
IBM Linux and Technology Center

© 2010 IBM Corporation

Linux Program Execution – How does it work?

Martin Schwidefsky
IBM Lab Böblingen, Germany
August 3rd, 2010 – Session 7911

IBM Linux and Technology Center

© 2010 IBM Corporation2

Trademarks & Disclaimer
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM
Trademarks, see www.ibm.com/legal/copytrade.shtml:

IBM, the IBM logo, System p, System Storage, System x , and System z are trademarks of IBM Corporation in the United States and/or other countries. For a list of
additional IBM trademarks, please see http://ibm.com/legal/copytrade.shtml.

The following are trademarks or registered trademarks of other companies: Java and all Java based trademarks and logos are trademarks of Sun Microsystems,
Inc., in the United States and other countries or both Microsoft, Windows,Windows NT and the Windows logo are registered trademarks of Microsoft Corporation in
the United States, other countries, or both. Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep,
Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries or both. Linux is a trademark of Linus Torvalds in the United States,
other countries, or both. Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc. InfiniBand is a trademark of the InfiniBand Trade
Association.
Other company, product, or service names may be trademarks or service marks of others.

NOTES: Linux penguin image courtesy of Larry Ewing (lewing@isc.tamu.edu) and The GIMP

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many
factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on
development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Users of this document should verify
the applicable data for their specific environment. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our
warranty terms apply.
Information is provided “AS IS” without warranty of any kind. All customer examples cited or described in this presentation are presented as illustrations of the
manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics
will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the
information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products
and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Prices are suggested US list prices and are subject to change without notice. Starting price may not include a hard drive, operating system or other features.
Contact your IBM representative or Business Partner for the most current pricing in your geography. Any proposed use of claims in this presentation outside of the
United States must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication at any

IBM Linux and Technology Center

© 2010 IBM Corporation3

Example program

 The goal of this presentation is to give an idea what happens in Linux
to execute this simple “Hello World” program:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *p = malloc(1024);
printf("Hello world %p\n", p);
return 0;

}

IBM Linux and Technology Center

© 2010 IBM Corporation4

Unix design points

 Portable, multi-tasking and multi-user operating system

 Plain text for storing data

 “Everything is a stream of bytes”

 A hierarchical file system
– Arbitrarily nested subdirectories
– Devices are represented as special files

 Use of small programs that are connected through a command
line interpreter and pipes

 Heavy use of the C programming language

 Division between user-space and kernel-space

 POSIX standard
– Portable Operating System Interface [for Unix]

IBM Linux and Technology Center

© 2010 IBM Corporation5

POSIX.1 – Core Services

 Process Creation and Control
– Executable machine code (kernel threads vs. user space threads)
– Virtual memory with code, data, a call stack
– Resource descriptors allocated to the process
– Security attributes: process owner, permissions
– Processor state (context)

 Signals, Timers
– Notifications sent to a process via an asynchronous function call
– Timing events delivered as signals

 File and Directory Operations

 Pipes

 .. and some more

IBM Linux and Technology Center

© 2010 IBM Corporation6

Simplistic system layout

Kernel

ke
rn

el
 /

 u
se

r
sp

ac
e

ba
r r

ie
r

libc.sold.so

main executable

C-runtime calls (basr, brasl)

system calls (svc only, no program-calls)

supervi sor
 state

problem
 state

user address space, one for each process (default home)

kernel address space (default primary)

IBM Linux and Technology Center

© 2010 IBM Corporation7

Kernel access to user data (uaccess)

 Strict separation between the kernel and user address space
– Kernel address space uses a three level page table, max 4TB

– User address space uses two, three or four level page table, max 8PT

 No kernel data structures visible in user space
– In particular the lowcore pages are not mapped to user space

– Usually there is nothing mapped at address zero

 The uaccess functions provide access to user data for kernel code

copy to user copy from user futex

kernel in primary
machine < z9

mvcs mvcp sacf to secondary +
compare-and-swap

kernel in primary
machine >= z9

mvcos mvcos sacf to secondary +
compare-and-swap

kernel in home
machine < z9

page table walk page table walk page table walk +
compare-and-swap

kernel in home
machine >= z9

mvcos mvcos page table walk +
compare-and-swap

IBM Linux and Technology Center

© 2010 IBM Corporation8

User space context & kernel data structures

Register context

Resource descriptors

16 general
purpose
registers

16 floating
point

registers

program
status
word

16 access
registers

floating
point control

register

User space process Kernel data structures

Per user context
kernel stack

struct pt_regs

Per user context
task struct

struct
 thread_struct

void *stack;saved at kernel entry

file
handle

file
handle

file
handle

file
handle

..

