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IMS in a 64-bit world: Main topics

• 32-bit to 64-bit progression
• Hardware
• Software

• OS/390 and z/OS
• IMS

• IMS exploitation
• Log buffers
• ACBLIB member cache
• LSQA relief
• Fast Path

• Buffer management

• BMC Software: A 
vendor/user experience
• Fast Path/EP Utilities
• Fast Path/EP Indexer
• Fast Path/EP Restructure

• “Hints and Tips”
• Assembler Programming

• Instructions “structure”
• Modal instructions
• Relative instructions

• Environmental factors
• Load module addresses
• Save area formats and chains
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32-bit to 64-bit progression

H A R D W A R E
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32-bit to 64-bit progression
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Some hardware differences

• z/Architecture
• 128-bit PSW
• 64-bit Control Registers
• 64-bit GPR’s

• Bits 0 – 31 = High Order
• Bits 32 – 63 = Low Order

• 32-bit Access Registers
• 8K prefix area (low core)
• 296 byte LS state entries
• Lots of new instructions

that manipulate 64 bits.

• ESA/390
• 64-bit PSW
• 32-bit Control Registers
• 32-bit GPR’s

• Bits 0 – 31

• 32-bit Access Registers
• 4K prefix area (low core)
• 168 byte LS state entries
• Some z/Architecture

instructions retro fitted
to ESA/390
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ESA/390   PSW format

0 R 0 0 0 T I
O

E
X KEY 1 MW P A

S
C
C

PROG 
MASK 0 0 0 0 0 0 0 0

B
A Instruction address

0   1   2              5    6   7   8                  12  13 14 15  16       18      20                  24                 31

32  33                                                                                                                       63
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z/Architecture   PSW format

0 R 0 0 0 T I
O

E
X KEY 0 MW P A

S
C
C

PROG 
MASK 0 0 0 0 0 0 0 E

X

B
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0   1   2              5    6   7   8                  12  13 14 15  16       18      20                  24                 31

32  33                                                                                                                       63

Instruction address

64                                                                                                                           95

Instruction address (continued)

96                                                                                                                           127
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32-bit to 64-bit progression

S O F T W A R E
The operating system
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32-bit to 64-bit progression

• V1.2 – Initial 64-bit
support.

• V1.5 – Shared 64-bit
memory obj.

• V1.10 – HCSA (shared
COMMON above
2G bar)

_________________________________________________________________________
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Feb 2009
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z/OS versions
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32-bit to 64-bit progression

S O F T W A R E
The IMS application server
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11.1

10.1

9.1

8.1Oct 2002

Oct 2004

Oct 2007

Oct 2009

IMS versions

32-bit to 64-bit progression

• V8.1 – Last version to
execute on
OS/390 V2R10.

• V9.1 – Executes on
either 32 bit or
64 bit hardware.

• V10.1 – Requires 64 bit
hardware.

_________________________________________________________________________

32 bit hardware   OS/390 V2R10

32/64 bit hardware   z/OS V1R4

64 bit hardware   z/OS V1R7

64 bit hardware   z/OS V1R9

• V11.1 – Exploits
64-bit
virtual.
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IMS exploitation

L O G   B U F F E R S
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IMS exploitation: Log buffers

• Log buffers page fixed in ECSA (31-bit virtual)
• Performance

• 64-bit real storage backing of 31-bit virtual
• Introduced in IMS V10
• Requires z/Architecture (IPL mode = z/Architecture)
• OLDS block size must be multiple of 4K
• Environments that are 31-bit real constrained, but have

spare 64-bit real capacity, may benefit.

• No 64-bit virtual exploitation (yet).
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IMS exploitation

ACBLIB member cache
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IMS exploitation: ACBLIB member cache

• ACBLIB members (DMB’s and PSB’s) cached
in 64-bit pool

• Introduced in IMS V11

• Not all ACBLIB members qualify:
• Defined as “resident”.
• DEDB’s

• Non-resident members are loaded on demand.

• ACBLIB member caching available in all online
environments, but not IMS batch.
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IMS exploitation: ACBLIB member cache

• Defined in DFSDFxxx PROCLIB member

• DATABASE section

• ACBIN64 parameter specifies pool size in GIG
• e.g. ACBIN64=8 specifies 64-bit pool 8G in size
• Dynamic expansion to limit.
• Cast out on LRU basis.
• Beneficial to size correctly.

• Can provide ECSA relief of resident pool

• CSL not required, except if QUERY POOL
command is used.
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IMS exploitation: ACBLIB member cache
• At 1st schedule non-resident member loaded into

non-resident pool.
• Also loaded into ACBIN64 pool.

• Next schedule, non-resident member is read from
ACBIN64 cache, instead of I/O to ACBLIB.

