
IMS in a 64-bit world.
André Schoeman
BMC Software Inc.

Tuesday, August 3rd, 2010
Session Number 7867

2

IMS in a 64-bit world: Main topics

• 32-bit to 64-bit progression
• Hardware
• Software

• OS/390 and z/OS
• IMS

• IMS exploitation
• Log buffers
• ACBLIB member cache
• LSQA relief
• Fast Path

• Buffer management

• BMC Software: A
vendor/user experience
• Fast Path/EP Utilities
• Fast Path/EP Indexer
• Fast Path/EP Restructure

• “Hints and Tips”
• Assembler Programming

• Instructions “structure”
• Modal instructions
• Relative instructions

• Environmental factors
• Load module addresses
• Save area formats and chains

3

32-bit to 64-bit progression

H A R D W A R E

4

32-bit to 64-bit progression

330
MHz

420
MHz

550
MHz

770
MHz

1.2
GHz

1.7
GHz

4.4
GHz

5.2
GHz

0

1000

2000

3000

4000

5000

6000

1997
G4

1998
G5

1999
G6

2000
Z900

2003
Z990

2005
Z9 EC

2008
Z10 EC

2010
Z196

M
H

z

Hardware

• G4 - 1st full-custom
CMOS S/390

• Z900 - Full 64-bit
z/Architecture

• Z196 - zEnterprise
hardware

5

Some hardware differences

• z/Architecture
• 128-bit PSW
• 64-bit Control Registers
• 64-bit GPR’s

• Bits 0 – 31 = High Order
• Bits 32 – 63 = Low Order

• 32-bit Access Registers
• 8K prefix area (low core)
• 296 byte LS state entries
• Lots of new instructions

that manipulate 64 bits.

• ESA/390
• 64-bit PSW
• 32-bit Control Registers
• 32-bit GPR’s

• Bits 0 – 31

• 32-bit Access Registers
• 4K prefix area (low core)
• 168 byte LS state entries
• Some z/Architecture

instructions retro fitted
to ESA/390

6

ESA/390 PSW format

0 R 0 0 0 T I
O

E
X KEY 1 MW P A

S
C
C

PROG
MASK 0 0 0 0 0 0 0 0

B
A Instruction address

0 1 2 5 6 7 8 12 13 14 15 16 18 20 24 31

32 33 63

7

z/Architecture PSW format

0 R 0 0 0 T I
O

E
X KEY 0 MW P A

S
C
C

PROG
MASK 0 0 0 0 0 0 0 E

X

B
A 0

0 1 2 5 6 7 8 12 13 14 15 16 18 20 24 31

32 33 63

Instruction address

64 95

Instruction address (continued)

96 127

8

32-bit to 64-bit progression

S O F T W A R E
The operating system

9

32-bit to 64-bit progression

• V1.2 – Initial 64-bit
support.

• V1.5 – Shared 64-bit
memory obj.

• V1.10 – HCSA (shared
COMMON above
2G bar)

1.12
1.11

1.10
1.09

1.08
1.07

1.06
1.05

1.04
1.03

1.02
1.01Oct 2000

Feb 2001
Sep 2001
Feb 2002
Aug 2002
May 2003
Aug 2004
Aug 2006
Aug 2007
Aug 2008
Feb 2009
Jul 2010

z/OS versions

10

32-bit to 64-bit progression

S O F T W A R E
The IMS application server

11

11.1

10.1

9.1

8.1Oct 2002

Oct 2004

Oct 2007

Oct 2009

IMS versions

32-bit to 64-bit progression

• V8.1 – Last version to
execute on
OS/390 V2R10.

• V9.1 – Executes on
either 32 bit or
64 bit hardware.

• V10.1 – Requires 64 bit
hardware.

32 bit hardware OS/390 V2R10

32/64 bit hardware z/OS V1R4

64 bit hardware z/OS V1R7

64 bit hardware z/OS V1R9

• V11.1 – Exploits
64-bit
virtual.