Per process
file descriptor table

0: struct file *
1: struct file *

...
n: struct file *

struct files_struct
 *files;

saved at process switch

index

struct
file struct

file
struct

file

Memory areas

socket
handle

msg q.
handle

.. ..

struct mm_struct
 *mm;

Per mm_struct virtual memory area list

vma vma vma vma..
code data stack shm ..

memory
locations

mm_struct

IBM Linux and Technology Center

© 2010 IBM Corporation9

Frequently used system calls

 Working with files

– open, dup, read, write, lseek, close, stat, creat, truncate, ..

 Filesystem operations

– link, unlink, rename, mkdir, rmdir, ..

 Virtual memory operations

– brk, mmap, munmap, mprotect, mlock, munlock

 Process create, execution, termination

– fork, clone, execve, exit, pause, wait4, pipe, chdir, ..

 Signals

– kill, signal, sigaction, sigprocmask, sigreturn, ..

 .. and many more, currently there are 332 system calls for Linux
on System z, some of them multiplexer e.g. ipc

IBM Linux and Technology Center

© 2010 IBM Corporation10

strace of statically linked “Hello World”
> cat hello.c
#include <stdio.h>
#include <stdlib.h>
int main(void)
{

char *p = malloc(1024);
printf("Hello world %p\n", p);
return 0;

}

> gcc -static -o hello -O2 hello.c

> strace -v ./hello
execve("./hello", ["./hello"], ["HOSTNAME=t6360015", "TERM=xterm",
 "SHELL=/bin/bash", "HISTSIZE=1000",
 "SSH_CLIENT=9.152.212.37 56750 22"...,
 "SSH_TTY=/dev/pts/0", "USER=root", "USERNAME=root",
 "PATH=/sbin:/bin:/usr/sbin:/bin"..., "PWD=/root", "SHLVL=1",
 "HOME=/root", "BASH_ENV=/root/.bashrc", "LOGNAME=root",
 "_=/usr/bin/strace"]) = 0
brk(0) = 0x8009d000
brk(0x8009df60) = 0x8009df60
brk(0x800bef60) = 0x800bef60
brk(0x800bf000) = 0x800bf000
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
 = 0x20000000000
write(1, "Hello world 0x8009e5e0\n"..., 23) = 23
exit_group(0) = ?

IBM Linux and Technology Center

© 2010 IBM Corporation11

Binary formats

 Linux knows about different binary formats
– aout: the oldest executable format for Linux, does not exists for System z

– elf: Executable and Linkage Format, the standard executable format

– em86: wrapper for /usr/bin/em86 to run x86 ELF binaries on Alpha machines

– flat: uClinux FLAT format binaries

– misc: used for wrapper-driven binary formats, e.g. interpreted languages like
Java, Python, .net, etc.

– som: HP/UX binary executable format

 Execve loads the first block of the executable and calls the available
binary format handlers until one is found which can execute the binary

IBM Linux and Technology Center

© 2010 IBM Corporation12

ELF ABI

 Executable and Linkage Format Application Binary Interface (ELF ABI)

– Data representation: byte ordering, fundamental types, alignment

– Function calling: register usage, stack frame layout, parameter passing,

– OS interface: virtual address space, initial registers, environment,
arguments, auxiliary vector

– Object file format: header, sections, relocations, global offset table,
procedure link table

