expensive
- They are not just a large thumb drive ...

Solid State Disk (contd.)

- Consumer Flash Technology
 - Typically used for write once, read many applications
 - Optimized for read performance, generally poor write performance
 - Lower cell endurance
 - Examples: memory sticks, mp3 players
- Solid State Drives (Flash Drives)
 - Dual ported drive interface
 - Higher transfer speeds
 - Higher cell endurance
 - Wear leveling, spare cells
 - Current life expectancy greater than 8 years
 - RAID protection

Solid State Disk – The Details

- Low power usage
- Best for small page I/O (4K, 8K, 16K, 32K)
- Can do 5000 IOPS (small page)
- Best for random read miss
 - Workloads with low storage cache hit rate
- Not fantastic for writes
- Not fantastic for sequential
 - Better than HDD though
- You can't put all your data on SSD

The Juggling Struggle

- Performance
- Availability
- Ecomonics
- Manageability

"The right data in the right place at the right time"

Tiered Storage - ILM

{|||

The Disk Performance Ski Slope

Volume activity histogram sorted

 $\left\{ \prod \right\}$

Tiering Using Physical Disk Metrics

SATA 7.2K

 $\left\{ \prod \right\}$

Tiering Using Protection Schemes

 $\left\{ \prod \right\}$

SMS Static Tiering (Contd.)

- Mixed storage capabilities in a Storage Group?
 - DFSMS maintains a table of device performance metrics
 - DIRECT MSR = 1 (for SSD)
 - DIRECT MSR = 10 (for HDD)
 - z/OS 1.10 needs APAR OA25559 to get SSD settings
 - z/OS 1.11 includes SSD settings
- Deficiencies of the table ...*
 - MOD27, MOD54, EAV, ...
 - No disk geometry info
 - No understanding of RAID overhead
 - No empirical evaluation

Copyright © 2010 EMC Corporation

SHARE in Boston

All I/Os Are Not Equal

- Writes go to storage cache
 - Are (mostly) asynchronous from the DB2 buffer pool
 - Active logs you could use the space for other things
- Sequential reads
 - Cause DB2 prefetch
 - Cause Array prefetch
 - Reads are asynchronous after initial few I/Os
 - Spinning disks stream faster than SSD

The Key Metric – Miss Density

- The best I/O is one serviced from bufferpool/storage cache
- Synchronous reads hurt response time
 - Especially when a "miss" in storage cache
- How to determine the best tablespaces to place on SSD?
 - The data sets with the highest miss rate may not be the best candidates!
- SMF 42 subtype 6 records look for high DISC
 - Usually high DISC=Storage Cache miss
- How to measure miss density
 - The number of misses per GB of allocated storage

Static Management

Data Movement Tools - Manual

DB2 tools

 $\{ \| \}$

- Reorg utility
- Partitioning data partial solution
- z/OS tools
 - IBM Sotftek zDMF
 - IBM Softek TDMF
 - Innovation FDR PAS
 - EMC z/OS MIGRATOR
 - EMC V-LUN
 - HITACHI AUTOLUN

Data Movement Tools Considerations

- Ease of use / manageability
- Transparency
 - Can you do it while the table space is being used
 - Do you have to close/open it to complete the process
- Volume-based or dataset-based
- Host-based or array-based
- Reliability and risk

Dynamic Tiering Tools - Automated

- IBM Easy Tier
 - Released April 2010
- EMC FAST
 - Volume only at this time
- Hitachi Tiered Storage Manager

Thin Provisioning

- Virtualized storage layer
 - Host is agnostic to the underlying storage
 - Wide striping across array
 - Wide striping across storage tiers
- Provides economies against over-allocation
- Storage allocated on demand
 - DB2 V8 2 cylinders on table space creation
 - DB2 V9 16 cylinders on tablespace creation

TABLE SPACE

{|||

SHARE in Boston

Sub-volume tiering considerations

- Can only be executed inside the storage
- What size chunk?
 - Page? CI? Track? CA? Other?
- Automation in array
 - Based on policy
 - Chunk-based must be automatic!
- How to manage chargeback?
 - Gym membership approach

What is needed? Make demands!

- Policy based movement between tiers
 - Set it and forget it!
- Host hinting
 - Predict instead of react
- Exception processing
 - Never move; always move; other?
- Heuristic mechanisms
- Interface to return once-used storage
- Transparency (to application and operations)
- Billing integration

Takeaways/Takeouts

- Storage tiering is possible with DB2 now
 - Automated tiering is coming
- A virtualization layer is needed
- Storage arrays must control it
- Chunk-based movement is required

A Practical Guide to Storage Tiering for DB2 for z/OS --- THE END

Paul Pendle EMC Corporation Pendle_paul@emc.com

08/02/2010