12

IMS exploitation

L O G B U F F E R S

13

IMS exploitation: Log buffers

• Log buffers page fixed in ECSA (31-bit virtual)
• Performance

• 64-bit real storage backing of 31-bit virtual
• Introduced in IMS V10
• Requires z/Architecture (IPL mode = z/Architecture)
• OLDS block size must be multiple of 4K
• Environments that are 31-bit real constrained, but have

spare 64-bit real capacity, may benefit.

• No 64-bit virtual exploitation (yet).

14

IMS exploitation

ACBLIB member cache

15

IMS exploitation: ACBLIB member cache

• ACBLIB members (DMB’s and PSB’s) cached
in 64-bit pool

• Introduced in IMS V11

• Not all ACBLIB members qualify:
• Defined as “resident”.
• DEDB’s

• Non-resident members are loaded on demand.

• ACBLIB member caching available in all online
environments, but not IMS batch.

16

IMS exploitation: ACBLIB member cache

• Defined in DFSDFxxx PROCLIB member

• DATABASE section

• ACBIN64 parameter specifies pool size in GIG
• e.g. ACBIN64=8 specifies 64-bit pool 8G in size
• Dynamic expansion to limit.
• Cast out on LRU basis.
• Beneficial to size correctly.

• Can provide ECSA relief of resident pool

• CSL not required, except if QUERY POOL
command is used.

17

IMS exploitation: ACBLIB member cache
• At 1st schedule non-resident member loaded into

non-resident pool.
• Also loaded into ACBIN64 pool.

• Next schedule, non-resident member is read from
ACBIN64 cache, instead of I/O to ACBLIB.

• ACBIN64 supported by OLC, MOLC and DRD.
• Does not create/update member in pool.
• Deletes member from ACBIN64 pool.
• Next schedule will load new/updated member

to ACBIN64 pool.

18

IMS exploitation: ACBLIB member cache

• QUERY POOL TYPE(ACBIN64) shows pool info

• x’4515’ statistics log record shows ACBIN64
stats (same as in QUERY POOL output)

• New monitor records
• Type 74, 75, 76 and 77

• New field on region IWAIT report
• BLR-64BIT

19

IMS exploitation

LSQA relief

20

IMS exploitation: LSQA relief
• Some background:

• IMS performs internal storage management.

• Tracks module and storage usage via CDE chain(s).
• CDE blocks z/OS architected in 24-bit LSQA

• Long CDE chain(s) can exhaust 24-bit storage.
• S878 abend

• z/OS bypasses recovery termination/cleanup routines
• S40D IMS termination

• Large chunks of orphaned CSA/ECSA
• IPL to fix

• (PC world’s “re-boot to fix” option not desirable !!)

21

IMS exploitation: LSQA relief
• Solution:

• Introduced in IMS V11

• New 64-bit (private) Storage Tracking Element (STE)
• Eliminates 24-bit CDE’s for IPAGES
• Track IPAGES storage differently.

• Available to CTRL and DLISAS address spaces

• APAR PM17966 implements similar relief for some OSAM
control block tracking in DLISAS address space.

• No user specification / activation required.
• Part of base IMS

22

IMS exploitation

Fast Path 64-bit
Buffer Manager

23

IMS exploitation: FP 64-bit Buffer Manager
• Introduced in IMS V11

• New buffer manager.
• Optional to existing buffer manager
• One or the other is used

• Uses 64-bit storage for DEDB data buffers.
• MSDB, System, SDEP buffers still in 31-bit ECSA
• DMHR and other control blocks still in 31-bit ECSA

• Multiple sub-pools within.
• Different sub-pools for different CI sizes
• Dynamic contraction / expansion of pool

• (future IMS release)

24

IMS exploitation: FP 64-bit Buffer Manager
• To activate:

• FASTPATH section in DFSDFxxx proclib member
• FPBP64=Y
• FPBP64M=<size>

• DFS3299I msg if required storage > FPBP64M
specification

• Synchronize FDBR / XRF parameters, if used.
• COLD start IMS

• Must COLD start to switch between buffer managers

• DFS3300I message
• Shows DBBF, DBFX and BSIZ parameters ignored

• Used by old buffer manager

25

IMS exploitation: FP 64-bit Buffer Manager
• Advantages:

• Multiple sub-pools, 1 for each CI size
• No unnecessary storage waste.
• Dynamic management of sub-pools.
• New CI size without IMS recycle.

• ECSA relief
• Old buffer manager has all DEDB buffers in ECSA

• OBA no longer single treaded
• Performance

• Stability
• Reduced exposure to U1011 and IPL (ECSA fragmentation)

26

IMS exploitation: FP 64-bit Buffer Manager
• How did it happen ???

• Dual code path for DL/1 action modules.
• Duplicated modules with different suffixes, where required
• Stability

• Many new modules (all OCO, off course!)
• DBFDEDB0 has grown in size

• ECSA used by larger DBFDEDB0 far less than
ECSA freed by 64-bit data buffers.

• New anchor points in ESCD

• Expanded control blocks

27

IMS exploitation: FP 64-bit Buffer Manager

• QUERY POOL TYPE(FPBP64) shows pool info
• x’4516’ statistics log record shows same info

• x’4081’ log record contain pool info for WARM or
ERE restart.

• x’5945’ log record shows pool statistics
• Logging not automatic. Must be activated with

UPDATE IMS SET(LCLPARM(FPBP64STAT(Y))) command.
• Default setting = N
• Not maintained across restart.

• x’5960’ log record has sub-pool management info

28

BMC Software Inc.

A vendor / user
experience with IMS

in a 64-bit world.

29

BMC - Fast Path/EP Utilities

• Supports Fast Path 64-bit Buffer Manager
• Full offline support

• Private buffer management

• Limited online support on z/OS V1R9
• Analyzer
• Image Copy

• Full online support on z/OS V1R10 and higher
• Online Reorg AND Online Extend

requires Fast Path/EP installed in CTRL region.
• BMC128013I confirmation message

• Private buffer management.
• Switch to required state for IMS 64-bit data buffer access.

30

BMC - Fast Path/EP Indexer

• Supports Fast Path 64-bit Buffer Manager

• Requires z/OS V1R10 or higher

• Different implementation
• Affected code (in CTRL region) runs

in AMODE(64), regardless of buffer manager
• Single code path

• Requires version ZPFP39.01.10 (GA Sep 2010)
with APAR/PTF BAQ5560/BPQ4932

31

BMC - Fast Path/EP Restructure

• Available May 2010

• Supports IMS V9 and higher
• 64-bit hardware and z/Architecture required

• Supports Fast Path 64-bit Buffer Manager
• Requires 64-bit hardware and z/Architecture mode.
• Requires z/OS V1R10 (or higher)

• What does it do ???
• Online restructure of DEDB without an outage.

• Reality check: There is a small outage

32

BMC - Fast Path/EP Restructure

• Similar in concept to CRF for Full Function databases:
• Shadow areas.
• Change Capture hook
• Focus on structure change(s), not space reclaim.