 ELF binary format handler checks for “.ELF” in the first block
00000000: 7f45 4c46 0202 0100 0000 0000 0000 0000 .ELF............
00000010: 0002 0016 0000 0001 0000 0000 8000 2bfc +.
00000020: 0000 0000 0000 0040 0000 0000 0001 7ed0 @......~.
00000030: 0000 0000 0040 0038 0009 0040 001d 001c @.8...@....
00000040: 0000 0006 0000 0005 0000 0000 0000 0040 @

 System z supplement to the ELF ABI
www.linuxfoundation.org/spec/ELF/zSeries/lzsabi0_s390.html

IBM Linux and Technology Center

© 2010 IBM Corporation13

ELF ABI: registers
Register name Usage Call effect

%r0,%r1 General purpose Volatile

%r2 Parameter passing and return value Volatile

%r3, %r4, %r5 Parameter passing Volatile

%r6 Parameter passing Volatile

%r7 - %r11 Local variables Saved

%r12 Local variable, GOT pointer Saved

%r13 Local variable, literal pool pointer Saved

%r14 Return address Volatile

%r15 Stack pointer Saved

%f0, %f2, %f4, %f6 Parameter passing and return values Volatile

%f1, %r3, %f5, %f7 General purpose Saved

%f8 - %f15 General purpose Volatile

%a0 - %a1 Reserved for system use (TLS pointer) Reserved

%a2 - %a15 General purpose Volatile

IBM Linux and Technology Center

© 2010 IBM Corporation14

ELF ABI: entries in the auxiliary vector
AT_EXECFD/AT_EXECFN File descriptor and filename of the executable

AT_PHDR/AT_PHNUM Program headers address and size for program

AT_PAGESZ System page size

AT_BASE Base address of interpreter (dynamic linking)

AT_FLAGS Flags

AT_ENTRY Entry point of the program

AT_UID/AT_EUID Real and effective user id

AT_GID/AT_EGID Real and effective group id

AT_PLATFORM String identifying platform

AT_HWCAP Machine dependent hints about processor capabilities

AT_FPUCW Used FPU control word

.. and some more

IBM Linux and Technology Center

© 2010 IBM Corporation15

ELF ABI: System z standard virtual memory layout
0x40000000000

0x0

0x80000000

0x20000000000

 strings
 auxiliary vector NULL

environment pointers NULL
argument pointersargc

 stack

Main executable

Shared library

Shared library

mmap area

heap

 Main executable usually at 2GB
– Standard linker script uses 2GB as starting point

 Heap is located right after the main executable

 Libraries usually at 2TB
– Prelink pre-allocates libraries and binaries

 Stack allocated near the end of the address space
– Stack grows down

 Argument count: the number of argument pointers

 Argument pointers refer to a set of positional
strings passed to the application. Example:
”cp” “file-a” “file-b”

 Environment pointers refer to a set of dynamic
named string values, each process has its own
private set. Example:
”PWD=/home/user”

 The auxiliary vector conveys information from the
OS to the application.

%r15

IBM Linux and Technology Center

© 2010 IBM Corporation16

Memory management data structures

 Virtual address space (struct mm_struct)
– Describes the virtual address space of a process

– Contains the head of a list of memory areas

– Contains counters and other information about the virtual address space

 Memory areas (struct vm_area_struct)
– Defines an area in the mm_struct with start and end address

– Either a “window” into a file starting at an offset or an anonymous area (or both)

 Anonymous memory area (struct anon_vma)
– The mapping of an anonymous page points to a struct anon_vma

– The anon_vma contains the head of a list of related memory areas

– vmas on the list will be related by forking and vma splitting / merging

 Page descriptor (struct page)
– Each physical page in the system has a struct page associated with it