• ACBIN64 supported by OLC, MOLC and DRD.
• Does not create/update member in pool.
• Deletes member from ACBIN64 pool.
• Next schedule will load new/updated member

to ACBIN64 pool.
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IMS exploitation: ACBLIB member cache

• QUERY POOL TYPE(ACBIN64) shows pool info

• x’4515’ statistics log record shows ACBIN64
stats (same as in QUERY POOL output)

• New monitor records
• Type 74, 75, 76 and 77

• New field on region IWAIT report
• BLR-64BIT
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IMS exploitation

LSQA relief
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IMS exploitation: LSQA relief
• Some background:

• IMS performs internal storage management.

• Tracks module and storage usage via CDE chain(s).
• CDE blocks z/OS architected in 24-bit LSQA

• Long CDE chain(s) can exhaust 24-bit storage.
• S878 abend

• z/OS bypasses recovery termination/cleanup routines
• S40D IMS termination

• Large chunks of orphaned CSA/ECSA
• IPL to fix

• (PC world’s “re-boot to fix” option not desirable !!)
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IMS exploitation: LSQA relief
• Solution:

• Introduced in IMS V11

• New 64-bit (private) Storage Tracking Element (STE)
• Eliminates 24-bit CDE’s for IPAGES
• Track IPAGES storage differently.

• Available to CTRL and DLISAS address spaces

• APAR PM17966 implements similar relief for some OSAM
control block tracking in DLISAS address space.

• No user specification / activation required.
• Part of base IMS
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IMS exploitation

Fast Path 64-bit
Buffer Manager
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IMS exploitation: FP 64-bit Buffer Manager
• Introduced in IMS V11

• New buffer manager.
• Optional to existing buffer manager
• One or the other is used

• Uses 64-bit storage for DEDB data buffers.
• MSDB, System, SDEP buffers still in 31-bit ECSA
• DMHR and other control blocks still in 31-bit ECSA

• Multiple sub-pools within.
• Different sub-pools for different CI sizes
• Dynamic contraction / expansion of pool

• (future IMS release)
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IMS exploitation: FP 64-bit Buffer Manager
• To activate:

• FASTPATH section in DFSDFxxx proclib member
• FPBP64=Y
• FPBP64M=<size>

• DFS3299I msg if required storage > FPBP64M
specification

• Synchronize FDBR / XRF parameters, if used.
• COLD start IMS

• Must COLD start to switch between buffer managers

• DFS3300I message
• Shows DBBF, DBFX and BSIZ parameters ignored

• Used by old buffer manager
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IMS exploitation: FP 64-bit Buffer Manager
• Advantages:

• Multiple sub-pools, 1 for each CI size
• No unnecessary storage waste.
• Dynamic management of sub-pools.
• New CI size without IMS recycle.

• ECSA relief
• Old buffer manager has all DEDB buffers in ECSA

• OBA no longer single treaded
• Performance

• Stability
• Reduced exposure to U1011 and IPL (ECSA fragmentation)
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IMS exploitation: FP 64-bit Buffer Manager
• How did it happen ???

• Dual code path for DL/1 action modules.
• Duplicated modules with different suffixes, where required
• Stability

• Many new modules (all OCO, off course!)
• DBFDEDB0 has grown in size

• ECSA used by larger DBFDEDB0 far less than
ECSA freed by 64-bit data buffers.

• New anchor points in ESCD

• Expanded control blocks
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IMS exploitation: FP 64-bit Buffer Manager

• QUERY POOL TYPE(FPBP64) shows pool info
• x’4516’ statistics log record shows same info

• x’4081’ log record contain pool info for WARM or
ERE restart.

• x’5945’ log record shows pool statistics
• Logging not automatic. Must be activated with

UPDATE IMS SET(LCLPARM(FPBP64STAT(Y))) command.
• Default setting = N
• Not maintained across restart.

• x’5960’ log record has sub-pool management info
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BMC Software Inc.

A vendor / user
experience with IMS

in a 64-bit world.
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BMC - Fast Path/EP Utilities

• Supports Fast Path 64-bit Buffer Manager
• Full offline support

• Private buffer management

• Limited online support on z/OS V1R9
• Analyzer
• Image Copy

• Full online support on z/OS V1R10 and higher
• Online Reorg  AND  Online Extend

requires Fast Path/EP installed in CTRL region.
• BMC128013I   confirmation message

• Private buffer management.
• Switch to required state for IMS 64-bit data buffer access.
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BMC - Fast Path/EP Indexer

• Supports Fast Path 64-bit Buffer Manager

• Requires z/OS V1R10 or higher

• Different implementation
• Affected code (in CTRL region) runs

in AMODE(64), regardless of buffer manager
• Single code path

• Requires version ZPFP39.01.10 (GA Sep 2010)
with APAR/PTF BAQ5560/BPQ4932
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BMC - Fast Path/EP Restructure

• Available May 2010

• Supports IMS V9 and higher
• 64-bit hardware and z/Architecture required

• Supports Fast Path 64-bit Buffer Manager
• Requires 64-bit hardware and z/Architecture mode.
• Requires z/OS V1R10 (or higher)

• What does it do ???
• Online restructure of DEDB without an outage.