• Patented technology:
• Delta Reload for specific areas
• Change Capture Pause

• BMCPAUSE

33

BMC - Fast Path/EP Restructure

• Major features:

• Four phases
• PREPARE
• SHADOW INIT
• RESTRUCTURE
• TURNOVER

• Only affected areas are processed
• Increased availability

34

BMC - Fast Path/EP Restructure

• Major features (continued):

• Only copied UOW’s captured
• Maximized speed
• Optimal buffering

• Exploits 64-bit technology
• Inter address space CI buffering in 64-bit storage
• Mix of AMODE(31) and AMODE(64)
• Control blocks in 31-bit storage

35

BMC - Fast Path/EP Restructure

• Supported structure changes:
• ADD or REMOVE areas
• Resizing of areas
• Randomizer changes
• Add segments at end of hierarchical path
• Add SDEPs
• Add / Change / Remove compression exit.
• Modify lengths of variable length segments:

• Decrease minimum length
• Increase maximum length

36

BMC - Fast Path/EP Restructure

• Application affecting restrictions:

• Cannot add a segment in hierarchical path to existing segment

• Cannot remove a segment from hierarchical path to existing segment

• Cannot add a sequence field to existing non-keyed segment

• Cannot remove a sequence field from existing keyed segment

• Cannot modify an existing sequence field

37

BMC - Fast Path/EP Restructure

• Known operational considerations:
• DBRC registration mandatory
• Dual DASD for affected AREAs

• Triple if secondary shadow selected
(image copy option)

• Each execution supports a single database
• Physical SDEP placement not maintained
• SDEP SCAN/DELETE unavailable during process

• User mod disables function whilst RESTRUCTURE
• Short outage needed for swap
• Subset pointer updates not captured on retrieval calls

38

BMC - Fast Path/EP Restructure

Restructure
Plan

PREPARE

New/Old
Randomizer

New/Old
ACB

New/Old
Compression

Routine

Original
Area(s)

Restructure
Plan

PREPARE

New/Old
Randomizer

New/Old
ACB

New/Old
Compression

Routine

Original
Area(s)

39

BMC - Fast Path/EP Restructure

SHADOW_INIT

Shadow
Area(s)

Restructure
Plan

New
ACB

Shadow 2
Area(s)

SHADOW_INIT

Shadow
Area(s)

Restructure
Plan

Restructure
Plan

New
ACB

Shadow 2
Area(s)

40

BMC - Fast Path/EP Restructure

Restructure
Plan

RESTRUCTURE

Original
Area(s)

Shadow
Area(s)

Area(s)
Copy

Change
Capture

Temporary
Storage

Restructure
Plan

RESTRUCTURE

Original
Area(s)

Shadow
Area(s)

Area(s)
Copy

Change
Capture

Temporary
Storage

41

BMC - Fast Path/EP Restructure

Original
Area(s)

Shadow
Area(s)

UOW
Copied?

Temporary
Storage

Control
Region

Intercept

YESNO

Original
Area(s)

Shadow
Area(s)

UOW
Copied?

Temporary
Storage

Control
Region

Intercept

YESNO

42

BMC - Fast Path/EP Restructure

Original
Area(s)

Inactive
Area(s)

Shadow
Area(s)

Active
Area(s)

Turnover

Original
Area(s)

Inactive
Area(s)

Original
Area(s)

Inactive
Area(s)

Shadow
Area(s)

Active
Area(s)

Shadow
Area(s)

Active
Area(s)

Turnover

43

IMS in a 64-bit world

Hints and tips.

Assembler programming

44

Hints and tips: Assembler Programming

Source instruction “structure”

45

Hints and tips: Assembler Programming

• Backward compatibility with existing instructions
that only manipulate 32 bits in register.

• Instruction code determine bit scope in registers
• Analogs for 64←64 instructions

• “G” added to mnemonic
• Analogs for 64←32 instructions

• “F” added to mnemonic
• Existing 32←32 instructions

• PSW bits determine addressing scope
• Extended Addressing bit
• Basic Addressing bit

46

Hints and tips: Assembler Programming

• Instruction analogs easily implemented with
macro variables.
• Conditional assembly of single code set produces

different flavour of instructions, depending on the state,
or value, of a set of variables.