– Used to keep track of whatever the page is used for

IBM Linux and Technology Center

© 2010 IBM Corporation17

Virtual memory areas kernel data structures

struct task_struct struct mm_struct

struct vm_area_struct

mmap

struct vm_area_struct

vm_mm
vm_mm

vm_next

struct file

vm_file

struct address_space

f_mapping

i_
m

m
a

p
 p

ri o
 t

re
e

struct page struct page

struct page

mappingpage_tree
radix tree

struct anon_vma

anon_vma

struct page struct page

struct page

mapping

anonymous mapping

pure file mapping

head
page table

segment table

region table

pgd

4K 4K

4K 4K

4K 4K

a b

c
x y

z

a

b

c

x

y

z

List of
memory
areas

File backed Anonymous

IBM Linux and Technology Center

© 2010 IBM Corporation18

Virtual memory areas and page tables

2TB

4TB

2GB { start = 0x80000000, end = 0x80001000 }
{ start = 0x80001000, end = 0x80002000 }

{ start = 0x80002000, end = 0x80033000 }

{ start = 0x20000000000, end = 0x20000020000 }
{ start = 0x20000020000, end = 0x20000021000 }
{ start = 0x20000021000, end = 0x20000022000 }
{ start = 0x20000022000, end = 0x20000023000 }

{ start = 0x2000003c000, end = 0x200001b3000 }

{ start = 0x200001b7000, end = 0x200001b8000 }
{ start = 0x200001b8000, end = 0x200001bf000 }

{ start = 0x3ffffb45000, end = 0x3ffffb5a000 }

hello

hello

ld.so
ld.so

libc.so
libc.so
libc.so

ld.so

{ start = 0x20000023000, end = 0x20000025000 }

{ start = 0x200001b3000, end = 0x200001b7000 }

region table

segment table

segment table

segment table page table

page table

page table

page table

page cac he

VMA list

File backed Heap Anonymous Anonymous

IBM Linux and Technology Center

© 2010 IBM Corporation19

/proc/<pid>/maps of a simple static ELF executable

sample

4TB

File backed Anonymous (heap) Anonymous (stack)

Start End Acc Offset Bdev Ino File
==
 80000000- 80001000 r-xp 00000000 5e:12 32275 /root/sample
 80001000- 80002000 rwxp 00000000 5e:12 32275 /root/sample
 80002000- 80003000 rw-p 00000000 00:00 0 [heap]
3ffffb5f000-3ffffb74000 rw-p 00000000 00:00 0 [stack]

Block device
with filesystem

0

{ start = 0x80000000,
 end = 0x80001000 }

{ start = 0x3ffffb45000,
 end = 0x3ffffb5a000 }

VMA list

{ start = 0x80001000,
 end = 0x80002000 }

{ start = 0x80002000,
 end = 0x80003000 }

IBM Linux and Technology Center

© 2010 IBM Corporation20

ELF object file format – header (readelf -h)

ELF Header:
 Magic: 7f 45 4c 46 02 02 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, big endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: IBM S/390
 Version: 0x1
 Entry point address: 0x800000e8
 Start of program headers: 64 (bytes into file)
 Start of section headers: 448 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 3
 Size of section headers: 64 (bytes)
 Number of section headers: 8
 Section header string table index: 7

IBM Linux and Technology Center

© 2010 IBM Corporation21

ELF object file format

ELF header

program header table

On disk format

section 1

In memory format

section 2

section 3

section 4

...

section <n>

 ELF header

 program header table

 section header table

segment 1

segment 2

...

segment <m>

page boundary

page boundary

section header table

Offset 0 Load address
segment 1

Load address
segment 2

Load address
segment m

page boundary

IBM Linux and Technology Center

© 2010 IBM Corporation22

ELF object file format – program headers (readelf -l)
Elf file type is EXEC (Executable file)
Entry point 0x800000e8
There are 3 program headers, starting at offset 64

Program Headers:
 Type Offset VirtAddr PhysAddr
 FileSiz MemSiz Flags Align
 LOAD 0x0000000000000000 0x0000000080000000 0x0000000080000000
 0x0000000000000150 0x0000000000000150 R E 1000
 LOAD 0x0000000000000150 0x0000000080001150 0x0000000080001150
 0x0000000000000010 0x0000000000000020 RW 1000
 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
 0x0000000000000000 0x0000000000000000 RW 8

 Section to Segment mapping:
 Segment Sections...
 00 .text .rodata .eh_frame
 01 .data .bss
 02