• Reality check: There is a small outage
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BMC - Fast Path/EP Restructure

• Similar in concept to CRF for Full Function databases:
• Shadow areas.
• Change Capture hook
• Focus on structure change(s), not space reclaim.

• Patented technology:
• Delta Reload for specific areas
• Change Capture Pause

• BMCPAUSE
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BMC - Fast Path/EP Restructure

• Major features:

• Four phases
• PREPARE
• SHADOW INIT
• RESTRUCTURE
• TURNOVER

• Only affected areas are processed
• Increased availability
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BMC - Fast Path/EP Restructure

• Major features (continued):

• Only copied UOW’s captured
• Maximized speed
• Optimal buffering

• Exploits 64-bit technology
• Inter address space CI buffering in 64-bit storage
• Mix of AMODE(31) and AMODE(64)
• Control blocks in 31-bit storage
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BMC - Fast Path/EP Restructure

• Supported structure changes:
• ADD or REMOVE areas
• Resizing of areas
• Randomizer changes
• Add segments at end of hierarchical path
• Add SDEPs
• Add / Change / Remove compression exit.
• Modify lengths of variable length segments:

• Decrease minimum length
• Increase maximum length
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BMC - Fast Path/EP Restructure

• Application affecting restrictions:

• Cannot add a segment in hierarchical path to existing segment

• Cannot remove a segment from hierarchical path to existing segment

• Cannot add a sequence field to existing non-keyed segment

• Cannot remove a sequence field from existing keyed segment

• Cannot modify an existing sequence field
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BMC - Fast Path/EP Restructure

• Known operational considerations:
• DBRC registration mandatory
• Dual DASD for affected AREAs

• Triple if secondary shadow selected
(image copy option)

• Each execution supports a single database
• Physical SDEP placement not maintained
• SDEP SCAN/DELETE unavailable during process

• User mod disables function whilst RESTRUCTURE
• Short outage needed for swap
• Subset pointer updates not captured on retrieval calls
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BMC - Fast Path/EP Restructure
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BMC - Fast Path/EP Restructure
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BMC - Fast Path/EP Restructure
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BMC - Fast Path/EP Restructure
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BMC - Fast Path/EP Restructure
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IMS in a 64-bit world

Hints and tips.

Assembler programming
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Hints and tips: Assembler Programming

Source instruction “structure”
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Hints and tips: Assembler Programming

• Backward compatibility with existing instructions
that only manipulate 32 bits in register.

• Instruction code determine bit scope in registers
• Analogs for 64←64 instructions

• “G” added to mnemonic
• Analogs for 64←32 instructions

• “F” added to mnemonic
• Existing 32←32 instructions

• PSW bits determine addressing scope
• Extended Addressing bit
• Basic Addressing bit
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Hints and tips: Assembler Programming

• Instruction analogs easily implemented with
macro variables.
• Conditional assembly of single code set produces

different flavour of instructions, depending on the state,
or value, of a set of variables.

• Example:
• &VG SETC ‘’ /* Init to NULL */
• &VF SETC ‘’ /* Init to NULL */

OR
• &VG SETC ‘G’ /* Init to “G” */
• &VF SETC ‘F’ /* Init to “F” */

OR
• &VG SETC ‘G’ /* Init to “G” */
• &VF SETC ‘’ /* Init to NULL */
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Hints and tips: Assembler Programming
• Generated code:

• Source code of

A&VG.&VF.R

• will generate

AR
or

AGFR
or

AGR
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Hints and tips: Assembler Programming

Modal instructions
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Hints and tips: Assembler Programming

• Tri-modal addressing:
• BASSM, BSM, SAM24, SAM31, SAM64

• (also TAM to test AMODE status)

• Modal instructions:
• They behave differently, depending on PSW’s

AMODE status.
• BALR, BASR, BRAS, BRASL, LA, MVCL etc.

• See chapter 7 in POPS manual.
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Hints and tips: Assembler Programming

Relative addressing



51

Hints and tips: Assembler Programming
• Relative addressing: What does it mean ???

• Different concept: (well, sort of …)
• “Old way” has fixed base register.

• Everything addressed from base register is relative
to that base.