• Example:
• &VG SETC ‘’ /* Init to NULL */
• &VF SETC ‘’ /* Init to NULL */

OR
• &VG SETC ‘G’ /* Init to “G” */
• &VF SETC ‘F’ /* Init to “F” */

OR
• &VG SETC ‘G’ /* Init to “G” */
• &VF SETC ‘’ /* Init to NULL */

47

Hints and tips: Assembler Programming
• Generated code:

• Source code of

A&VG.&VF.R

• will generate

AR
or

AGFR
or

AGR

48

Hints and tips: Assembler Programming

Modal instructions

49

Hints and tips: Assembler Programming

• Tri-modal addressing:
• BASSM, BSM, SAM24, SAM31, SAM64

• (also TAM to test AMODE status)

• Modal instructions:
• They behave differently, depending on PSW’s

AMODE status.
• BALR, BASR, BRAS, BRASL, LA, MVCL etc.

• See chapter 7 in POPS manual.

50

Hints and tips: Assembler Programming

Relative addressing

51

Hints and tips: Assembler Programming
• Relative addressing: What does it mean ???

• Different concept: (well, sort of …)
• “Old way” has fixed base register.

• Everything addressed from base register is relative
to that base.

• Relative instructions use variable base (PSW).
• Moving target
• Everything addressed from PSW is relative to

the PSW.
• Cannot address “odd” addresses.

• Target must be at least on halfword boundary
ASMA058E Invalid relative address - xxxxxxxx

• Target of absolute value generates warning message
• ASMA056W Absolute value found when relocatable

value expected - xxxxxxxx

52

Hints and tips: Assembler Programming

• Relative addressing (continued):

• 00000340 C010 0000 01CC 000006D8 2822
LARL R1,=C'#PFPCCBI' /* Literal in pool */

• 0000010C A7F4 FFF9 000000FE 2424
J MAIN0800 /* Go exit */

• Watch out for existing MVS interface macros.
• More than often generates code that requires base register,

usually for literal pool, often for label reference.
• Base register for literal pool good idea.

• Its not always what it seems…….

53

IMS in a 64-bit world

Hints and tips.

Environmental factors

54

Hints and tips: Environmental factors

Load module addresses

55

Hints and tips: Environmental Factors

• Load module addresses, as returned by LOAD,
has AMODE bits set:
• Bits 0-31 is zero (if AMODE(64))
• Bit 32 shows AMODE(24|31)
• Bit 63 shows AMODE(64)
• Some modal instructions ignore / process these bits properly.

• Executable code may address data above 2G bar,
but CANNOT run there (for now)
• BASR with target address where bit 32 is on,

results in S0C4 abend code 3A or 3B
• When in AMODE(64) status

• BASR with target adress where bit 63 is on,
results in S0C1 or S0C5

56

Hints and tips: Environmental Factors

? ?

0 0 0 0 0 0 0 0 x

00 31

32 39 40 63

• R0 contents after successful LOAD of load module
with AMODE(24) attribute
• Bits 00 to 31 unpredictable
• Bits 32 to 39 = zero
• Bits 40 to 63 = Entry Point Address (24 bit)

57

Hints and tips: Environmental Factors

? ?

1 x

00 31

32 33 63

• R0 contents after successful LOAD of load module
with AMODE(31) attribute
• Bits 00 to 31 unpredictable
• Bit 32 = 1
• Bits 33 to 63 = Entry Point Address (31 bit)

58

Hints and tips: Environmental Factors

0 0

0 x 1

00 31

32 33 63

• R0 contents after successful LOAD of load module
with AMODE(64) attribute
• Bits 00 to 31 always zero
• Bit 32 = 0
• Bits 33 to 63 = Entry Point Address (31 bit)
• Bit 63 = 1

59

Hints and tips: Environmental Factors

• z/OS V1R11 (and later) allows LOAD into 64-bit
virtual storage

• Directed load only
• z/OS does not track it
• User must acquire storage 1st, then request

LOAD to load the module at that location.

• Non executable code only (logically)
• Still cannot execute above 2G bar

60

Hints and tips: Environmental factors

Save area formats
and

chains.