IBM Linux and Technology Center

© 2010 IBM Corporation23

ELF object file format – section headers (readelf -S)
There are 8 section headers, starting at offset 0x1c0:

Section Headers:
 [Nr] Name Type Address Offset
 Size EntSize Flags Link Info Align
 [0] NULL 0000000000000000 00000000
 0000000000000000 0000000000000000 0 0 0
 [1] .text PROGBITS 00000000800000e8 000000e8
 0000000000000020 0000000000000000 AX 0 0 4
 [2] .rodata PROGBITS 0000000080000108 00000108
 0000000000000010 0000000000000000 A 0 0 4
 [3] .eh_frame PROGBITS 0000000080000118 00000118
 0000000000000038 0000000000000000 A 0 0 8
 [4] .data PROGBITS 0000000080001150 00000150
 0000000000000010 0000000000000000 WA 0 0 4
 [5] .bss NOBITS 0000000080001160 00000160
 0000000000000010 0000000000000000 WA 0 0 4
 [6] .comment PROGBITS 0000000000000000 00000160
 0000000000000028 0000000000000000 0 0 1
 [7] .shstrtab STRTAB 0000000000000000 00000188
 0000000000000037 0000000000000000 0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

S
eg

m
en

t
1

S
eg

m
en

t
2

IBM Linux and Technology Center

© 2010 IBM Corporation24

Mapping of file pages to the user address space

ELF header0x80000000
section .text0x800000e8

section .rodata0x80000108
section .eh_frame0x80000118

section .data0x80001150
 section .bss0x80001160

0x40000000000

 stack

ELF file

0x0

0x150

0x0

0x80001000

0x80002000

ELF header
section .text

section .rodata
section .eh_frame

section .data
 section .bss

section .data
 section .bss

0x1000

ELF header
section .text

section .rodata
section .eh_frame

section .data
section .bss

page
boundaries

S
e

gm
e

n
t

1
S

e
gm

e
n

t
2

G
N

U
_

S
T

A
C

K

sample

IBM Linux and Technology Center

© 2010 IBM Corporation25

 Kernel copies environment & arguments from the current process
– Number of internal pages used to be limited: argument list too long errors

 Kernel clears existing mappings and maps the PT_LOAD segments of
the executable
– Only the vma is created and the top level page directory is allocated

 Kernel creates auxiliary vector, environment & arguments
– User copy causes page faults → stack page tables are created

– Clearing of .bss section causes faults for writable segment of executable

 Kernel initializes processor state, including stack pointer & initial PSW

What happens on execve() ?

4TB

2GB

strings

auxiliary vector NULL

environment pointers NULL

argument pointersargc

Kernel objects

task_struct

process
kernel stack

files_struct

credentials

fs_struct

mm struct
vma list

page tables

signal_struct

sighand_struct

IBM Linux and Technology Center

© 2010 IBM Corporation26

What happens on brk() ?

4TB

2GB

 brk/sbrk system calls change the location of the program break

 brk sets the end address of the heap, sbrk increases the size of the heap

 The new memory space is not backed with real memory right away,
pages are allocated on first access

4TB

2GB

program
break

IBM Linux and Technology Center

© 2010 IBM Corporation27

What happens on exit() / exit_group() ?

 Almost all kernel structures for the process are freed
– For shared structures the reference counter is decremented

– Examples: mm_struct, fs_struct, files_struct, signal_struct, sighand_struct ...

 The address space (mm_struct) is cleared before it is freed
– munmap from address 0 to address -1

 The task_struct is not (yet) freed
– The task state is set to TASK_DEAD

– The parent is notified that the child has exited

– The parent needs to call wait4()/waitid() to collect the exit status

– A dead child process with wait4()/waitid() pending is a “Zombie”

IBM Linux and Technology Center

© 2010 IBM Corporation28

Sequence of system calls for bash executing “hello”

 No “open” for file descriptor 1
– Child inherits all open file descriptors of the parent process