• Relative instructions use variable base (PSW).
• Moving target
• Everything addressed from PSW is relative to

the PSW.
• Cannot address “odd” addresses.

• Target must be at least on halfword boundary
ASMA058E Invalid relative address - xxxxxxxx

• Target of absolute value generates warning message
• ASMA056W Absolute value found when relocatable

value expected - xxxxxxxx
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Hints and tips: Assembler Programming

• Relative addressing (continued):

• 00000340 C010 0000 01CC 000006D8   2822
LARL  R1,=C'#PFPCCBI' /* Literal in pool   */

• 0000010C A7F4 FFF9 000000FE   2424
J     MAIN0800 /*  Go exit ........    */

• Watch out for existing MVS interface macros.
• More than often generates code that requires base register,

usually for literal pool, often for label reference.
• Base register for literal pool good idea.

• Its not always what it seems…….
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IMS in a 64-bit world

Hints and tips.

Environmental factors
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Hints and tips: Environmental factors

Load module addresses
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Hints and tips: Environmental Factors

• Load module addresses, as returned by LOAD,
has AMODE bits set:
• Bits 0-31 is zero (if AMODE(64))
• Bit 32 shows AMODE(24|31)
• Bit 63 shows AMODE(64)
• Some modal instructions ignore / process these bits properly.

• Executable code may address data above 2G bar,
but CANNOT run there (for now)
• BASR with target address where bit 32 is on,

results in S0C4 abend code 3A or 3B
• When in AMODE(64) status

• BASR with target adress where bit 63 is on,
results in S0C1 or S0C5
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Hints and tips: Environmental Factors

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

0 0 0 0 0 0 0 0 x x x x x x x x x x x x x x x x x x x x x x x x

00                                                                                                                           31

32                               39 40                                                                                       63

• R0 contents after successful LOAD of load module
with AMODE(24) attribute
• Bits 00 to 31 unpredictable
• Bits 32 to 39 = zero
• Bits 40 to 63 = Entry Point Address (24 bit)
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Hints and tips: Environmental Factors

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

00                                                                                                                           31

32  33                                                                                                                       63

• R0 contents after successful LOAD of load module
with AMODE(31) attribute
• Bits 00 to 31 unpredictable
• Bit 32 = 1
• Bits 33 to 63 = Entry Point Address (31 bit)
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Hints and tips: Environmental Factors

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 1

00                                                                                                                           31

32  33                                                                                                                       63

• R0 contents after successful LOAD of load module
with AMODE(64) attribute
• Bits 00 to 31 always zero
• Bit 32 = 0
• Bits 33 to 63 = Entry Point Address (31 bit)
• Bit 63 = 1
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Hints and tips: Environmental Factors

• z/OS V1R11 (and later) allows LOAD into 64-bit
virtual storage

• Directed load only
• z/OS does not track it
• User must acquire storage 1st, then request

LOAD to load the module at that location.

• Non executable code only (logically)
• Still cannot execute above 2G bar
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Hints and tips: Environmental factors

Save area formats
and

chains.
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Hints and tips: Environmental Factors

• Various save area formats
• SYS1.MACLIB(IHASAVER) provides mapping

• F1SA format:
• 18 fullwords (72 bytes) in length
• Stores 32-bit values (GPR’s only)
• Utilizes 32-bit back / forward pointers.

• F4SA format:
• 36 fullwords (144 bytes) in length
• Stores 64-bit values (GPR’s only ??)
• Utilizes 64-bit back / forward pointers.
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Hints and tips: Environmental Factors

• F5SA format:
• 54 fullwords (216 bytes) in length
• Stores 64-bit values (GPR’s only)

• Additional room for 32-bit values (high order) 
• Utilizes 64-bit back / forward pointers.

• F7SA format:
• 54 fullwords (216 bytes) in length
• Stores 64-bit values (GPR’s)
• Stores 32-bit values (AR’s)
• Utilizes 64-bit back / forward pointers.
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Hints and tips: Environmental Factors

• Linkage stack:
• Associated with dispatchable unit (read TCB)
• No need 2 know the format
• BAKR, PR, PC instructions
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Hints and tips: Environmental Factors

• Save area chains
• Sequential, fixed format

• Sequential (or not), variable format
• Facilitates R13 mapping of working storage

• Careful when hooking different type into existing chain !!

• IMS has pre-allocated save area chains
(sequential, fixed format)
• Uses 2 F1SA areas, where required

• Might see (what appears to be) every second set empty
in chain

• Reduces cascading call depth

• Don’t try and build F1SA chain in 64-bit storage !!
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Happy coding !!!

Questions ???

Andre_Schoeman@BMC.COM

mailto:Andre_Schoeman@BMC.COM�
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