61

Hints and tips: Environmental Factors

• Various save area formats
• SYS1.MACLIB(IHASAVER) provides mapping

• F1SA format:
• 18 fullwords (72 bytes) in length
• Stores 32-bit values (GPR’s only)
• Utilizes 32-bit back / forward pointers.

• F4SA format:
• 36 fullwords (144 bytes) in length
• Stores 64-bit values (GPR’s only ??)
• Utilizes 64-bit back / forward pointers.

62

Hints and tips: Environmental Factors

• F5SA format:
• 54 fullwords (216 bytes) in length
• Stores 64-bit values (GPR’s only)

• Additional room for 32-bit values (high order)
• Utilizes 64-bit back / forward pointers.

• F7SA format:
• 54 fullwords (216 bytes) in length
• Stores 64-bit values (GPR’s)
• Stores 32-bit values (AR’s)
• Utilizes 64-bit back / forward pointers.

63

Hints and tips: Environmental Factors

• Linkage stack:
• Associated with dispatchable unit (read TCB)
• No need 2 know the format
• BAKR, PR, PC instructions

64

Hints and tips: Environmental Factors

• Save area chains
• Sequential, fixed format

• Sequential (or not), variable format
• Facilitates R13 mapping of working storage

• Careful when hooking different type into existing chain !!

• IMS has pre-allocated save area chains
(sequential, fixed format)
• Uses 2 F1SA areas, where required

• Might see (what appears to be) every second set empty
in chain

• Reduces cascading call depth

• Don’t try and build F1SA chain in 64-bit storage !!

65

Happy coding !!!

Questions ???

Andre_Schoeman@BMC.COM

mailto:Andre_Schoeman@BMC.COM�

	IMS in a 64-bit world.
	IMS in a 64-bit world: Main topics
	32-bit to 64-bit progression
	32-bit to 64-bit progression
	Some hardware differences
	ESA/390 PSW format
	z/Architecture PSW format
	32-bit to 64-bit progression
	32-bit to 64-bit progression
	32-bit to 64-bit progression
	32-bit to 64-bit progression
	IMS exploitation
	IMS exploitation: Log buffers
	IMS exploitation
	IMS exploitation: ACBLIB member cache
	IMS exploitation: ACBLIB member cache
	IMS exploitation: ACBLIB member cache
	IMS exploitation: ACBLIB member cache
	IMS exploitation
	IMS exploitation: LSQA relief
	IMS exploitation: LSQA relief
	IMS exploitation
	IMS exploitation: FP 64-bit Buffer Manager
	IMS exploitation: FP 64-bit Buffer Manager
	IMS exploitation: FP 64-bit Buffer Manager
	IMS exploitation: FP 64-bit Buffer Manager
	IMS exploitation: FP 64-bit Buffer Manager
	BMC Software Inc.
	BMC - Fast Path/EP Utilities
	BMC - Fast Path/EP Indexer
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	BMC - Fast Path/EP Restructure
	IMS in a 64-bit world
	Hints and tips: Assembler Programming
	Hints and tips: Assembler Programming
	Hints and tips: Assembler Programming
	Hints and tips: Assembler Programming
	Hints and tips: Assembler Programming
	Hints and tips: Assembler Programming
	Hints and tips: Assembler Programming
	Hints and tips: Assembler Programming
	Hints and tips: Assembler Programming
	IMS in a 64-bit world
	Hints and tips: Environmental factors
	Hints and tips: Environmental Factors
	Hints and tips: Environmental Factors
	Hints and tips: Environmental Factors
	Hints and tips: Environmental Factors
	Hints and tips: Environmental Factors
	Hints and tips: Environmental factors
	Hints and tips: Environmental Factors
	Hints and tips: Environmental Factors
	Hints and tips: Environmental Factors
	Hints and tips: Environmental Factors
	Happy coding !!!