– execve closes all of them but the first 3: stdin, stdout, stderr

 No “close”, no “munmap”; exit_group takes care of that

Parent
=========================

Child
===============================

bash: clone()
bash: wait4() <unfinished ...>

bash: <... wait4 resumed>

<child process created by clone>

bash: execve(“./hello”, ...)
hello: brk(0) = 0x8009d000
hello: brk(0x8009df60) = 0x8009df60)
hello: brk(0x800bef60) = 0x800bef60)
hello: brk(0x800bf000) = 0x800bf000)
hello: fstat(1, …) = 0
hello: mmap(NULL, …) = 0x20000000000
hello: write(1, “Hello World\n”, 12) = 12
hello: exit_group(0)

IBM Linux and Technology Center

© 2010 IBM Corporation29

What happens on clone() / fork() ?

 Execve() replaces the current context, fork() duplicates a context

 Allocate a new task_struct (dup_task_struct)
– Copies almost all fields from the parent task_struct

 Create copies of various task related kernel data structures
– Credentials, same rights for the child

– File descriptor table, same files for the child

– Filesystem info, same working directory, same umask

– Copies the current set of signal handlers, empty set of pending signals

– Duplicate virtual memory address space, only mlocks()s are not inherited

 Initialize per task information
– Scheduler initialize per task fields and selects a run queue

– Child gets a new pid / tpid

– Resource utilization is reset, timers are reset

 Add new task to process tree

IBM Linux and Technology Center

© 2010 IBM Corporation30

What happens on fork() / copy_mm() ?
region table

segment table

segment table

segment table page table

page table

page table

page table

page cac he

segment table page table

page table

page table

page table

page table segment table

segment table

segment table

region table

read-only

not everything
is copied

TLB flush with either
IPTE or IDTE

! !

!

Next write access to
read-only page will do
copy-on-write

IBM Linux and Technology Center

© 2010 IBM Corporation31

Dynamic linking of ELF objects

 User space program can be statically or dynamically linked
– Dynamic ELF exec is mapped just like a statically linked exec
– ELF .interp section gives the name of the “interpreter” = ld.so
– ld.so is mapped and started instead of the main executable
– ld.so loads and links the missing pieces for the dynamic executable
– ld.so resolves the relocations between the different ELF objects

 Usually a user space program has multiple ELF objects
– Main executable at 2GB (default)
– Dynamic linker ld.so at 2TB
– C-runtime libc.so at 2TB + sizeof ld.so object
– More shared libraries
– Kernel virtual dynamic shared object (vdso)

 Shared libraries can by dynamically loaded / unloaded
– dlopen() / dlsym() / dlclose() calls to ld.so

IBM Linux and Technology Center

© 2010 IBM Corporation32

/proc/<pid>/maps for dynamic “Hello World”
Start End Acc Offset Bdev Ino File
==
 80000000- 80001000 r-xp 00000000 5e:01 11875 /root/hello
 80001000- 80002000 rwxp 00000000 5e:01 11875 /root/hello
 80002000- 80023000 rw-p 00000000 00:00 0 [heap]
20000000000-20000020000 r-xp 00000000 5e:01 272257 /lib/ld64.so.1
20000020000-20000021000 r-xp 0001f000 5e:01 272257 /lib/ld64.so.1
20000021000-20000022000 rwxp 00020000 5e:01 272257 /lib/ld64.so.1
20000022000-20000023000 rw-p 00000000 00:00 0
20000023000-20000025000 r-xp 00000000 00:00 0 [vdso]
20000025000-20000029000 rwxp 00000000 00:00 0
2000003f000-200001b6000 r-xp 00000000 5e:01 268320 /lib64/libc-2.11.90.so
200001b6000-200001ba000 r-xp 0018e000 5e:01 268320 /lib64/libc-2.11.90.so
200001ba000-200001bb000 rwxp 00192000 5e:01 268320 /lib64/libc-2.11.90.so
200001bb000-200001c1000 rwxp 00000000 00:00 0
3ffffb45000-3ffffb5a000 rw-p 00000000 00:00 0 [stack]

2TB

hello

ld-2.9.so

libc-2.9.so

4TB

2GB

File backed

Heap
Anonymous

Anonymous

Kernel vdso

IBM Linux and Technology Center

© 2010 IBM Corporation33

Sytem call trace of “Hello World”
strace -v ./hello
execve("./hello", ["./hello"], ["HOSTNAME=t6360015", "TERM=xterm", "SHELL=/bin/bash",
 "HISTSIZE=1000", "SSH_CLIENT=9.152.212.37 56750 22"..., "SSH_TTY=/dev/pts/0",
 "USER=root", "USERNAME=root", "PATH=/sbin:/bin:/usr/sbin:/bin"..., "PWD=/root",
 "SHLVL=1", "HOME=/root", "BASH_ENV=/root/.bashrc", "LOGNAME=root",
 "_=/usr/bin/strace"]) = 0

brk(0) = 0x80002000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =0x20000002000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =0x20000003000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=93073, ...}) = 0
mmap(NULL, 93073, PROT_READ, MAP_PRIVATE, 3, 0) = 0x20000005000
close(3) = 0
open("/lib64/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\2\2\1\0\0\0\0\0\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=10086079, ...}) = 0
mmap(NULL, 1574256, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
 0x2000001c000
mmap(0x20000193000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE,
 3, 0x176000) = 0x20000193000
mmap(0x20000198000, 17776, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,
 -1, 0) = 0x20000198000
close(3) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
 0x2000019d000
mprotect(0x20000193000, 16384, PROT_READ) = 0
mprotect(0x20000020000, 4096, PROT_READ) = 0
munmap(0x20000028000, 93073) = 0
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
 0x20000028000
write(1, "Hello world 0x80002410\n"..., 12) = 12
exit_group(0) = ?

ld
.s

o.
1

he
llo

ba
sh

(s
tr

ac
e)

IBM Linux and Technology Center

© 2010 IBM Corporation34

ELF object file format – relocations (readelf -r)

Relocation section '.rela.dyn' at offset 0x380 contains 1 entries:

 Offset Info Type Sym. Value Sym. Name + Addend

0000800019d8 00010000000a R_390_GLOB_DAT 0000000000000000 __gmon_start__ + 0

Relocation section '.rela.plt' at offset 0x398 contains 3 entries:

 Offset Info Type Sym. Value Sym. Name + Addend

0000800019c0 00020000000b R_390_JMP_SLOT 000000008000044c malloc + 0

0000800019c8 00030000000b R_390_JMP_SLOT 000000008000046c printf + 0

0000800019d0 00040000000b R_390_JMP_SLOT 000000008000048c __libc_start_main + 0

IBM Linux and Technology Center

© 2010 IBM Corporation35

ELF object file format – typical relocations
R_390_64/R_390_32 Direct address of the symbol 64 bit / 32 bit

R_390_GLOB_DAT Create global offset table (GOT) entry.

R_390_JMP_SLOT Create procedure link table (PLT) entry.

R_390_RELATIVE Adjust by program base.

R_390_TLS_TPOFF Negated offset in static thread local storage (TLS) block.

R_390_TLS_DTPMOD ID of module containing symbol.

IBM Linux and Technology Center

© 2010 IBM Corporation36

Links for further reading

 ELF and ABI standards
http://refspecs.freestandards.org/elf/

 System z supplement to the ELF ABI
http://www.linuxfoundation.org/spec/ELF/zSeries/lzsabi0_s390.html

 Native POSIX thread library support
http://people.redhat.com/~drepper/nptl-design.pdf

 Thread local storage support
http://people.redhat.com/drepper/tls.pdf

 Understanding the Linux virtual memory manager
http://ptgmedia.pearsoncmg.com/
images/0131453483/downloads/gorman_book.pdf

http://www.linuxfoundation.org/spec/ELF/zSeries/lzsabi0_s390.html
http://ptgmedia.pearsoncmg.com/

IBM Linux and Technology Center

© 2010 IBM Corporation37

Schönaicher Strasse 220
71032 Böblingen, Germany

Phone +49 (0)7031-16-2247
schwidefsky@de.ibm.com

Martin Schwidefsky

Linux on System z
Development

Questions?

	What's New in Linux on System z
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

